FAIAFIELD Instiute of Manogement \& Technology
(Affiliated to GGSIP University, New Delhi)

150 9001:2008 8 14001:20004
NAAC ACCREDITED
1 $\mathbf{A}^{\prime \prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi

## BBA(G)

## 104: Quantitative Techniques \& Operational Research In Management

## Unit I

Statistics: Definition, Importance \& Limitation. Collection of data and formation of frequency distribution. Graphic presentation of frequency distribution - graphics, Bars, Histogram, Diagrammatic. Measures of central tendency - mean, median and mode, partition values - quartiles, deciles and percentiles. Measures of variation - range, $I Q R$, quartile, deciles and percentiles. Measures of variation - range, IQR, quartile deviation and standard deviation and Lorenz Curve.

## Unit II

Correlation Analysis: Correlation Coefficient; Assumptions of correlation analysis; coefficients of determination and correlation; measurement of correlation- Karl Person's Methods; Spearman's rank correlation; concurrent deviation the correlation coefficient;
Pitfalls and limitations associated with regression and correlation analysis; real world application using IT tools..

## Unit III

Linear Programming: Concept a assumptions usage in business decision making linear programming problem: formulation, methods of solving: graphical and simplex, problems with mixed constraints: duality; concept, significance, usage \& application in business decision making.

## Unit IV

Transportation, assignment problems \& Game Theory: General structure of transportation problem, solution procedure for transportation problem, methods for finding initial solution, test for optimality. Maximization transportation on problem, transportation problem. Assignment problem approach of the assignment model, solution methods of assignment problem, maximization in an assignment, unbalanced assignment problem, restriction on assignment.

## FAIIAFIELD Institute of Manngement \& Technology <br> (Affiliated to GGSIP University, New Delhi )

## $\mathbf{A}^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSSP University Delhi and Approved by Bar Council of flndia \& NCTE

## UNIT 1

## Statistics

Statistics is the study of the collection, organization, analysis, interpretation and presentation of data. It deals with all aspects of data, including the planning of data collection in terms of the design of surveys and experiments.

## Importance of Statistics in Different Fields

Statistics plays a vital role in every fields of human activity. Statistics has important role in determining the existing position of per capita income, unemployment, population growth rate, housing, schooling medical facilities etc...in a country. Now statistics holds a central position in almost every field like Industry, Commerce, Trade, Physics, Chemistry, Economics, Mathematics, Biology, Botany, Psychology, Astronomy etc..., so application of statistics is very wide. Now we discuss some important fields in which statistics is commonly applied

## (1) Business:

Statistics play an important role in business. A successful businessman must be very quick and accurate in decision making. He knows that what his customers wants, he should therefore, know what to produce and sell and in what quantities. Statistics helps businessman to plan production according to the taste of the costumers, the quality of the products can also be checked more efficiently by using statistical methods. So all the activities of the businessman based on statistical information. He can make correct decision about the location of business, marketing of the products, financial resources etc...

## (2) In Economics:

Statistics play an important role in economics. Economics largely depends upon statistics. National income accounts are multipurpose indicators for the economists and administrators. Statistical methods are used for preparation of these accounts. In economics research statistical methods are used for collecting and analysis the data and testing hypothesis. The relationship between supply and demands is studies by statistical methods, the imports and exports, the inflation rate, the per capita income are the problems which require good knowledge of statistics.

## FAIAFIELD Institute of Manogement \& Technology <br> (Affiliated to GGSIP University, New Delhi)

$\mathbf{A}^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE
(3) In

## Mathematics:

Statistical plays a central role in almost all natural and social sciences. The methods of natural sciences are most reliable but conclusions draw from them are only probable, because they are based on incomplete evidence. Statistical helps in describing these measurements more precisely. Statistics is branch of applied mathematics. The large number of statistical methods like probability averages, dispersions, estimation etc... is used in mathematics and different techniques of pure mathematics like integration, differentiation and algebra are used in statistics.

## (4) In Banking:

Statistics play an important role in banking. The banks make use of statistics for a number of purposes. The banks work on the principle that all the people who deposit their money with the banks do not withdraw it at the same time. The bank earns profits out of these deposits by lending to others on interest. The bankers use statistical approaches based on probability to estimate the numbers of depositors and their claims for a certain day.
(5) In State Management (Administration):

Statistics is essential for a country. Different policies of the government are based on statistics. Statistical data are now widely used in taking all administrative decisions. Suppose if the government wants to revise the pay scales of employees in view of an increase in the living cost, statistical methods will be used to determine the rise in the cost of living. Preparation of federal and provincial government budgets mainly depends upon statistics because it helps in estimating the expected expenditures and revenue from different sources. So statistics are the eyes of administration of the state.
(6) In Accounting and Auditing:

Accounting is impossible without exactness. But for decision making purpose, so much precision is not essential the decision may be taken on the basis of approximation, know as statistics. The correction of the values of current asserts is made on the basis of the purchasing power of money or the current value of it.

In auditing sampling techniques are commonly used. An auditor determines the sample size of the book to be audited on the basis of error.
(7) In Natural and Social Sciences: Statistics plays a vital role in almost all the natural and social sciences.
Statistical methods are commonly used for analyzing the experiments results, testing their significance in Biology,Physics, Chemistry, Mathematics,
$\mathbf{A}^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE

Meteorology, Research chambers of commerce, Sociology, Business, Public Administration, Communication and Information Technology etc...

Astronomy is one of the oldest branch of statistical study, it deals with the measurement of distance, sizes, masses and densities of heavenly bodies by means of observations. During these measurements errors are unavoidable so most probable measurements are founded by using statistical methods.

## Limitations of statistics.

Statistics is indispensable to almost all sciences - social, physical and natural. It is very often used in most of the spheres of human activity. In spite of the wide scope of the subject it has certain limitations. Some important limitations of statistics are the following:

1. Statistics does not study qualitative phenomena:

Statistics deals with facts and figures. So the quality aspect of a variable or the subjective phenomenon falls out of the scope of statistics. For example, qualities like beauty, honesty, intelligence etc. cannot be numerically expressed. So these characteristics cannot be examined statistically. This limits the scope of the subject.
2. Statistical laws are not exact:

Statistical laws are not exact as incase of natural sciences. These laws are true only on average. They hold good under certain conditions. They cannot be universally applied. So statistics has less practical utility.
3. Statistics does not study individuals:

Statistics deals with aggregate of facts. Single or isolated figures are not statistics. This is considered to be a major handicap of statistics.
4. Statistics can be misused:

##  <br> (Affiliated to GGSIP University, New Delhi)

$\mathbf{A}^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE

Statistics is mostly a tool of analysis. Statistical techniques are used to analyze and interpret the collected information in an enquiry. As it is, statistics does not prove or disprove anything. It is just a means to an end. Statements supported by statistics are more appealing and are commonly believed. For this, statistics is often misused. Statistical methods rightly used are beneficial but if misused these become harmful. Statistical methods used by less expert hands will lead to inaccurate results. Here the fault does not lie with the subject of statistics but with the person who makes wrong use of it.

## Data collection

Data collection usually takes place early on in an improvement project, and is often formalized through a plan that often contains the following activity.

1. Pre collection activity - agree on goals, target data, definitions, methods
2. Collection - data collections
3. Present Findings - usually involves some form of sorting analysis and/or presentation.

Prior to any data collection, pre-collection activity is one of the most crucial steps in the process. It is often discovered too late that the value of their interview information is discounted as a consequence of poor sampling of both questions and informants and poor elicitation techniques After pre-collection activity is fully completed, data collection in the field, whether by interviewing or other methods, can be carried out in a structured, systematic and scientific way.

A formal data collection process is necessary as it ensures that data gathered are both defined and accurate and that subsequent decisions based on arguments embodied in the findings are valid. The process provides both a baseline from which to measure and in certain cases a target on what to improve.

## Frequency and Frequency distribution

The frequency of a particular data value is the number of times the data value occurs.For example, if four students have a score of 80 in mathematics, and then the score of 80 is said to have a frequency of 4 . The frequency of a data value is often represented by $f$.

A frequency table is constructed by arranging collected data values in ascending order of magnitude with their corresponding frequencies.

## FAIAFIELD Institute of Manogement \& Technology <br> (Affiliated to GGSIP University, New Delhi)

## ' ${ }^{\prime}$ ' <br> Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE

## Example

The marks awarded for an assignment set for a Year 8 class of 20 students were as follows:

| 6 | 7 | 5 | 7 | 7 | 8 | 7 | 6 | 9 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 10 | 6 | 8 | 8 | 9 | 5 | 6 | 4 | 8 |

Present this information in a frequency table.

## Solution:

To construct a frequency ta ble, we proceed as follows:

Step 1:
Construct a table with three columns. The first column shows what is being arranged in ascending order (i.e. the marks). The lowest mark is 4 . So, start from 4 in the first column as sho wn below.

| Mark | Tally | Frequency |
| :---: | :---: | :---: |
| 4 |  |  |
| 5 |  |  |
| 6 |  |  |
| 7 |  |  |
| 8 |  |  |
| 9 |  |  |
| 10 |  |  |

Step 2:
Go through the list of mar ks. The first mark in the list is 6 , so p ut a tally mark against 6 in the second column. The second mark in the list is 7 , so put a tally mark against 7 in the second column. The third mark in the list is 5 , so put a tally mark against 5 in the third column as shown below.

| Mark | Tally | Frequency |
| :---: | :--- | :--- |
| 4 |  |  |
| 5 | 1 |  |
| 6 | 1 |  |
| 7 | 1 |  |
| 8 |  |  |
| 9 |  |  |
| 10 |  |  |

We continue this process until all marks in the list are tallied. Step 3: NAAC ACCREDITED

Count the number of tally marks for each mark and write it in third column. The finished frequency table is as follows:
$\mathbf{A}^{\prime \prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE

In general:

We use the following steps to construct a frequency table: Step 1 :

Construct a table with three columns. Then in the first column, wr ite down all of the data values in ascending order of magnitude.
Step 2:
To complete the second co lumn, go through the list of data values and place one tally mark at the appropriate place in the second column f or every data value. When the fifth tally is reached for a mark, draw a horizont al line through the first four tally marks as shown for 7 in the above frequency table. We continue this process until all data values in the list are tallied.
Step 3:
Count the number of tally marks for each data value and write it in the third column.

