

1 | P a g e
 COPYRIGHT FIMT 2020

NAAC ACCREDITED

‘A’ Grade Institute by DHE, Govt. of NCT Delhi and Approved by the Bar Council of India and NCTE

Affiliated to GGS IP University, New Delhi

Reference Material for Three Years

Bachelor of Computer Application

Code : 020

Semester – II

DISCLAIMER : FIMT, ND has exercised due care and caution in collecting the data before publishing tis

Reference Material. In spite of this ,if any omission ,inaccuracy or any other error occurs with regards to the data

contained in this reference material, FIMT, ND will not be held responsible or liable. FIMT , ND will be grateful if you

could point out any such error or your suggestions which will be of great help for other readers.

2 | P a g e
 COPYRIGHT FIMT 2020

INDEX

Three Years

Bachelor of Computer Application

Code : 020

Semester – II

S.NO. SUBJECTS CODE PG.NO.

1 MATHEMATICS-II 102 5-32

2 PRINCIPLES OF

MANAGEMENT

104 33-59

3
DIGITAL ELECTRONICS

106 60-206

4 DATA STRUCTURE

USING C

108 207-215

5 DATABASE MANAGEMENT

SYSTEM

110 216-227

3 | P a g e
 COPYRIGHT FIMT 2020

BCA102

(MATHEMATICS)

1) Define sets, its types & operations

ANS: Definition OF SETS

A set is a well defined collection of distinct objects. The objects that make up a set (also

known as the elements or members of a set) can be anything: numbers, people, letters of the

alphabet, other sets, and so on. Georg Cantor, the founder of set theory, gave the following

definition of a set at the beginning of his Beiträge zur Begründung der transfiniten

Mengenlehre

A set is a gathering together into a whole of definite, distinct objects of our perception or of

our thought – which are called elements of the set.

Sets are conventionally denoted with capital letters. Sets A and B are equal if and only if they

have precisely the same elements

As discussed below, the definition given above turned out to be inadequate for formal

mathematics; instead, the notion of a "set" is taken as an undefined primitive in axiomatic set

theory, and its properties are defined by the Zermelo–Fraenkel axioms. The most basic

properties are that a set "has" elements, and that two sets are equal (one and the same) if and

only if every element of one is an element of the other.

Describing sets

There are two ways of describing, or specifying the members of, a set. One way is by

intensional definition, using a rule or semantic description:

A is the set whose members are the first four positive integers.

B is the set of colors of the French flag.

The second way is by extension – that is, listing each member of the set. An extensional

definition is denoted by enclosing the list of members in curly brackets:

C = {4, 2, 1, 3}

D = {blue, white, red}.

Every element of a set must be unique; no two members may be identical. (A multi set is a

generalized concept of a set that relaxes this criterion.) All set operations preserve this

property. The order in which the elements of a set or multi set are listed is irrelevant (unlike

for a sequence or tuple). Combining these two ideas into an example

{6, 11} = {11, 6} = {11, 6, 6, 11}

because the extensional specification means merely that each of the elements listed is a

member of the set.

http://en.wikipedia.org/wiki/Multiset
http://en.wikipedia.org/wiki/Tuple

4 | P a g e
 COPYRIGHT FIMT 2020

For sets with many elements, the enumeration of members can be abbreviated. For instance,

the set of the first thousand positive integers may be specified extensionally as:

{1, 2, 3, ..., 1000},

where the ellipsis ("...") indicates that the list continues in the obvious way. Ellipses may also

be used where sets have infinitely many members. Thus the set of positive even numbers can

be written as {2, 4, 6, 8, ... }.

The notation with braces may also be used in an intentional specification of a set. In this

usage, the braces have the meaning "the set of all ...". So, E = {playing card suits} is the set

whose four members are ♠, ♦, ♥, and ♣. A more general form of this is set-builder notation,

through which, for instance, the set F of the twenty smallest integers that are four less than

perfect squares can be denoted:

F = {n
2
 − 4 : n is an integer; and 0 ≤ n ≤ 19}.

In this notation, the colon (":") means "such that", and the description can be interpreted as "F

is the set of all numbers of the form n
2
 − 4, such that n is a whole number in the range from 0

to 19 inclusive." Sometimes the vertical bar ("|") is used instead of the colon.

One often has the choice of specifying a set intensionally or extensionally. In the examples

above, for instance, A = C and B = D.