## Class Intervals (or Groups)

When the set of data valu es are spread out, it is difficult to set up a frequency table for every data value as there will be too many rows in the table. So we group the data into class intervals (or groups) to help us organise, interpret and analyse the data.

Ideally, we should have between five and ten rows in a frequency $t$ able. Bear this in mind when deciding the $s$ ize of the class interval (or group).
Each group starts at a data value that is a multiple of that group. F or example, if the size of the group is 5 , then the groups should start at $5,10,15,20$ etc. Likewise, if the size of the group is 10 , then the groups should start at $10,20,30,40$ etc.
The frequency of a group (or class interval) is the number of data va lues that fall in the range specified by that g roup (or class interval).
$\mathbf{A}^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE

## Example

The number of calls from motorists per day for roadside service wa s recorded for the month of December 2003. The results were as follows:

| 28 | $: 22$ | 217 | 130 | 120 | 86 | 80 | 90 | 120 | 140 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $: 0$ | 40 | $14 \pm$ | 18 | 113 | 90 | 62 | $\because-4$ | 192 | 170 |
| 100 | 75 | 104 | 97 | 75 | 123 | 100 | 82 | 109 | 120 |
| 81 |  |  |  |  |  |  |  |  |  |

Set up a frequency table for this set of data values.

## Solution:

To construct a frequency ta ble, we proceed as follows:
Smallect data value=24
Fighest data italip $=2.17$
Difference $=$ Highest value - Smalles; value

$$
\begin{aligned}
& -217-23 \\
& =189
\end{aligned}
$$

Let the width of the class interyal te -0 .


## There are at sast 5 class intervals. This is reaconable for the g:ven data.

Step 1: Construct a table with three columns, and then write the data groups or class intervals in the first column. The size of each group is 40 . So, the groups will start at 0,40 , $80,120,160$ and 200 to include all of the data. Note that in fact we need 6 groups ( 1 more thhan we first thought).

| Class interval | Tally | Frequency |
| :---: | :---: | :---: |
| $0-39$ |  |  |
| $40-79$ |  |  |
| $80-119$ |  |  |
| $120-159$ |  |  |
| $160-199$ |  |  |
| $200-239$ |  |  |

Step 2: Go through the list of data values. For the first data value in the list, 28, place a tally mark against the group 0-39 in the second column. For the second data value in the list, 122, place a tally mark against the group $120-159$ in the second column. For the third data value in the list, 217, place a tally mark against the group 200-239 in the se cond column.


Institute of ManagemenI \＆Technolagy Managed by＇The Fairfield Foundation＇ （Affiliated to GGSIP University，Hew Delhi ）

We continue this process until all of the data values in the set are tallied．
Step 3：Count the number of tally marks for each group and write it in the third column．The finished frequency table is as follows：

| Class interval | Tally | Frequency |
| :---: | :---: | :---: |
| 0－39 | I | 1 |
| 40－79 | 冉 | 5 |
| 80－119 | 冊 冊 II | 12 |
| 120－159 | WII III | 8 |
| 160－199 | IIII | 4 |
| 200－239 | 1 | 1 |
|  | Sum $=$ | 31 |

Graphic presentation of Fre quency distribution

## Graphics

Graphics，also known as gra phical techniques，are information graph ics in the field of statistics used to visualiz e quantitative data．

Bar chart：A bar chart or bar graph is a chart with r ectangular bars with lengths proportional to the values that they represent．The bars can be plotted vertically or horizontally．A vertical bar chart is sometimes called a column bar chart．


A bar graph constructed from
favorite foods mentioned by elementary school student s.

## Histogram

In statistics, a histogram is a graphical representation of the distribution of data. It is an estimate of the proba bility distribution of acontinuous variable and was first introduced by Karl Pea rson. A histogram is a repre sentation of tabulated frequencies, shown as adjacent rectangles, erected over di screte intervals (bins), with an area equal to the frequency of the observations in the interval. The height of a rectangle is also equal to the frequency density of the interval, i.e., the frequency divided by the width of the interval. The total area of the histogram is equal to the number of data. A histogram may also be normali zed displaying relative frequencies. It then shows the proportion of cases that fall into each of several categories, with th e total area equaling 1 . The categori es are usually specified as consecutive, non-overlapping intervals of a variable. The categories (intervals) must be adjacen $t$, and often are chosen to be of the same size. The rectangles of a histogram are drawn so that they touch each other to indicate that the original variable is continuous.

## Measures of Central Tendency

## Mean

In statistics, mean has two related meanings:

- the arithmetic mean (and is d istinguished from the geometric mean or harmo nic mean).
- the expected value of a rand om variable, which is also called the population mean.

There are other statistical measures that should not be confused with averages - including 'median' and 'mode'. Other simple statistical analyses use measures of spread , such as range, interquartile range, or standard deviation. For a real-valued random variable $X$, the mean is the expectation of $X$. Note that not every probability distribution has a defined me an (or variance); see the Cauchy distribution for an example.

For a data set, the mean is the su $m$ of the values divided by the number of value $s$. The mean of a set of numbers $x_{1}, x_{2}, \ldots, x_{n}$ is typ ically denoted by $: \cdot$, pronounced " $x$ bar". This mean is a type of arithmetic mean. If the data set were based on a series of observations obtain ed by sampling a statistical population, this mean is termed the "sample mean" ( $\boldsymbol{x}$ : ) to disting uish

## FAIAFIELD Institute of Manogement \& Technology <br> (Affiliated to GGSIP University, New Delhi ) <br> तेजखि्व नाववीतीमस्त्त ' $A^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi <br> 'A Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to

 NAAC ACCREDITEDit from the "population mean" ( $\mu$ or $\mu_{\mathrm{x}}$ ). The mean is often quoted along with the standard deviation: the mean describes the central location of the data, and the standard deviation des ribes the spread.

An alternative measure of dispe rsion is the mean deviation, equivalent to the average absolute deviation from the mean. It is les s sensitive to outliers, but less mathematically tractable.

## Arithmetic mean (AM)

The arithmetic mean is the "standard" average, often simply called the "mean".

$$
\bar{x}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}
$$

The mean may often be c onfused with the median, mode or range. T he mean is the arithmetic average of a set of values, or distribution; however, for skewed distributions, the mean is not necessarily the same as the middle value (median), or the mo st likely (mode). For example, mean income is skewed upwards by a small number of people with very large incomes, so that the majorit $y$ have an income lower than the mean. By con trast, the median income is the level at which half the population is below and half is above. T he mode income is the most likely income, a nd favors the larger number of people with low er incomes. The median or mode are often m ore intuitive measures of such data.

For example, the arithmetic mean of six values: $5,10,13,7,25,31$ is

$$
\frac{5|1013| 7|25| 31}{6}=\frac{91}{6} \approx 15 .
$$

## Weighted arithmetic mean

The weighted arithmetic mean is used, if one wants to combine average values from samples of the same population with different sample sizes:

$$
\overline{\bar{x}}=\frac{\sum_{i-1}^{n} w_{i} \cdot x_{i}}{\sum_{i=1}^{r_{i}} w_{i}}
$$

The weights $w_{i}$ represent the bounds of the partial sample. In other applications they

## FAIAFIELD Institute of Manogement \& Technology <br> (Affiliated to GGSIP University, New Delhi) <br> तेजस्वि नावधीतमस्त्त 'A' Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi <br> A. Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to

 NAAC ACCREDITEDrepresent a measure for the reliability of the influence upon the mean by res pective values.

Problems


Comparison of mean, median and mode with different skewness.

The arithmetic mean may be mis interpreted as the median to imply that most values are higher or lower than is actually the case. If elements in the sample space increase arit hmetically, when placed in some order, then the median and arithmetic average are equal. For example, consider the sample space $\{1,2,3,4\}$. The average is 2.5 , as is the median. However, when we consider a sample space that cannot be arranged into an arithmetic progression, such as $\{1,2,4,8,16\}$, the median and arithmetic average c an differ significantly. In this case the arithmetic average is 6.2 and the median is 4 . When one 1 ooks at the arithmetic average of a sample spa e, one must note that the average value can vary significantly from most values in the sample spa ce.

There are applications of this p henomenon in many fields. For example, since the 1980s in the United States median income ha s increased more slowly than the arithmetic average of income. Researchers dealing with frequency data must also be careful when reporting s ummary statistics such as means or median. Where a phenomenon is rare in general (for example, emergency room visits among the general popula tion), but occurs frequently in some people (for example, dare devils), then the mean value may be much lower than the median.

## Median.

The median of a finite list of nu mbers can be found by arranging all the observa ions from lowest value to highest value and picki ng the middle one. If there is an even number of
observations, then there is no single middle value; the median is then usually defined to be the mean of the two middle values.

To find the median just line the numbers in order according to their value and cross off one number on each side. Example: 12346791112 13, 14. In a sample of data, or a finite population, there may be no me mber of the sample whose value is identical to $t$ he median (in the case of an even sample size), and, if there is such a member, there may be more than one so that
the median may not uniquely id entify a sample member. Nonetheless, the value of the median is uniquely determined with the us ual definition

At most, half the population have values less than the median, and, at most, half have values greater than the median. If both groups contain less than half the population, then some of the population is exactly equal to the median. For example, if $a<b<c$, then the median of the list $\{a, b, c\}$ is $b$, and, if $a<b<c<d$, then the median of the list $\{a, b, c, d\}$ is the mean of $b$ and $c$; i.e., it is $(b+c) / 2$.


Comparison of mean, median and mode with different skewness.

Medians in descriptive statistics
The median is used primarily for skewed distributions, which it summarizes di fferently than the arithmetic mean. Consider the m ultiset $\{1,2,2,2,3,14\}$. The median is 2 in this case, as is the mode, and it might be seen as a better indication of central tendency than the arithmetic mean of 4 .

## Mode

In statistics, the mode is the value that occurs most frequently in a data set

## FAIAFIELD Institute of Manogement \& Technology <br> (Affiliated to GGSIP University, New Delhi) <br> तेजज्वि नावघीतमस्तु ' $\mathrm{A}^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi

 150 NAAC ACCREDITEDLike the statistical mean and the median, the mode is a way of capturing important information about a random variable or a p opulation in a single quantity. The mode is in general different from the mean and median, and may be very different for strongly skewed distributions.

तेजस्वि नावधीतमस्त्व / Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi NAAC ACCREDITED

The mode is not necessarily un ique, since the same maximum frequency $m$ ay be attained at different values. The most ambig uous case occurs in uniform distributions, wher ein all values are equally likely.