Membership

The key relation between sets is membership – when one set is an element of another. If a is a

member of B, this is denoted a ∈ B, while if c is not a member of B then c ∉ B. For example,

with respect to the sets A = {1,2,3,4}, B = {blue, white, red}, and F = {n
2
 − 4 : n is an integer;

and 0 ≤ n ≤ 19} defined above,

4 ∈ A and 12 ∈ F; but

9 ∉ F and green ∉ B.

Subsets

If every member of set A is also a member of set B, then A is said to be a subset of B, written

A ⊆ B (also pronounced A is contained in B). Equivalently, we can write B ⊇ A, read as B is a

superset of A, B includes A, or B contains A. The relationship between sets established by ⊆

is called inclusion or containment.

If A is a subset of, but not equal to, B, then A is called a proper subset of B, written A ⊊ B (A

is a proper subset of B) or B ⊋ A (B is a proper superset of A).

Note that the expressions A ⊂ B and B ⊃ A are used differently by different authors; some

authors use them to mean the same as A ⊆ B (respectively B ⊇ A), whereas other use them to

mean the same as A ⊊ B (respectively B ⊋ A).

5 | P a g e
 COPYRIGHT FIMT 2020

A is a subset of B

Example:

 The set of all men is a proper subset of the set of all people.

 {1, 3} ⊊ {1, 2, 3, 4}.

 {1, 2, 3, 4} ⊆ {1, 2, 3, 4}.

The empty set is a subset of every set and every set is a subset of itself:

 ∅ ⊆ A.

 A ⊆ A.

An obvious but useful identity, which can often be used to show that two seemingly different

sets are equal:

 A = B if and only if A ⊆ B and B ⊆ A.

A partition of a set S is a set of nonempty subsets of S such that every element x in S is in

exactly one of these subsets.

Power sets

The power set of a set S is the set of all subsets of S, including S itself and the empty set. For

example, the power set of the set {1, 2, 3} is {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3},

∅}. The power set of a set S is usually written as P(S).

The power set of a finite set with n elements has 2
n
 elements. This relationship is one of the

reasons for the terminology power set. For example, the set {1, 2, 3} contains three elements,

and the power set shown above contains 2
3
 = 8 elements.

The power set of an infinite (either countable or uncountable) set is always uncountable.

Moreover, the power set of a set is always strictly "bigger" than the original set in the sense

that there is no way to pair the elements of a set S with the elements of its power set P(S)

such that every element of S set is paired with exactly one element of P(S), and every element

of P(S) is paired with exactly one element of S. (There is never a bijection from S onto P(S).)

6 | P a g e
 COPYRIGHT FIMT 2020

Every partition of a set S is a subset of the power set of S.

Cardinality

The cardinality | S | of a set S is "the number of members of S." For example, if B = {blue,

white, red}, | B | = 3.

There is a unique set with no members and zero cardinality, which is called the empty set (or

the null set) and is denoted by the symbol ∅ (other notations are used; see empty set). For

example, the set of all three-sided squares has zero members and thus is the empty set.

Though it may seem trivial, the empty set, like the number zero, is important in mathematics;

indeed, the existence of this set is one of the fundamental concepts of axiomatic set theory.

Some sets have infinite cardinality. The set N of natural numbers, for instance, is infinite.

Some infinite cardinalities are greater than others. For instance, the set of real numbers has

greater cardinality than the set of natural numbers. However, it can be shown that the

cardinality of (which is to say, the number of points on) a straight line is the same as the

cardinality of any segment of that line, of the entire plane, and indeed of any finite-

dimensional Euclidean space.

Special sets

There are some sets that hold great mathematical importance and are referred to with such

regularity that they have acquired special names and notational conventions to identify them.

One of these is the empty set, denoted {} or ∅. Another is the unit set {x}, which contains

exactly one element, namely x. Many of these sets are represented using blackboard bold or

bold typeface. Special sets of numbers include:

 P or ℙ, denoting the set of all primes: P = {2, 3, 5, 7, 11, 13, 17, ...}.

 N or ℕ, denoting the set of all natural numbers: N = {1, 2, 3, . . .} (sometimes defined

containing 0).

 Z or ℤ, denoting the set of all integers (whether positive, negative or zero): Z = {...,

−2, −1, 0, 1, 2, ...}.