Comparison of mean, median and mode

Comparison of common averages of values $\{1,2,2,3,4,7,9\}$

| Type | Description | Example | Result |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Arithmetic | Sum d by number of values: | $(1+2+2+3+4+7+9)$ | 4 |
| mean |  | 7 |  |


| Median | Middle value separating the greater and lesser halves of a | $1,2,2,3,4,7,9$ | 3 |
| :--- | :--- | :--- | :--- |


| Mode | Most frequent valu e in a data set | $1,2,2,3,4,7,9$ | 2 |
| :--- | :--- | :--- | :--- |

## Quartile

In descriptive statistics, the quartiles of a set of values are the three points that divide the data set into four equal groups, each rep resenting a fourth of the population being sampled. A quartile is a type of quantile.

## Definitions

- first quartile $\left(\right.$ designated $\left.\mathrm{Q}_{1}\right)=$ lower quartile $=$ splits lowest $25 \%$ of data $=25$ th percentile
 NAAC ACCREOTITED
- second quartile $\left(\right.$ designated $\left.\mathrm{Q}_{2}\right)=$ median $=$ cuts data set in half $=50$ th percentile
- third quartile $\left(\right.$ designated $\left.\mathrm{Q}_{3}\right)=$ upper quartile $=$ splits highest $25 \%$ of data, or lowest $75 \%$ $=75$ th percentile

The difference between the upper and lower quartiles is called the interquartile range.

## Method

1. Use the median to divide the ordered data set into two halves. If the median is a datum (as opposed to being the avera ge of the middle two data), include the median in b oth halves.
2. The lower quartile value is the median of the lower half of the data. The upp er quartile value is the median of the upper ha lf of the data.

## Example 1

Data Set: 6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36 Ordered Data Set: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49

Method 1
$\left\{\begin{array}{l}Q_{1}=25.5 \\ Q_{2}=40 \\ Q_{3}=42.5\end{array}\right.$

## Example 2

Ordered Data Set: 7, 15, 36, 39, 40, 41

Method 1

$$
\left\{\begin{array}{l}
Q_{1}=15 \\
Q_{2}=37.5 \\
Q_{3}=40
\end{array}\right.
$$

## Deciles

In descriptive statistics, any of the nine values that divide the sorted data into ten equal parts, so that each part represents $1 / 10$ of the sample or population

## Percentile

In statistics, a percentile (or centile) is the value of a variable below which a c ertain percent of observations fall. For example, the 20th percentile is the value (or score) below which 20 percent of the observations may be foun $d$.

The 25th percentile is also know n as the first quartile $\left(Q_{1}\right)$, the 50 th percentile as the median

## FAIAFIELD Institute of Manogement \& Technology (Affiliated to GGSIP University, New Delhi) <br> तेजस्वि नावधीतमस्तु $\mathbf{A}^{\prime \prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi <br> 1/ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to G

 NAAC ACCREDITEDor second quartile $\left(Q_{2}\right)$, and the 75 th percentile as the third quartile $\left(Q_{3}\right)$.

## Measures of variation

## Range

The range is the simplest $m$ easure of variation to find. It is simply the highest value minus the lowest value.
RANGE = MAXIMUM - MINIMUM

Since the range only uses the largest and smallest values, it is greatly affected by extreme values, that is - it is not resistant to change.

## The Inter-quartile Range

The inter-quartile range is a measure that indicates the extent to which the central $50 \%$ of values within the dataset are dispersed. It is based upon, and related to, the median.

In the same way that the median di vides a dataset into two halves, it can be further divided into quarters by identifying the upper and lower quartiles. The lower quartile is found one quarter of the way along a dataset when the values have bee $n$ arranged in order of magnitude; the upper quartile is found three quarters along the dataset. Therefore, the upper quartile lies half way between the med ian and the highest value in the dataset whilst the lower quartile lies halfway between the median and the lowest value in the dataset. The inter-quartile range is found by subtracting the lower quartile from the upper quartile.

For example, the examination markks for 20 students following a particular module are arranged in order of magnitude.

| Lower quartile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Student | A | B | C | D | E | F | G | H | 1 | J | K | L | M | N | 0 | P | Q | R | S | T |
| Mark | 43 | 48 | 50 | 50 | 52 | 53 | 56 | 58 | 59 | 60 | 62 | 65 | 66 | 68 | 70 | 71 | 74 | 76 | 78 | 80 |

The median lies at the mid-point between the two central values (10th and 11th)

## FAIAFIELD Institute of Manogement \& Technology <br> (Affiliated to GGSIP University, New Delhi) <br> तेजस्वि नावधीतमस्त्व $A^{\prime \prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi 1/ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to G

 SO 9001:2008 8 14001:200= half-way between 60 and $62=61$
The lower quartile lies at the mid-p oint between the 5th and 6th values
= half-way between 52 and $53=52.5$
The upper quartile lies at the mid-p oint between the 15th and 16th values

Instiiute of Managemeni \& Technolagy Managed by 'The Falrfield Foundations (Affiliated to GGSIP University, Hew Delhi )
$=$ half-way between 70 and $71=70.5$
The inter-quartile range for this dat aset is therefore 70.5-52.5 = 18 whereas the range is: 80 $-43=37$.

The inter-quartile range provides a clearer picture of the overall dataset by removing/ig noring the outlying values.

Like the range however, the inter- quartile range is a measure of dispersion that is ba sed upon only two values from the dataset. Statistically, the standard deviation is a more powerful mea sure of dispersion because it takes into account every value in the dataset. The standard deviation is ex plored in the next section of this guide.

## Variance

## "Average Deviation"

The range only involves the smallest and largest numbers, and it would be desirable to have a statistic which involv ed all of the data values.

The first attempt one might make at this is something they might call the average deviation from the mean and define it as:

A\%e. Lev $-\sum_{N}^{(x-\mu)}$

The problem is that this su mmation is always zero. So, the average deviation will always be zero. That is why the average deviation is never used.

## Population Variance

So, to keep it from being zer o, the deviation from the mean is squared and called the "squared deviation from the mean". This "average squared deviation from the mean" is called the variance.

FIMT Campus, Kapashera, New Delhi-110037, Phones: 011-25063208/09/10/11, 25066256/ 57/58/59/60 Fax : 011-250 63212 Mob. : 09312352942, 09811568155 E-mail : fimtoffice@gmail.com Website : www.fimt-ggsipu.org
Fax:011-250 63212 Mob. : 09312352942, 09811568155 $(x-\mu)^{\text {E-mail : fimtofic }}$
$N$

तेजस्वि नावधीतमस्तु NAAC ACCREDITED

## Unbiased Estimate of the Po pulation Variance

One would expect the sample variance to simply be the population variance with the population mean replaced $b y$ the sample mean. However, one of the major uses of statistics is to estimate the corresponding parameter. This formula has the problem that the estimated value isn't the same as the parameter. To counteract this, the sum of the squares of the deviations is divided by one less than the sample size.

Scmple Variance $=s^{2}=\frac{\sum(x-\overline{2})^{2}}{r-1}$

## Standard deviation

Standard deviation is a widely $u$ sed measure of variability or diversity used in statistics. It shows how much variation or "dispersion" exists from the average (mean, or expect ed value). A low standard deviation indicates that the data points tend to be very close to the mean, whereas high standard deviation indicates that the data points are spread out over a large range of values.

Consider a population consisting of the following eight values:

$$
2,4,4,4,5,5,7,9
$$

These eight data points have the mean (average) of 5:

$$
\frac{2+4+4+4+5-5+7+9}{8}-5
$$

To calculate the population standard deviation, first compute the differ ence of each data point from the mean, and square the result of each:

$$
\begin{array}{ll}
(2-5)^{2}=(-3)^{2}=9 & (5-5)^{2}=0^{2}=0 \\
(4-5)^{2}=(-1)^{2}=1 & (5-5)^{2}=0^{2}=0 \\
(4-5)^{2}=(-1)^{2}=1 & (7-5)^{2}=2^{2}=4 \\
(4-5)^{2}=(-1)^{2}=1 & (9-5)^{2}=4^{2}=16
\end{array}
$$

# FAIAFIELD Institute of Management \& Technology 

(Affiliated to GGSIP University, New Delhi) 150 $9001: 2008814001: 2004$
NAAC ACCREDITED

## तेजज्वि नावघधीतमस्तु ' $A^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi <br> Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to and Approved by Bar Council of India \& NCTE

Next compute the average of these values, and take the square root:

$$
\sqrt{\frac{(9+1+1+1+(1+0+4+16)}{8}}=2
$$

Unit 2

## Correlation Coefficient (r)

The quantity $r$, called the linear correlation coefficient, measures the strength and the direction of a linear relations hip between two variables. The linear correlation coefficient is sometimes referred to as the Pearson product moment correlation coefficien $t$ in honor of its Pearson developer Karl
formula
The mathematical

where $n$ is the number of pairs of data.

* The value of $r$ is such th at $-1<r<+1$. The + and - signs are us ed for positive linear correlations and negative linear correlations, respectively.
* Positive correlation: If $x$ and $y$ have a strong positive linear c orrelation, $r$ is close to +1 . An $r$ value of e xactly +1 indicates a perfect positive fit. Positive values indicate a relationship betwe en $x$ and $y$ variables such that as values for $x$ increases, values fo $\mathrm{r} y$ also increase.
- Negative correlation: If $x$ and $y$ have a strong negative linear c orrelation, $r$ is close to -1. An $r$ value of exactly -1 indicates a perfect negative fit. Negative values indicate a relationship between $x$ and $y$ such that as values for $x$ increase, values for $y$ decrease.
- No correlation: If there is no linear correlation or a weak linear correlation, $r$ is close to 0 . A value near ze ro means that there is a random, nonlin ear relationship between the two variables


## FAIIAFIELD Institute of Manogement \& Technology <br> (Affiliated to GGSIP University, New Delhi)

तेजस्वि्व नावधीतमस्तु ${ }^{\prime} A^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi
NAAC ACCREDITED

- A perfect correlation of $\pm 1$ occurs only when the data points all lie exactly on a straight line. If $r=+1$, the slope of this line is positive. If $r=-1$, t he slope of this
negative.
- A correlation greater than 0.8 is generally described as strong, whereas a correlation less than 0.5 is generally described as weak. These values can vary based upon the "type" of data being examined.


# FAIAFIELD Institute of Manogement \& Technology <br> (Affiliated to GGSIP University, New Delhi) 

## $\mathbf{A}^{\prime}$ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE

## Assumption of correlation analysis

linearity, | nor mality, and |
| :--- | :--- |
| homoscedascity |

Calculations on correlation rel y on a linear relationship. e.g. there is a correlation between experience and nervousness in driving a car but you may not get a linear correlation because the


Homoscedascity means that ther e needs to be a consistent scatter pattern over the whole range. Otherwise, you may get a posiitive correlation over a range of the data that is tainted by a unproven correlation in another area.

And then there is causality, whic $h$ means that the two sets of data may having a third influincing factor e.g. I could say there is a positive correlation between crime and m embership of the conservative party but that wo uld be a bad correlation as both are dependent on population density.

## Coefficient of Determination, $r^{2}$ or $R^{2}$ :

- The coefficient of determ ination, $r^{2}$, is useful because it gives th e proportion of the variance (fluctuation) of one variable that is predictable from the other variable. It is a measure that allows us to determine how certain one can be in making predictions from a certain model/graph.
- The coefficient of determ ination is the ratio of the explained variat ion to the total variation.
- The coefficient of determination is such that $0<\quad r^{2}<1, \quad$ and denotes the strength of the linear association between $x$ and $y$. - The coefficient of determination represents the percent of the $d$ ata that is the closest to the line of best fit. For example, if $r=0.922$, then $r^{2}=0.850$, which means that $85 \%$ of the total variation in $y$ can be explained by the linear relati onship between $x$ and $y$ (as described by the regression equation). The other $15 \%$ of the total variation in $y$ remains unexplained.
- The coefficient of determination is a measure of how well the regression line represents the data. If the $r$ egression line passes exactly through every point on the scatter plot, it NAAC ACCREDITED
would be able to explain all of the variation. The further the line is away from the points, the lesss it is able to explain.


## ' $A$ ' <br> Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi

## KARL PEARSON'S

CORRELATION COEFFICIENT (r):---

In statistics, the Pearson product-moment correlation coefficient (r) is a common measure of the correlation between two variables X and Y . When measured in a population the Pearson Product Moment correlation is designated by the Greek letter rho (?). When computed in a sample, it is designated by the letter " r " and is sometimes called "Pearson's r." Pearson's correlation reflects the degree of linear relationship between two variables. It ranges from +1 to -1 . A correlation of +1 means that there is a perfect positive linear relationship between variables. A correlation of -1 means that there is a perfect negative linear relationship between variables. A correlation of 0 means there is no linear relationship between the two variables. Correlations are rarely if ever 0,1 , or -1 . If you get a certain outcome it could indicate whether correlations were negative or positive.

## Mathematical Formula:--

The quantity r , called the linear correlation coefficient, measures the strength and the direction of a linear relationship between two variables. The linear correlation coefficient is sometimes referred to as the Pearson product moment correlation coefficient in honor of its developer Karl Pearson.