 Q or ℚ, denoting the set of all rational numbers (that is, the set of all proper and

improper fractions): Q = {a/b : a, b ∈ Z, b ≠ 0}. For example, 1/4 ∈ Q and 11/6 ∈ Q.

All integers are in this set since every integer a can be expressed as the fraction a/1 (Z

⊊ Q).

 R or ℝ, denoting the set of all real numbers. This set includes all rational numbers,

together with all irrational numbers (that is, numbers that cannot be rewritten as

fractions, such as √2, as well as transcendental numbers such as π, e and numbers that

cannot be defined).

 C or ℂ, denoting the set of all complex numbers: C = {a + bi : a, b ∈ R}. For

example, 1 + 2i ∈ C.

 H or ℍ, denoting the set of all quaternions: H = {a + bi + cj + dk : a, b, c, d ∈ R}. For

example, 1 + i + 2j − k ∈ H.

Positive and negative sets are denoted by a superscript - or +, for example: ℚ
+
 represents the

set of positive rational numbers.

http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Transcendental_numbers
http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/E_(mathematical_constant)

7 | P a g e
 COPYRIGHT FIMT 2020

Each of the above sets of numbers has an infinite number of elements, and each can be

considered to be a proper subset of the sets listed below it. The primes are used less

frequently than the others outside of number theory and related fields.

Basic operations

There are several fundamental operations for constructing new sets from given sets.

Unions

The union of A and B, denoted A ∪ B

Two sets can be "added" together. The union of A and B, denoted by A ∪ B, is the set of all

things that are members of either A or B.

Examples:

 {1, 2} ∪ {1, 2} = {1, 2}.

 {1, 2} ∪ {2, 3} = {1, 2, 3}.

Some basic properties of unions:

 A ∪ B = B ∪ A.

 A ∪ (B ∪ C) = (A ∪ B) ∪ C.

 A ⊆ (A ∪ B).

 A ∪ A = A.

 A ∪ ∅ = A.

 A ⊆ B if and only if A ∪ B = B.

Intersections

A new set can also be constructed by determining which members two sets have "in

common". The intersection of A and B, denoted by A ∩ B, is the set of all things that are

members of both A and B. If A ∩ B = ∅, then A and B are said to be disjoint.

8 | P a g e
 COPYRIGHT FIMT 2020

The intersection of A and B, denoted A ∩ B.

Examples:

 {1, 2} ∩ {1, 2} = {1, 2}.

 {1, 2} ∩ {2, 3} = {2}.

Some basic properties of intersections:

 A ∩ B = B ∩ A.

 A ∩ (B ∩ C) = (A ∩ B) ∩ C.

 A ∩ B ⊆ A.

 A ∩ A = A.

 A ∩ ∅ = ∅.

 A ⊆ B if and only if A ∩ B = A.

Complements

The relative complement

of B in A

The complement of A in U

9 | P a g e
 COPYRIGHT FIMT 2020

The symmetric difference of A and B

Two sets can also be "subtracted". The relative complement of B in A (also called the set-

theoretic difference of A and B), denoted by A \ B (or A − B), is the set of all elements that are

members of A but not members of B. Note that it is valid to "subtract" members of a set that

are not in the set, such as removing the element green from the set {1, 2, 3}; doing so has no

effect.

In certain settings all sets under discussion are considered to be subsets of a given universal

set U. In such cases, U \ A is called the absolute complement or simply complements of A,

and is denoted by A′.

Examples:

 {1, 2} \ {1, 2} = ∅.

 {1, 2, 3, 4} \ {1, 3} = {2, 4}.

 If U is the set of integers, E is the set of even integers, and O is the set of odd

integers, then U \ E = E′ = O.

Some basic properties of complements:

 A \ B ≠ B \ A for A ≠ B.

 A ∪ A′ = U.

 A ∩ A′ = ∅.

 (A′)′ = A.

 A \ A = ∅.

 U′ = ∅ and ∅′ = U.

 A \ B = A ∩ B′.

An extension of the complement is the symmetric difference, defined for sets A, B as

For example, the symmetric difference of {7,8,9,10} and {9,10,11,12} is the set {7,8,11,12}.

Cartesian product

A new set can be constructed by associating every element of one set with every element of

another set. The Cartesian product of two sets A and B, denoted by A × B is the set of all

ordered pairs (a, b) such that a is a member of A and b is a member of B.

10 | P a g e
 COPYRIGHT FIMT 2020

Examples:

 {1, 2} × {red, white} = {(1, red), (1, white), (2, red), (2, white)}.