The mathematical formula for computing $r$ is:

```
                                    N\Sigmaxy-(\Sigmax)(\Sigmay)
r=}\sqrt{}{\sqrt{[N\Sigma\mp@subsup{x}{}{2}-(\Sigmax\mp@subsup{)}{}{2}][N\Sigma\mp@subsup{y}{}{2}-(\Sigmay\mp@subsup{)}{}{2}]}{N}
Where:
    N = number of pairs of scores
    \Sigmaxy = sum of the products of paired scores
    \Sigmax = sum of x scores
    \Sigmay = sum of y scores
    \Sigmax 2 = sum of squared x scores
    \Sigmay = sum of squaredy ycores

\title{
FAIAFIELD Institute of Management \& Technology
} (Affiliated to GGSIP University, New Delhi)
तेजस्वि नावधीतमस्तु \(\mathbf{A}^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi NAAC ACCREDITED

\section*{A' Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to}

\author{
Spearman's Rank Correlation Coefficient
}
\(\mathbf{A}^{\prime \prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE

The Spearman's Rank Correlatio n Coefficient is used to discover the strength f a link between two sets of data.

\section*{Spearman's Rank correlation coefficient}

A correlation can easily be drawn as a scatter graph, but the most precise way to compare several pairs of data is to use a statistical test - this establishes whether the cor relation is really significant or if it could have bee \(n\) the result of chance alone.

Spearman's Rank correlation c oefficient is a technique which can be used to summarise the strength and direction (negative or positive) of a relationship between two variab les.

The result will always be between 1 and minus 1 .
Method - calculating the coefficient
- Create a table from your data.
- Rank the two data sets. Ranking is achieved by giving the ranking ' 1 ' to the biggest number in a column, '2' t o the second biggest value and so on. The sma llest value in the column will get the lowe st ranking. This should be done for both sets of measurements.
- Tied scores are given the mean (average) rank. For example, the three tied scores of 1 euro in the example belo w are ranked fifth in order of price, but occup y three positions (fifth, sixth and seventh ) in a ranking hierarchy of ten. The mean ran k in this case is calculated as \((5+6+7) \div 3=6\).
- Find the difference in the ranks (d): This is the difference between the ranks of the two values on each row of the table. The rank of the second value (price) i subtracted from the rank of the first (distance from the museum).
- Square the differences \(\left(d^{2}\right)\) To remove negative values and then sum the \(\bar{m}\left(\geq d^{2}\right)\).

\section*{FAIAFIELD Institute of Management \& Technology \\ (Affiliated to GGSIP University, New Delhi) \\ तेजस्वि नावधीतमस्त्त 'A' Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi \\ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GCSI \(\begin{array}{r}\text { and Approved by Bar Council of India \& NCTE }\end{array}\)} 150 9001:20088 \(14001: 2004\)
NAAC ACCREDITED
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
Convenience \\
Store
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Distance \\
from \\
CAM (m)
\end{tabular}} & \multirow[b]{3}{*}{\begin{tabular}{l}
R ank \\
d istance
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Priceof \\
50cl bottle \\
(€)
\end{tabular}} & \multirow[b]{3}{*}{\begin{tabular}{l}
Rank \\
price
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Difference \\
between \\
ranks (d)
\end{tabular}} & \multirow{3}{*}{\(\mathrm{d}^{2}\)} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline 1 & 50 & 10 & 1.80 & 2 & 8 & 64 \\
\hline
\end{tabular}

\title{
FNIAFIFL1 I Istitive of Mangement \& Tedmology \\ (Affiliated to GGSIP University, New Delhi) \\ \(A^{\prime \prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE
}

तेजस्वि नावधीतमस्तु \(1509001: 20088\) 14001:2004
NAAC ACCREDITED
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Convenience} & Distance & \multirow{2}{*}{R ank} & Priceof & \multirow{2}{*}{Rank} & Difference & \multirow{3}{*}{\(\mathrm{d}^{2}\)} \\
\hline & from & & 50cl bottle & & between & \\
\hline \multirow[t]{2}{*}{Store} & & distance & & \multirow[t]{2}{*}{price} & & \\
\hline & CAM (m) & & (€) & & ranks (d) & \\
\hline 2 & 175 & 9 & 1.20 & 3.5 & 5.5 & 30.25 \\
\hline 3 & 270 & 8 & 2.00 & 1 & 7 & 49 \\
\hline 4 & 375 & 7 & 1.00 & 6 & 1 & 1 \\
\hline 5 & 425 & 6 & 1.00 & 6 & 0 & 0 \\
\hline 6 & 580 & 5 & 1.20 & 3.5 & 1.5 & 2.25 \\
\hline 7 & 710 & 4 & 0.80 & 9 & -5 & 25 \\
\hline 8 & 790 & 3 & 0.60 & 10 & -7 & 49 \\
\hline 9 & 890 & 2 & 1.00 & 6 & -4 & 16 \\
\hline \multirow[t]{2}{*}{10} & 980 & 1 & 0.85 & 8 & -7 & 49 \\
\hline & & & & & \(\Sigma \cdot \mathrm{d}^{2}=285.5\) & \\
\hline
\end{tabular}

Data Table: Spearman's Rank Correlation
- Calculate the coefficient \((\boldsymbol{R})\) using the formula below. The answer will always be between 1.0 (a perfect positive correlation) and -1.0 (a perfect negative correlation).

FIMT Campus, Kapashera, New Delhi-110037, Phones : 011-25063208/09/10/11, 25066256/ 57/58/59/60 Fax:011-25063212 Mob.: 09312352942, 09811568155 E-mail:fimtoffice@gmail.com Website: www.fimt-ggsipu.org

When written in mathematical \(n\) otation the Spearman Rank formula looks like th is :
\[
(R)=1-\frac{6 \bar{\sum} d^{2}}{n^{3}-n}
\]

Now to put all these values into the formula.
\(\square\) Find the value of all the \(d^{2}\) values by adding up all the values in the Dif ference \({ }^{2}\) column. In our example this is 28 5.5. Multiplying this by 6 gives 1713 .
- Now for the bottom line of the equation. The value \(n\) is the number of sites at which you took measurements. This, in our example is 10 . Substituting these values into \(n^{3}-\) \(n\) we get 1000-10

ㄴ We now have the formul a: \(R=1-(1713 / 990)\) which gives a value for \(R\) :

\section*{\(1-1.73=-0.73\)}

\section*{Example}

In this example, we will use the raw data in the table below to calculate the co rrelation between the IQ of a person with the numb er of hours spent in front of TV per week.

IQ, \(X_{i}\) Hours of TV per week, \(Y_{i}\)
1067

860
\(100 \quad 27\)

10150
\(99 \quad 28\)
\(103 \quad 29\)
\(97 \quad 20\)

11312

1126
\(110 \quad 17\)
i2
First, we must find the value of the term. To do so we use the following steps, reflected in the table below.
1. Sort the data by the first column ( \(X_{i}\) ). Create a new column \(X_{i}\) and assign it the ranked values \(1,2,3, \ldots n\).
2. Next, sort the data by the second column ( \(Y_{i}\) ). Create a fourth column \(y_{i}\) and similarly assign it the ranked value s \(1,2,3, \ldots n\).

Instiiute of Managemeni \& Technolagy Managed by 'The Falrfield Foundation' (Affiliated to GGSIP University, New Delhi)
3. Create a fifth column \(d_{i}\) to hold the differences between the two rank col umns ( \(x_{i}\) and \(y_{i}\) ).
4. Create one final column \(n^{-12} \perp .:\) to hold the value of column \(d_{i}\) squared.

IQ, \(X_{i}\) Hours of TV per week, \(Y_{i}\) rank \(x_{i}\) rank \(y_{i} d_{i=}\)
\begin{tabular}{llllll}
86 & 0 & 1 & 1 & 0 & 0 \\
97 & 20 & 2 & 6 & -4 & 16 \\
99 & 28 & 3 & 8 & -5 & 25 \\
100 & 27 & 4 & 7 & -3 & 9 \\
101 & 50 & 5 & 10 & -5 & 25 \\
103 & 29 & 6 & 9 & -3 & 9 \\
106 & 7 & 7 & 3 & 4 & 16 \\
110 & 17 & 8 & 5 & 3 & 9 \\
112 & 6 & 9 & 2 & 7 & 49 \\
113 & 12 & 10 & 4 & 6 & 36
\end{tabular}
found, we can add
With \(i_{i}^{2}\) them
to find \(\sum \bar{d}_{i}^{2}=-9 \overline{4}\). The value of \(n\) is 10 . So these values can now be substituted back into the equation,
\(p-1-\frac{6 \times 194}{10\left(10^{2}-1\right)}\)
which evaluates to \(\rho=-0.175757575 \ldots\) with a \(\underline{P-v a l u e}=0.6864058\) (using the \(\underline{t \text { distribution) }}\)

This low value shows that the c orrelation between IQ and hours spent watching TV is very low. In the case of ties in the origin al values, this formula should not be used. Ins ead, the Pearson correlation coefficient should be calculated on the ranks (where ties are given ranks,
as described above).

\section*{Calculate Coefficient of Concurrent Deviation}

\section*{Example:}

Calculate Coefficient of Concurrent Deviation from the following data
\begin{tabular}{lrrrrrrr}
X & \(:\) & 1 & 2 & 3 & 4 & 5 & 6 \\
Y & \(:\) & 25 & 169 & 5 & 1 & 0
\end{tabular}

Solution: Calculation of Coefficient of Concurrent-Deviations
\begin{tabular}{|c|l|l|l|l|}
\hline X & Deviation from & Y & Deviation from \\
Previous value. & & Previous value. \\
dy
\end{tabular}
1. It is not linearity in variables, as we have seen
2. it is not linearity in parameters, although we have only covered the linear regression model here

तेजस्वि नावधीतमस्त्त '/ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi NAAC ACCREDITED
3. Remember that by estimating the linear model we can use the results to estimate parameters that are non-linear functions of the estimated model
4. If the model is non-linear in the parameter from the outset, can use Non-Linear Least Squares to the best non-linear curve.
5. The real limitation to the regression model is when the regression function does not contain the parameter of interest

\section*{Limitations of Correlation}

Although correlation is a powerful tool, there are some limitations in using it:
- Correlation does not completely tell us everything about the data. Means and standard deviations continue to be important.
- The data may be described by a curve more complicated than a straight line, but this will not show up in the calculation of \(r\).
- Outliers strongly influence the correlation coefficient. If we see any outliers in our data, we should be careful about what conclusions we draw from the value of \(r\).
- Just because two sets of data are correlated, it doesn't mean that one is the cause of the other.

\section*{UNIT 3}

\section*{Linear Programming (LP) Problem}

A linear programming problem is one in which we are to find the maximum or minimum value of a linear expression
ax + by + cz + . . .
(called the objective function), subject to a number of linear constraints of the
form \(\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\ldots \leq \mathrm{N}\)

 and Approved by Bar Council of India \& NCTE
or
\[
A x+B y+C z+\ldots \geq N .
\]

The largest or smallest value of the objective function is called the optimal value, and a collection of values of \(x, y, z, \ldots\) that gives the optimal value constitutes an optimal solution. The variables \(\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\) are called the decision variables.

\section*{Example}

Here is an example of an LP problem:
Find the maximum value of
\(\mathrm{p}=3 \mathrm{x}-2 \mathrm{y}+4 \mathrm{z}\)
\begin{tabular}{lllllll} 
subject to & & & & & \\
4 x & + & \(3 y\) & - & \(z\) & & \\
x & + & \(2 y\) & + & z & & \\
\(\mathrm{x} \geq 0, \mathrm{y} \geq 0, \mathrm{z} \geq 0\) & & & & & & 4
\end{tabular}

The objective function is \(p=3 x-2 y+4 z\). The constraints are
\begin{tabular}{lcccccc}
\(4 x\) & + & \(3 y\) & - & \(z\) & \(\geq\) & 3 \\
\(x\) & + & \(2 y\) & + & \(z\) & \(\leq\) & 4 \\
\(x \geq 0, y \geq 0, \mathrm{z} \geq 0\). & & & & &
\end{tabular}

\section*{Sketching the Solution Set of a Linear Inequality}

To sketch the region represented by a linear inequality in two variables:
A. Sketch the straight line obtained by replacing the inequality with an equality.
B. Choose a test point not on the line \(((0,0)\) is a good choice if the line does not pass through the origin, and if the line does pass through the origin a point on one of the axes would be a good choice).
C. If the test point satisfies the inequality, then the set of solutions is the entire region on the same side of the line as the test point. Otherwise it is the region on the other side of the line. In either case, shade out the side that does not contain the solutions, leaving the solution region showing.

\section*{Example}

To sketch the linear inequality
\[
3 x-4 y \leq 12,
\]
first sketch the line \(3 x-4 y=12\).


Next, choose the origin \((0,0)\) as the test point (since it is not on the line). Substituting \(x=0\), \(\mathrm{y}=0\) in the inequality gives
\[
3(0)-4(0) \leq 12 \text {. }
\]

Since this is a true statement, \((0,0)\) is in the solution set, so the solution set consists of all points on the same side as \((0,0)\). This region is left unshaded, while the (grey) shaded region is blocked out.


\section*{Feasible Region}

The feasible region determined by a collection of linear inequalities is the collection of points that satisfy all of the inequalities.

To sketch the feasible region de termined by a collection of linear inequalities in two variables: Sketch the regions represented by each inequality on the same graph, remembering to shade the parts of the plane that you do not want. What is unshaded when you are do ne is the feasible region.

\section*{Example}

The feasible region for the following collection of inequalities is the unshaded region shown below (including its boundary).

\title{
FAIAFIELD Institute of Management \& Technology
} (Affiliated to GGSIP University, New Delhi)
तेजस्वि नावधीतमस्तु \(A^{\prime \prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi NAAC ACCREOTTED and Approved by Bar Council of fadia \& NCTE
\begin{tabular}{lcccr}
\(3 x\) & - & \(4 y\) & \(\leq\) & 12, \\
\(x\) & + & \(2 y\) & \(\geq\) & 4 \\
\(x\) & & \(\geq\) & & 1 \\
\(y \geq 0\). & & &
\end{tabular}


\section*{Graphical Method}

The graphical method for solvi ng linear programming problems in two unknow ns is as follows.
\(\begin{array}{ll}\text { A. Graph } \\ \text { B. Compute the } & \text { the feasible } \\ \text { coordinates of } & \text { region. }\end{array}\)
C. Substitute the coordinates of the corner points into the objective function to see which gives the optimal value. D. If the feasible region is not \(b\) ounded, this method can be misleading: optimal solutions always exist when the feasible region is bounded, but may or may not exist when the feasible region is unbounded. The textbook shows a straightforward way for determining whether optimal solutions exist in the case of unbounded feasible regions.

If you want to see a utility that automates the whole process, try our Line ar Programming Grapher. It does everything auto matically!

\section*{Example}

Minimize \(C=3 x+4 y\) subject to the constraints
\begin{tabular}{llllr}
3 x & - & \(4 y\) & \(\leq\) & 12, \\
x & & + & \(2 y\) & \(\geq\) \\
\(\mathrm{x} \geq 1\), & \(\mathrm{y} \geq 0\). & & &
\end{tabular}

The feasible region for this set of constraints was shown above. Here it is again with the corner points shown.


Instiiute of Managemeni \& Technolagy Managed by 'The Falrfield Foundations (Affilicted to GGSIP University, Hew Delhi)

The following table shows the v alue of C at each corner point:
\begin{tabular}{ll}
\hline Point \(\quad C=3 \mathbf{x}+4 \mathbf{y}\) \\
\((1,1.5)\) & \(3(1)+4(1.5)=9 \quad\) mini mum \\
\((4,0) \quad 3(4)+4(0)=12\)
\end{tabular}

Therefore, the solution is \(\mathrm{x}=1, \mathrm{y}=1.5\), giving the minimum value \(\mathrm{C}=9\).

\section*{Standard Maximization Probleem}

A standard maximization pro blem in \(n\) unknowns is a linear programming p roblem in which we are required to maximize ( n ot minimize) the objective function, subject to constraints of the form
\[
x \geq 0, y \geq 0, z \geq 0, \ldots,
\]
and further constraints of the for
\[
\mathrm{mAx}+\mathrm{By}+\mathrm{Cz}+\ldots \leq \mathrm{N},
\]
where \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots\) and N are nu mbers with N nonnegative.
Note that the inequality here mu st be a " \(\leq\)," and not "=" or " \(\geq\)."

\section*{Examples}

The following is a standard LP problem:
Maximize \(P=2 x-3 y+z\) subject to
\begin{tabular}{llllllr}
4 x & - & \(3 y\) & + & z & \(\leq\) & 3 \\
x & + & y & + & z & \(\leq\) & 10
\end{tabular}
\[
x \geq 0, y \geq 0, z \geq 0 .
\]

The following is not a standard L P problem:
Maximize \(P=2 x-3 y+z\) subject to
\begin{tabular}{lcccccr}
4 x & - & \(3 y\) & + & \(z\) & \(\geq\) & 3 \\
x & + & \(y\) & + & \(z\) & \(\leq\) & 10 \\
\(\mathrm{x} \geq 0, \mathrm{y} \geq 0, \mathrm{z} \geq 0\)
\end{tabular}

\title{
FIIAFFILD I Isfitive of Mangement \& Tedhnogy \\ (Affiliated to GGSIP University, New Delhi)
}

\section*{तेजस्वि नावधीतमस्तु 1 ' Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi
and Approved by Bar Council of India \& NCTE NAAC ACCREDITED and Approved by Bar Council of India \& NCTE}

\section*{Simplex Method for Standard Maximization Problem}

To solve a standard maximization problem using the simplex method, we take the following steps: Managed by 'The Falrfield Foundation' (Affiliated to GGSIP University, New Delhi)

Step 1. Convert to a system of equations by introducing slack variables to turn the constraints into equations, and rewriting the objective function in standard form.

Step 2. Write down the initial tableau.

Step 3. Select the pivot column: Choose the negative number with the largest magnitude in the bottom row (excluding the rightmost entry). Its column is the pivot column. (If there are two candidates, choose either one.) If all the numbers in the bottom row are zero or positive (excluding the rightmost entry), then you are done: the basic solution maximizes the objective function (see below for the basic solution).

Step 4. Select the pivot in the pivot column: The pivot must always be a positive number. For each positive entry \(b\) in the pivot column, compute the ratio \(a / b\), where \(a\) is the number in the Answer column in that row. Of these test ratios, choose the smallest one. The corresponding number b is the pivot.

Step 5. Use the pivot to clear the column in the normal manner (taking care to follow the exact prescription for formulating the row operations described in Chapter 2) and then relabel the pivot row with the label from the pivot column. The variable originally labeling the pivot row is the departing or exiting variable and the variable labeling the column is the entering variable.

Step 6. Go to Step 3.

\section*{Basic Solution}

To get the basic solution corresponding to any tableau in the simplex method, set to zero all variables that do not appear as row labels (these are the inactive variables).

The value of a variable that does appear as a row label (an active variable) is the number in the rightmost column in that row divided by the number in that row in the column labeled by the same variable.

\section*{Example}

In the following tableau
\(\begin{array}{llllllll}\mathrm{x} & \mathrm{y} & \mathrm{Z} & \mathrm{s} & \mathrm{t} & \mathrm{u} & \mathrm{p} & \text { Ans }\end{array}\)
\begin{tabular}{lllllllll}
-1 & 0 & 0 & 1 & 0 & 0 & 0 & 4 \\
1 & 0 & 3 & 0 & 0 & 8 & 0 & 12 \\
4 & 0 & 0 & 0 & 3 & 0 & 0 & 2 \\
-5 & 2 & 0 & 0 & 0 & 6 & 0 & 4
\end{tabular}
\(6 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 5 \quad-25\)

तेजस्वि नावघीतमस्तु
150 9001:2008 \& 14001:200
\(A^{\prime \prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE
the basic solution is
\[
x=0, y=2, z=4, s=4, t=2 / 3, u=0, p=-5,
\]
and the active variables are \(\mathrm{y}, \mathrm{z}, \mathrm{s}, \mathrm{t}\), and p .
Nonstandard Constraints

To solve a linear programming problem with constraints of the form \(A x+B y+\ldots \geq N\) with N positive, subtract a surplus variable from the left-hand side, rather than adding a slack variable. The basic solution corresponding to the initial tableau will not be feasible since some of the active variables will be negative, and so the rules for the initial pivoting are different from those above.

Star all rows that give a negative value for the associated active variable (except for the objective variable, which is allowed to be negative). If there are starred rows, you will need to begin with
Phase I:

Phase I: Getting into the Feasible Region (Getting Rid of the Stars) In the first starred row, find the largest positive number. Use test ratios as in the preceding section to find the pivot in that column (exclude the bottom row), then pivot on that entry. If the lowest ratio occurs both in a starred row and an unstarred row, pivot in a starred row rather than the unstarred one. Repeat until no starred rows remain, then go on to Phase II.

Phase II: Use the Simplex Method for Standard Maximization Problems If there are any negative entries on the left side of the bottom row after Phase I, use the method described above for solving standard maximization problems.

\section*{Simplex Method for Minimization Problem}

To solve a minimization problem using the simplex method, convert it into a maximization problem. If you need to minimize \(c\), instead maximize \(p=-c\).

\section*{Example}

The minimization LP problem:
Minimize \(C=3 x+4 y-8 z\) subject to the constraints
\(3 \mathrm{x} \quad-\quad 4 y \quad \leq\)

\section*{FAIAFIELD Institute of Manogement \& Technology}
(Affiliated to GGSIP University, New Delhi)
तेजस्वि नावधीतमस्त्व \(A^{\prime \prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi 150 9001:2008 \& 14001:2000 'A Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to \(\begin{aligned} & \text { and Approved by Bar Council of India \& NCTE }\end{aligned}\)
\begin{tabular}{llllrlr}
x & + & \(2 y\) & + & \(z\) & \(\geq\) & 4 \\
4 x & - & \(2 y\) & + & \(5 z\) & \(\leq\) & 20
\end{tabular}
can be replaced by the following maximization problem:
Maximize \(P=-3 x-4 y+8 z\) subject to the constraints
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3 x & & & \(4 y\) & & & 12, \\
\hline x & + & 2 y & + & Z & \(\geq\) & \\
\hline
\end{tabular}

तेजस्वि नावधीतमस्तु
nAAC ACCREDITED

\section*{'A' Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE}
\(4 \mathrm{x}-2 \mathrm{y} \quad+\quad 5 \mathrm{z} \quad 20\)
\[
x \geq 0, \quad y \geq 0, \quad z \geq 0
\]

\section*{Solving a Matrix Game Using the Simplex Method}

A game may be solved using the simplex method as follows.

Before you start, check for saddle points. If you find one, you have already solved the game; the optimal strategies are the pure strategies passing through a saddle point. Otherwise, continue with the following steps.
1. Reduce the payoff matrix by dominance.
2. Add a fixed number k to each of the entries so that they all become non-negative.
3. Set up and solve the associated linear programming problem using the simplex method.
4. Obtain the optimal strategies and the expected value as follows:

\section*{Column Strategy}
a. Express the solution to the linear programming problem as a column vector.
b. Normalize by dividing each entry of the solution vector by the sum of the entries, or by the value of the objective variable \(p\).
c. Insert zeros in positions corresponding to the columns deleted during reduction.

\section*{Row Strategy}
d. Write down the row vector whose entries are the numbers appearing in the bottom row of the final tableau underneath the slack variables.
e. Normalize by dividing each entry of the solution vector by the sum of the entries.
f. Insert zeros in positions corresponding to the rows deleted during reduction.

\section*{Value of the Game}
\[
e=1 / p-k .
\]

\section*{Basic Duality}

The study of duality is very important in LP. Knowledge of duality allows one to develop increased insight into LP solution interpretation. Also, when solving the dual of any problem, one simultaneously solves the primal. Thus, duality is an alternative way of solving LP problems.
However, given today's computer capabilities, this is an infrequently used aspect of duality.

Therefore, we concentrate on the study of duality as a means of gaining insight into the LP solution. We will also discuss the ways that primal decision variables place constraints upon the resource valuation information. The Primal problem can be written as:
Primal
```