 {1, 2} × {red, white, green} = {(1, red), (1, white), (1, green), (2, red), (2,

white), (2, green) }.

 {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Some basic properties of cartesian products:

 A × ∅ = ∅.

 A × (B ∪ C) = (A × B) ∪ (A × C).

 (A ∪ B) × C = (A × C) ∪ (B × C).

Let A and B be finite sets. Then

 | A × B | = | B × A | = | A | × | B |.

2) What are the application of sets , Relations & properties of relations

Ans:- Applications

Set theory is seen as the foundation from which virtually all of mathematics can be derived.

For example, structures in abstract algebra, such as groups, fields and rings, are sets closed

under one or more operations.

One of the main applications of naive set theory is constructing relations. A relation from a

domain A to a codomain B is a subset of the Cartesian product A × B. Given this concept, we

are quick to see that the set F of all ordered pairs (x, x
2
), where x is real, is quite familiar. It

has a domain set R and a codomain set that is also R, because the set of all squares is subset

of the set of all reals. If placed in functional notation, this relation becomes f(x) = x
2
. The

reason these two are equivalent is for any given value, y that the function is defined for, its

corresponding ordered pair, (y, y
2
) is a member of the set F.

Definition of a relation.

We still have not given a formal definition of a relation between sets X and Y. In fact the

above way of thinking about relations is easily formalized, as was suggested in class by

Adam Osborne: namely, we canthink of a relation R as a function from X×Y to the two-

element set {TRUE, FALSE}. In other words, for (x, y) 2 X×Y,

we say that xRy if and only if f((x, y)) = TRUE.

Properties of relations.

Let X be a set. We now consider various properties that a relation R on X – i.e., R _ X × X

may or may not possess.

http://en.wikipedia.org/wiki/Codomain

11 | P a g e
 COPYRIGHT FIMT 2020

(R1) Reflexivity: for all x 2 X, (x, x) 2 R.In other words, each element of X bears relation R

to itself. Another way tosay this is that the relation R contains the equality relation.Exercise

X.X: Go back and decide which of the relations in Examples X.X above are reflexive. For

instance, set membership is certainly not necessarily reflexive: 1 62 1 (and in more formal

treatments of set theory, a set containing itself is usually explicitly prohibited), but _ is

reflexive

.(R2) Symmetry: for all x, y 2 X, if (x, y) 2 R, then (y, x) 2 R.Again, this has a geometric

interpretation in terms of symmetry across the diagonal y = x. For instance, the relation

associated to the function y = 1/x is symmetricsince interchanging x and y changes nothing,

whereas the relation associated to the function y = x2 is not. (Looking ahead a bit, a function

y = f(x) is symmetric iff it coincides with its own inverse function.)Exercise X.X: Which of

the relations in Examples X.X above are symmetric?

(R3) Anti-Symmetry: for all x, y 2 X, if (x, y) 2 R and (y, x) 2 R, then x = y.

For instance, _ satisfies anti-symmetry.

Exercise X.X: Which of the relations in Examples X.X above are anti-symmetric?

(R4) Transitivity: for all x, y, z 2 X, if (x, y) 2 R and (y, z) 2 R, then (x, z) 2 R.

For instance, ―being a parent of‖ is not transitive, but ―being an ancestor of‖

is transitive.

Definition: An equivalence relation on a set X is a relation on X which is reflexive,

symmetric and transitive.

Examples of equivalence relations.

Let n be a positive integer. Then there is a natural partition of Z into n parts which

generalizes the partition into even and odd. Namely, we put Y1 = {. . . ,−2n,−n, 0, n, 2n, . . .}

= {kn | k 2 Z} the set of all multiples of n,Y2 = {. . . ,−2n + 1,−n + 1, 1, n + 1, 2n + 1 . . .} =

{kn + 1 | k 2 Z}, and similarly, for any 0 _ d _ n − 1, we put Yd = {. . . ,−2n + d,−n + d, d, n +

d, 2n + d . . .} = {kn + d | kinZ}. That is, Yd is the set of all integers which, upon division by

n, leave a remainder of d. Earlier we showed that the remainder upon division by n is a well-

defined integer in the range 0 _ d < n. Here by ―well-defined‖, I mean that for 0 _ d1 6= d2 <

n, the sets Yd1 and Yd2 are disjoint. Recall why this is true: if not, there exist k1, k2 such

that k1n + d1 = k2n + d2, so d1 − d2 = (k2 − k1)n, so d1 − d2 is a multiple of n. But −n < d1

− d2 < n, so the only multiple of n it could possibly be is 0, i.e., d1 = d2. It is clear that each

Yd is nonempty and that their union is all of Z, so {Yd}n−1 d=0 gives a partition of Z. The

corresponding equivalence relation is called congruence modulo n, and written as follows: x

_ y (mod n). What this means is that x and y leave the same remainder upon division by n.