Max
s.t. }\quad\mp@subsup{a}{iji}{}\mp@subsup{X}{j}{}\leq\mp@subsup{b}{i}{}\quad\mathrm{ for all i
j
X

```

Associated with this primal problem is a dual resource valuation problem. The dual of the above problem is

Primal Dual Pair and Their Units
Primal

where x is the variable and equals units sold Max sum (per unit profits) * (units
sold)
s.t. Sum (per unit res. use) \({ }^{*}\) (units sold) \(\leq\) res on hand

Dual Managed by 'The Falrfield Foundations (Affiliated to GGSIP University, Hew Delhi )

U is the variable and equals per unit resource value

Min sum (per unit res value) * (res on hand)
s.t. \(\quad\) sum (per unit res value) \({ }^{*}\) (per unit res use)
\[
\geq \text { per unit profits }
\]

So resource values - shadow prices are set up so per unit profits are exhausted.

Primal Dual Pair and Example
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline max & 2000Xfancy & [ & 1700 Xfine & \(\square\) & \(1200 X_{\text {new }}\) & & \\
\hline \multirow[t]{2}{*}{s.t.} & \({ }^{\text {x fancy }}\) & \(\square\) & \({ }^{\mathrm{f}}\) fine & [ & \({ }^{\text {x }}\) new & \(\leq\) & 12 \\
\hline & \({ }^{25 x}\) fancy & [ & \({ }^{20 x}\) fine & \(\square\) & \(19 \mathrm{X}_{\text {new }}\) & \(\leq\) & 280 \\
\hline & xfancy & & \({ }^{\text {xfine }}\) & & \({ }^{\text {n }}\) new & & 0 \\
\hline
\end{tabular}
\begin{tabular}{cccccc} 
& (van cap) & & (labor) & & (profits) \\
min & \(12 \mathrm{U}_{1}\) & \(\square\) & \(280 \mathrm{U}_{2}\) & & \\
(Resource Payments) \\
s.t. & \(\mathrm{U}_{1}\) & \(\square\) & \(25 \mathrm{U}_{2}\) & \(\geq\) & 2000
\end{tabular}

Primal rows become dual columns
Degeneracy and Duality

The above interpretations for the dual variables depend upon whether the basis still exists after the change occurs.

When a basic primal variable equals zero, dual has alternative optimal solutions. The cause of this situation is generally primal constraints are redundant at the solution point and the range of right hand sides is zero.
\begin{tabular}{|c|c|c|c|c|}
\hline Max 3 \(\mathrm{X}_{1}\) & \(\square\) & 2X 2 & & \\
\hline X1 & \(\square\) & X 2 & \(\leq\) & 100 \\
\hline \(\mathrm{X}_{1}\) & & & \(\leq\) & 50 \\
\hline & & \(\times 2\) & \(\leq\) & 50 \\
\hline X1 & & X 2 & \(\geq\) & 0 \\
\hline
\end{tabular}

At the optimal solution, \(\mathrm{X}_{1}=50, \mathrm{X}_{2}=50\), constraints are redundant.
If first slack variable is basic then \(\mathrm{X}_{1}=50, \mathrm{X}_{2}=50, \mathrm{~S}_{1}=0\) while \(\mathrm{S}_{1}\) is basic. Shadow prices are 0,3 , and 2 .

\section*{FAIAFIELD Institute of Manogement \& Technology \\ (Affiliated to GGSIP University, New Delhi) \\ तेजस्वि नावधीतमस्त्व \(A^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi \\ 1/ Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to G} ISO NAAC ACCREDITED

If \(S_{3}\) basic \(X_{1}=50, X_{2}=50 S_{3}=0\) with shadow prices \(2,1,0\). Same objective value -- multiple solutions.

Degeneracy and
Duality

Max 3X1 \(\quad\) 2 \(2 \times 2\)
\begin{tabular}{lllll}
\(X_{1}\) & \(\square\) & \(X_{2}\) & \(\leq\) & 100 \\
\(X_{1}\) & & & \(\leq\) & 50 \\
& & \(X_{2}\) & \(\leq\) & 50
\end{tabular}
\(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\)
u1 u2 u3 = \(\left[\begin{array}{lll}0 & 3 & 2\end{array}\right]\) or \(\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]\)

The main difficulty with degeneracy is in interpreting the shadow prices as they take on a direction.

If one were to increase the first right hand side from 100 to 101 this would lead to a zero change in the objective function and \(\mathrm{X}_{1}\) and \(\mathrm{X}_{2}\) would remain at 50 .

Decrease first constrain rhs from 100 to 99 then objective function which is two units smaller because \(X_{2}\) would need to be reduced from 50 to 49 .

This shows that the two alternative shadow prices for the first constraint (i.e., 0 and 2 ) each hold in a direction.

Similarly if bound on \(\mathrm{X}_{1} 51\), obj increases by 1 , whereas, if moved downward to 49 , it would cost 3.

Meanwhile, reducing \(\mathrm{X}_{2}\) bound costs 2 and increasing by 0 . this explains all shadow prices

\section*{usage \& application in business decision making}

This is a simplified example will illustrates the way in which a problem relating to business is formulated. A large sub-contractor machines special parts to order. For one order he has two machines, X and Y available. Unfortunately, the machines perform more effectively on some jobs than others. Machine Y can do 10 units per hour on contracts from Alpha Ltd., 12 per hour on components from Beater \& Co. and 26 per hour on those from Chester Inc., while Machine X can produce 16, 9 and 10 units per hour respectively.

\section*{FAIAFIELD Institute of Manogement \& Technology \\ (Affiliated to GGSIP University, New Delhi ) \\ तेजख्वि नावघीतमस्तु ' \(A^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE} NAAC ACCREDITED

However, this is complicated by certain constraints which are:
Maximum number of units per month of units from Alpha, Beater and Chester are 6,500, 4,440 and 800 per month respectively the machines X and Y are restricted to working a maximum of 260 and 350 hours per month respectively.

तेजस्वि नावघीतमस्तु
IS0 9001:2008 \& 14001:200
' \(\mathbf{A}^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE

\section*{UNIT 4}

\section*{TRANSPORTATION PROBLEMS}

\section*{INTRODUCTION}

A scooter production company produces scooters at the units situated at various places (called origins) and supplies them to the places where the depot (called destination) ar e situated.

Here the availability as well as requirements of the various depots are finite and constitute the limited resources. This type of problem is known as distribution or transportation problem in which the key idea is to minimiz e the cost or the time of transportation. In pre vious lessons we have considered a number of s pecific linear programming problems. Transpo rtation problems are also linear programming pr oblems and can be solved by simplex metho \(d\) but because of practical significance the transp ortation problems are of special interest and it is tedious to solve them through simplex method.

\section*{OBJECTIVES}

After completion of this lesson y ou will be able to:
- solve the transportation problems by
a. North-West corne r rule;
b. Lowest cost entry method; and
c. Vogel's approximation method.
- test the optimality of the solution.

A typical transportation problem is shown in Fig.. It deals with sources where a supply of some commodity is available and destinations where the commodity is deman ded. The classic statement of the transportation problem uses a matrix with the rows representing sources and columns representing destinations. The algorithms for solving the problem are based on this matrix representation. The costs of shipping from sources to destinations are indicated by the entries in the matrix. If shipmen \(t\) is impossible between a given source and destination, a large cost of M is entered. This disco urages the solution from using such cells. Supplies and demands are shown along the margins of the matrix. As in the example, the classic transp ortation problem has total supply equal to total de mand.


Figure. Matrix model of a transportation problem.

The network model of the trans portation problem is shown in Fig.. Sources are identified as the nodes on the left and destinations on the right. Allowable shipping links are shown as arcs, while disallowed links are not included .

Figure. Network flow model of the transportation problem.

Only arc costs are shown in the network model, as these are the only relevant parameters. All other parameters are set to the d efault values. The network has a special form i mportant in graph theory; it is called a bipartite net work since the nodes can be divided into two p arts with all arcs going from one part to the other.

On each supply node the positiv e external flow indicates supply flow entering the network. On each destination node a deman d is a negative fixed external flow indicating that this amount must leave the network. The opti mum solution for the example is shown in Fig.


Figure. Optimum solution, \(\mathrm{z}=46\).

Variations of the classical tran sportation problem are easily handled by mod ifications of the network model. If links have finite capacity, the arc upper bounds can be made finite. If supplies represent raw materials that are transformed into products at the sources and the demands are in units of product, the gain facto rs can be used to represent transformation e

\section*{FAIAFIELD Institute of Manogement \& Technology \\ (Affiliated to GGSIP University, New Delhi) \\ तेजस्वि नावधीतमस्तु \(\mathbf{A}^{\prime \prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE} NAAC ACCREDITED
fficiency at each source. If some minimal flow is required in certain links, arc lower bounds can be set to nonzero values.

Some Definitions
The following terms are to be defined with reference to the transportation problems:

तेजस्वि नावधीतमस्तु
150 90001:2008 \& 14001:200
\(\mathbf{A}^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE
- Feasible Solution (F.S.) A set of non-negative allocations xij \(\geq 0\) which satisfies the row and column restrictions is known as feasible solution.
- Basic Feasible Solution (B.F.S.) A feasible solution to a m-origin and n-destination problem is said to be basic feasible solution if the number of positive allocations are ( \(\mathrm{m}+\mathrm{n}-1\) ).
If the number of allocations in a basic feasible solutions are less than ( \(\mathrm{m}+\mathrm{n}-1\) ), it is called degenerate basic feasible solution (DBFS) (otherwise non-degenerate).
- Optimal Solution: A feasible solution (not necessarily basic) is said to be optimal if it minimizes the total transportation cost.

\section*{SOLUTION OF THE TRANSPORTATION PROBLEM}

Let us consider the numerical version of the problem stated in the introduction and the mathematical formulation of the same in the next section, as below in Table
\begin{tabular}{|l|l|l|l|l|l|}
\hline Unit Depot & \(B_{1}\) & \(B_{2}\) & \(B_{3}\) & \(B_{4}\) & Stock \\
\hline\(A_{1}\) & \(c_{11}=2\) & \(c_{12}=3\) & \(c_{13}=5\) & \(c_{14}=1\) & \(a_{1}=8\) \\
\hline\(A_{2}\) & \(c_{21}=7\) & \(c_{22}=3\) & \(c_{23}=4\) & \(c_{24}=6\) & \(a_{2}=10\) \\
\hline\(A_{3}\) & \(c_{31}=4\) & \(c_{32}=1\) & \(c_{33}=7\) & \(c_{34}=2\) & \(a_{3}=20\) \\
\hline Requirement & \(b_{1}=6\) & \(b_{2}=8\) & \(b_{3}=9\) & \(b_{4}=15\) & \(=\) \\
\hline
\end{tabular}

In order to find the solution of this transportation problem we have to follow the steps given below.
- Initial basic feasible solution
- Test for optimization.

FAIAFIELD Institute of Manogement \& Technology
(Affiliated to GGSIP University, New Delhi )
तेजख्वि नावघीतमस्तु ' \(A^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi

\section*{\(\mathbf{A}^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to}

Let us consider these steps one by one.

\section*{Initial Basic Feasible Solution (TEST OF OPTIMALITY)}

There are three different methods to obtain the initial basic feasible solution viz.
(I) North-West corner rule
(II) Lowest cost entry
method
(III) Vogel's approximation method

तेजस्वि नावधीतमस्तु 1509001 :2008 8 14001:200
NAAC ACCREDED

\section*{\(\boldsymbol{A}^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE}
(I) North-West corner rule

In this method we distribute the available units in rows and column in such a way that the sum will remain the same. We have to follow the steps given below.
a) Start allocations from north-west corner, i.e., from (1,1) position. Here min (a1, b1), i.e., \(\min (8,6)=6\) units. Therefore, the maximum possible units that can be allocated to this position is 6 , and write it as \(6(2)\) in the \((1,1)\) position of the table. This completes the allocation in the first column and cross the other positions, i.e., \((2,1)\) and \((3,1)\) in the column.
\begin{tabular}{l|c|c|c|c|c|}
\hline\(A_{1}\) & \(B_{1}\) & \(B_{2}\) & \(B_{3}\) & \(B_{4}\) & Stock \\
\hline\(A_{2}\) & \(6(2)\) & & & & \(8-6=2\) \\
\hline\(A_{3}\) & \(\times\) & & & & 10 \\
\hline Requirement & \(6-6=0\) & 8 & 9 & 15 & 32 \\
\hline
\end{tabular}
(b) After completion of step (a), come across the position (1,2). Here min (8-6,8)=2 units can be allocated to this position and write it as 2(3). This completes the allocations in the first row and cross the other positions, i.e., \((1,3)\) and \((1,4)\) in this row
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \begin{tabular}{l}
Institu \\
Affiliated
\end{tabular} & \begin{tabular}{l}
ement \& Te \\
, New Delhi)
\end{tabular} & & \multicolumn{2}{|l|}{\begin{tabular}{l}
FAIAF|ELD \\
Instiivte of Managemeni \& Technolagy Managed by 'The Fairfield Foundation' (Affiliated to GGSIP University, Hew Delhi)