3) Define Partial Order sets

12 | P a g e
 COPYRIGHT FIMT 2020

Ans:- A (non-strict) partial order is a binary relation "≤" over a set P which is reflexive, anti

symmetric, and transitive, i.e., which satisfies for all a, b, and c in P:

 a ≤ a (reflexivity);

 if a ≤ b and b ≤ a then a = b (anti symmetry);

 if a ≤ b and b ≤ c then a ≤ c (transitivity).

In other words, a partial order is an anti symmetric preorder.

A set with a partial order is called a partially ordered set (also called a poset). The term

ordered set is sometimes also used for posets, as long as it is clear from the context that no

other kinds of orders are meant. In particular, totally ordered sets can also be referred to as

"ordered sets", especially in areas where these structures are more common than posets.

For a, b, elements of a partially ordered set P, if a ≤ b or b ≤ a, then a and b are comparable.

Otherwise they are incomparable. In the figure on top-right, e.g. {x} and {x,y,z} are

comparable, while {x} and {y} are not. A partial order under which every pair of elements is

comparable is called a total order or linear order; a totally ordered set is also called a chain

(e.g., the natural numbers with their standard order). A subset of a poset in which no two

distinct elements are comparable is called an antichain (e.g. the set of singletons {{x}, {y},

{z}} in the top-right figure). An element a is said to be covered by another element b, written

a<:b, if a is strictly less than b and no third element c fits between them; formally: if both a≤b

and a≠b are true, and a≤c≤b is false for each c with a≠c≠b. A more concise definition will be

given below using the strict order corresponding to "≤". For example, {x} is covered by {x,z}

in the top-right figure, but not by {x,y,z}.

Standard examples of posets arising in mathematics include:

 The real numbers ordered by the standard less-than-or-equal relation ≤ (a totally

ordered set as well).

 The set of subsets of a given set (its power set) ordered by inclusion (see the figure on

top-right). Similarly, the set of sequences ordered by subsequence, and the set of

strings ordered by substring.

 The set of natural numbers equipped with the relation of divisibility.

 The vertex set of a directed acyclic graph ordered by reach ability.

 The set of subspaces of a vector space ordered by inclusion.

 For a partially ordered set P, the sequence space containing all sequences of elements

from P, where sequence a precedes sequence b if every item in a precedes the

corresponding item in b. Formally, (an)n∈ℕ ≤ (bn)n∈ℕ if and only if an ≤ bn for all n in

ℕ.

 For a set X and a partially ordered set P, the function space containing all functions

from X to P, where f ≤ g if and only if f(x) ≤ g(x) for all x in X.

http://en.wikipedia.org/wiki/Antichain
http://en.wikipedia.org/wiki/Reachability

13 | P a g e
 COPYRIGHT FIMT 2020

 A fence, a partially ordered set defined by an alternating sequence of order relations a

< b > c < d ...

4) What is Functions , explain its types & domain & range

Ans:- Function

Consider the relation

f : {(a, 1), (b, 2), (c, 3), (d, 5)}

In this relation we see that each element of A has a unique image in B This relation f from set

A to B where every element of A has a unique image in B is defined as a function from A to B.

So we observe that in a function no two ordered pairs have the same first element.

Domain and Range:-

We also see that $ an element Î B, i.e., 4 which does not have its preimage in A. Thus here:

(i) the set B will be termed as co-domain and

(ii) the set {1, 2, 3, 5} is called the range.

From the above we can conclude that range is a subset of co-domain. Symbolically, this

function can be written as

f : A ® B or A ¾¾f ¾® B

Example

Which of the following relations are functions from A to B. Write their

domain and range. If it is not a function give reason?