\end{tabular}} \\
\hline  &  & \begin{tabular}{l}
utilintodtacacip \\
India \& NCTE
\[
B_{2}
\]
\end{tabular} & \(B_{3}\) & \(B_{4}\) & Stock \\
\hline \(A_{1}\) & \(6(2)\) & \(2(3)\) & \(\times\) & \(\times\) & \(2-2=0\) \\
\hline \(A_{2}\) & \(\times\) & & & & 10 \\
\hline \(A_{3}\) & \(\times\) & & & & 20 \\
\hline Requirement & 0 & \(8-2=6\) & 9 & 15 & 30 \\
\hline
\end{tabular}

\section*{Maximization of transportation problem}

Transportation is a minimization model. First, we should balance the problem by taking dummy where necessary (i. e. either on Supply side or Demand side). After balancing the problem, we should convert the problem in Minimization by converting it into Regret matrix.

To find Regret matrix, find maximum profit value in the original matrix. From this maximum profit value, subtract all profit values in the matrix. The resulting matrix is Regret matrix.

\section*{Description of the assignment problem}

In the classical assignment problem, the goal is to find an optimal assignment of agents to tasks without assigning an agent more than once and ensuring that all tasks are completed. The objective might be to minimize the total time to complete a set of tasks, or to maximize skill ratings, or to minimize the cost of the assignments.

FAIAFIELD Institute of Manogement \& Technology
(Affiliated to GGSIP University, New Delhi )
तेजस्वि नावधीतमस्तु ' \(A^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi

The assignment problem is a particular class of transportation linear programming problems with the supplies and demands equal to integers (often 1). Since all supplies, demands, and bounds on variables are integral, the assignment problem relies on a nice property of transportation problems that the optimal solution will be entirely integral. As you will see, the goal of the

तेजस्वि नावघीतमस्त
NAAC ACCREDITED
objective of the assignment pro blem (unlike transportation problems) may not have anything to do at all with moving anything!

\section*{Assignment Problem}

A typical assignment problem, presented in the classic manner, is shown in Fig. 12. Here there are five machines to be assigned to five jobs. The numbers in the matrix ind icate the cost of doing each job with each machine. Jobs with costs of \(M\) are disallowed a ssignments. The problem is to find the minimum cost matching of machines to jobs.


Restriction on the assignment pr oblem.

The network model is in Fig.. It is very similar to the transportation model ex cept the external flows are all +1 or -1 . The onl \(y\) relevant parameter for the assignment model is arc cost (not shown in the figure for clarity) ; all other parameters should be set to default values. The assignment network also has the bipartite structure.


Figure. Network model of the assignment problem.
The solution to the assignment problem as shown in Fig has a total flow of 1 in every column and row, and is the assignment \(t\) hat minimizes total cost.


Figure. Solution to the assignme nt Problem

\section*{Unbalanced assignment proble m}

If number of jobs is not equal to the number of operators then the assignment proble unbala other m is known as nced assignment problem. In words in a pay off matrix of assignment proble \(m\) if number of rows and number of columns are not equal then it is unbalanced assignment problem. assign
To solve unbalanced ment problem it is necessary to insert y row or t
dummy column such that he given pay off matrix become a square matrix. All values in dummy row or column are assume to be zero.

\section*{Scheduling problems}

Job shop scheduling (or Job-shop problem) is an optimization problem in computer science and operations research in which id eal jobs are assigned to resources at particular times. The most basic version is as follows:

We are given \(n\) jobs \(J_{1}, J_{2}, \ldots, J_{n}\) of varying sizes, which need to be scheduled on \(m\) identical machines, while trying to minimize the makespan. The makespan is the total length of the schedule (that is, when all the jobs have finished processing). Nowadays, the problem is presented as an online problem (dynamic scheduling), that is, each job is pr esented, and the online algorithm needs to make a decision about that job before the next job is presented.

\section*{Shop floor control}

View all production j obs by work center Select workload by d ate range and shift Update operation com

FIMT Campus, Kapashera, New Delhi-110037, Phones: 011-25063208/09/10/11, 25066256/ 57/58/59/60 Fax: 011-25063212 Mob. : 09312352942, 09811568155 E-mail : fimtoffice@gmail.com Website : www.fimt-ggsipu.org

\section*{FAIAFIELD Institute of Management \& Technology \\ (Affiliated to GGSIP University, New Delhi)}

तेजर्वि्व नावघघीतमस्तु ' \(A^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi NAAC ACCREDITED A' Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to \(G\)

\section*{pletions}

Report completions by quantity or percentage Review operation star \(t\) and end dates
Work center dispatch list
List of work by priority, order, line and type
Pay points automatica lly back-fill prior operations Labor and machine load hours
Setup and run times Completion status

Outside processing
status Next or prior
work center
Labor and machine capacities with effectivity Efficiency factors, queue times and cost centers Work order shortages

\section*{Gantt chart}

A Gantt chart is a type of bar chart, developed by Henry Gantt in the 1910s, that illustrates a project schedule. Gantt charts illustrate the start and finish dates of the terminal elements and summary elements of a project. Terminal elements and summary elements comprise the work breakdown structure of the project. Some Gantt charts also show the dependency (i.e. precedence network) relationships between activities. Gantt charts can be used to show current schedule status using percent-complete shadings and a vertical "TODAY" line as shown here.

> Although now regarded as a common charting technique, Gantt charts were considered revolutionary when first introduced. \({ }^{[1]}\) In recognition of Henry Gantt's contributions, the Henry Laurence Gantt Medal is awarded for distinguished achievement in management and in community service. This chart is also used in information technology to represent data that has been collected.

\section*{Job shop and its principals}

Job shops are typically small manufacturing systems that handle job production, that is, custom/bespoke or semi-custom/bespoke manufacturing processes such as small to mediumsize customer orders or batch jobs. Job shops typically move on to different jobs (possibly with different customers) when each job is completed. In job shops machines are aggregated in shops by the nature of skills and technological processes involved, each shop therefore may contain different machines, which gives this production system processing flexibility, since jobs are not necessarily constrained to a single machine. In computer science the problem of job shop scheduling is considered strongly NP-hard.

A typical example would be a machine shop, which may make parts for local industrial

FAIAFIELD Institute of Manogement \& Technology
(Affiliated to GGSIP University, New Delhi )
तेजस्वि नावधीतमस्त्र / Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi
machinery, farm machinery and implements, boats and ships, or even batches of specialized components for the aircraft industry. Other types of common job shops are grinding, honing, jig-boring, gear manufacturing, and fabrication shops.

The opposite would be continuous flow manufactures such as textile, steel,food manufacturing and manual labor.

\section*{personnel scheduling}

तेजस्वि नावघीतमस्तु
150 9001:2008 \& 14001:200
' \(\mathbf{A}^{\prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE

No matter what size company you own or manage, your Personnel department is the center of all employee-related information. From interviewing and hiring to exit interviews and dismissals, the HR department is responsible for gathering and keeping updated all personnel information and setting policies for personnel. The unique demands placed on your company's personnel department calls for a powerful management and scheduling tool designed to streamline the process of hiring, tracking and communicating with all of your company's staff.

ShiftPlanning provides custom scheduling software designed to address your company's Personnel demands including:
- Automated shift scheduling for every employee in every capacity.
- Streamlined employee rotations.
- Streamlined vacation scheduling.
- Incorporated overtime and regulatory rules.

Your company's Personnel department can take advantage of ShiftPlanning's soon to be integrated Payroll feature which, in addition to maintaining all of your company's personnel records and schedules, will automatically track and process employee work hours and overtime.

Department managers can now work with Personnel in the ShiftPlanning Scheduler to:
- Add and import unlimited employees through .csv, Address Book, Facebook and Google Apps.
- Add and import unlimited schedules via .csv and .xls.
- Prepare unlimited Schedules.
- Manage staff skills and find the right people for the job instantly.
- Allow employees to swap shifts electronically with no disruption to scheduling.
- View schedules online, 24/7.
- Create and generate multiple types of in-depth reports based on planned time and actual time.
- Synchronize staff calendars.

ShiftPlanning state-of-the-art scheduling software:
- Sets up a separate schedule for trainees.
- Easily creates separate schedules for every sector.

\section*{FAIAFIELD Institute of Manogement \& Technology \\ (Affiliated to GGSIP University, New Delhi ) \\ तेजस्वि नावधीतमस्त्र 'A'Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi} NAAC ACCREDITED
- Offers individual schedule management to team leaders.
- Allows sector managers to oversee and control shift trades, vacations, open shifts, etc.
- Provides a SMS notification system to make scheduling fast and easy.

Benefits:
- Improve customer service by keeping adequate staff on hand at all times.
- End unnecessary overtime costs.
- Reduce employee turnover by scheduling around each staff member's individual shift preferences.

तेजस्वि नावधीतमस्तु
150 90001:2008 8 14001:200
\(A^{\prime \prime}\) Grade Institute by DHE, Govt. of NCT Delhi, Affiliated to GGSIP University Delhi and Approved by Bar Council of India \& NCTE
- Reduce unauthorized absences.
- Comply with Health \& Safety laws, union bylaws and any industry-specific guidelines or regulations that apply to your staff members.

ShiftPlanning's totally customizable software has powerful tools that integrate union regulations and labor laws into scheduling, reducing or eliminating any margin of error. ShiftPlanning is engineered to adapt to and implement updates and changes in regulatory rules as they arise without replacing software or disrupting business as usual. ShiftPlanning makes shift scheduling, managing, and now payroll easy, streamlined and so cost effective you can be reigning in out-of-control expenses within your first pay cycle.

\section*{Principles of job shop scheduling}

Job shops are typically small manufacturing systems that handle job production, that is, custom/bespoke or semi-custom/bespoke manufacturing processes such as small to mediumsize customer orders or batch jobs. Job shops typically move on to different jobs (possibly with different customers) when each job is completed. In job shops machines are aggregated in shops by the nature of skills and technological processes involved, each shop therefore may contain different machines, which gives this production system processing flexibility, since jobs are not necessarily constrained to a single machine. In computer science the problem of job shop scheduling is considered strongly NP-hard.

A typical example would be a machine shop, which may make parts for local industrial machinery, farm machinery and implements, boats and ships, or even batches of specialized components for the aircraft industry. Other types of common job shops are grinding, honing, jig-boring, gear manufacturing, and fabrication shops.

The opposite would be continuous flow manufactures such as textile, steel,food manufacturing and manual labor.

Instiiute of Managemeni \& Technolagy Managed by 'The Falrfield Foundations (Affilicted to GGSIP University, Hew Delhi)

\section*{REFERENCE}
1.Gupta, S.P. \& Gupta, P.K., "Quantitative Techniques and Operations Research", Sultan Chand \&Sons, 2005.
2.Vohra, N.D., " Quantitative Techniques in Management",Tata McGraw Hill, 2004.
3.Gupta, S.P., "Statistical Methods, "Sultan Chand \&Sons, 2004.
4.Srivastava, U.K.,Shenoy,G.V. and Sharma, S.C., "Quantitative Techniques for managerial Decisions", New Age International Pvt. Ltd., 2nd edition,2002.```