(a) { (1, -2),(3,7),(4, -6),(8,1) } , A = {1,3,4,8} , B = {-2,7, -6,1,2}

(b) { (1,0),(1 - 1),(2,3),(4,10) }, A = {1,2,4} , B = {0, -1,3,10}

(c) { (a,b),(b,c),(c,b),(d,c)} , A = { a,b,c,d,e} B = {b,c}

(d) { (2,4),(3,9),(4,16),(5,25),(6,36 }, A = { 2,3,4,5,6} , B = {4,9,16,25,36 }

(e) { (1, -1),(2, -2),(3, -3),(4, -4),(5, -5)} ,A = { 0,1,2,3,4,5} ,

B = {-1, -2, -3, -4, -5}

Solution :

(a) It is a function.

Domain= {1,3,4,8} , Range = {-2,7, -6,1}

(b) It is not a function. Because Ist two ordered pairs have same first elements.

(c) It is not a function.

Domain= {a,b,c,d} ¹ A, Range = { b, c}

(d) It is a function.

Domain = {2,3,4,5,6} , Range = {4,9,16,25,36 }

(e) It is not a function .

Domain = {1,2,3,4,5} ¹A , Range = {-1, -2, -3, -4, -5}

Types of functions :-

One-to-one:- Let f be a function from A to B. If every element of the set B is the image of at

least one element of the set A i.e. if there is no unpaired element in the set B then we say that

the function f maps the set A onto the set B. Otherwise we say that the function maps the set

A into the set B. Functions for which each element of the set A is mapped to a different

element of the set B are said to be one-to-one.

14 | P a g e
 COPYRIGHT FIMT 2020

Many-to-one.:- A function can map more than one element of the set A to the same element

of the set B. Such a type of function is said to be many-to-one.

Reciprocal Function/Inverse function:-

Functions of the type y = 1/x, x≠0, called a reciprocal function.

Composite function:- Consider the two functions given below:

y = 2x + 1, x Î{1,2,3}

z = y + 1, y Î{3,5,7}

Then z is the composition of two functions x and y because z is defined in terms of y and y in

terms of x.

Graphically one can represent this as given below :

5) What is Hassing Function ? Explain its methods

Ans:- HASHING FUNCTION

To save space and time, each record stored in a computer is assigned an address (memory

location) in the computer's memory. The task of assigning the address is performed by the

Hashing function (or Hash function) H : K → L, which maps the set K of keys to the set L of

memory addresses. Thus a Hashing function provides means of identifying records stored in a

table. The function H should be one-to-one. In fact, if k1 ≠ k2 implies H (k1) = H (k2), then two

keys will have same address and we say that collision occurs. To resolve collisions, the

following methods are used to define the hash function.

1. Division Method. In this method, we restrict the number of addresses to a fixed

number (generally a prime) say m and define the hash function H : K → L by

H (k) = k (mod m), k ∈ K,

where k (mod m) denotes the remainder when k is divided by m.

2. Midsquare Method. As the name suggest, we square the key in this method and

define hash function H : K → L by H (k) = l, where l is obtained by deleting digits

from both ends of k
2
.

3. Folding Method. In this method the key k is partitioned into a number of parts,

where each part, except possibly the last, has the same numbers of digits as the

required memory address. Thus, if k = k1 + k2 + … + kn, then the hash function H :

K → L is defined by

H (k) = k1 + k2 + … + kn, where the last carry has been ignored.

6) What is Partial Order Relations on a Lattice

15 | P a g e
 COPYRIGHT FIMT 2020

Ans: Partial Order Relations on a Lattice:-

A partial order relation on a lattice (L) follows as a consequence of the axioms for the binary

operations ∨ and ∧.

PARTIALLY ORDERED SETS

A relation R on a set X is said to be anti symmetric if a R b and b R a imply a = b. Relation

R on a set X is called a partial order relation if it is reflexive, anti-symmetric and transitive. A

set X with the partial order R is called a partially ordered set or poset and is denoted by (X,

R)

EXAMPLE

Let Ã be a collection of subsets of a set S. The relation ⊆ of set inclusion is a partial order

relation on Ã. In fact, if A, B, C ∈ Ã, then,

A ⊆ A, that is, A is a subset of itself which is true.

If A ⊆ B, B ⊆ A, then A = B

If A ⊆ B, B ⊆ C, then A is a subset of C, that is, A ⊆ C.

7) What is hasse diagram ? explain with the help of example.

Ans:- HASSE DIAGRAM

Let A be a finite set. By the theorem proved above, the digraph of a partial order on A has

only cycles of length 1. In fact, since a partial order is reflexive, every vertex in the digraph

of the partial order is contained in a cycle of length 1. To simplify the matter, we shall delete

all such cycles from the digraph.

We also eliminate all edges that are implied by transitivity property. Thus, if a ≤ b, b ≤ c, it

follows that a ≤ c. In this case, we omit the edge form a to c. We also agree to draw the

digraph of partial order with all edges pointing upward, omit the arrows and to replace then

the circles by dots

―The diagram of a partial order obtained from its digraph by omitting cycles of length 1, the

edges implied by transitivity and the arrows (after arranging them pointing upward) is called

Hasse diagram of the partial order of the poset‖.

EXAMPLE

Let A = {1, 2, 3, 4, 12}. Consider the partial order of divisibility on A. That is, if a and b are

in A, a ≤ b if and only if a | b

Therefore, the Hasse diagram of the poset (A, ≤) is as shown in Figure 1.18.

http://my.safaribooksonline.com/9789332503441/ch1_sub1_8_xhtml#img-c01f018

16 | P a g e
 COPYRIGHT FIMT 2020

EXAMPLE

Let S = {a, b, c} and Ã = P(S) (power set of S).

Consider the partial order of set inclusion (⊆). We note that

Ã = P(S) = { ϕ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Then the Hasse diagram of the poset (Ã, ⊆)

Hasse diagram of a finite linearly ordered set is always of the form and thus consists of

simply one path. Hence diagram of a totally order set is a chain.

 Hasse Diagram of Dual Poset

If (A, ≤) is a poset and (A, ≥) is the dual poset, then the Hasse diagram of (A, ≥) is just the

Hasse diagram of (A, ≤) turned upside down.

For example, let A = {a, b, c, d, e, f} and let be the Hasse diagram of poset (A, ≤). Then the

Hasse diagram of dual poset (A, ≥) is which can be constructed by turning the Hasse diagram

of (A, ≤) upside down.

EXAMPLE Let A = {a, b, c, d, e}. Then the Hasse diagram defines a partial order on B in the

natural way. That is, d ≤ b, d ≤ a, e ≤ c and so on.

EXAMPLE Let n be a positive integer and Dn denote the set of all divisors of n. Considering

the partial order of divisibility in Dn, draw Hasse diagram D24, D30 and D36.

Solution.

We know that

D24 = {1, 2, 3, 4, 6, 8, 12, 24},

D30 = {1, 2, 3, 5, 6, 10, 15, 30},

D36 = {1, 2, 3, 4, 6, 9, 12, 18, 36}.

Therefore, the Hasse diagram of D24, D30 and D36

17 | P a g e
 COPYRIGHT FIMT 2020

{5}, {3, 2}, {2, 2, 1}, {1, 1, 1, 1, 1}, {4, 1}, {3, 1, 1}, {2, 1, 1, 1}.

We order the partitions of an integer m as follows:

A partition P1 precedes a partition P2 if the integers in P1 can be added to obtain integers in

P2 or we can say that if the integers in P2 can be further subdivided to obtain the integers in

P1. For example, {1, 1, 1, 1, 1} precedes {2, 1, 1, 1}. On the other hand, {3, 1, 1} and {2, 2,

1} are non-comparable.

The Hasse diagram of the partition of m = 5 is

Let A be a (non-empty) linearly ordered alphabet. Then Kleene closure of A consists of all

words w on A and is denoted by A*.

Also then |w| denotes the length of w.

We have following two order relations on A*.

Alphabetical (Lexicographical) order: In this order we have

λ < w, where λ is empty word and w is any non-empty word.

Suppose u = a u′ and v = b v′ are distinct non-empty words where a, b ∈ A and u′, v′ ∈ A*.

Then,

u < v if a < b or if a = b but u′ < v′ Short-lex order: Here A* is ordered first by length and

then alphabetically, that is, for any distinct words u, v, in A*, u < v if |u| < |v| or if |u| = |v|

but u precedes v alphabetically. For example, ―to‖ proceeds ―and‖ since |to| = 2 but |and| = 3.

Similarly, ―an‖ precedes ―to‖ since they have the same length but ―an‖ precedes ―to‖

alphabetically.

This order is also called free semi-group order.

Let A be a partially ordered set with respect to a relation ≤. An element a in A is called a

maximal element of A if and only if for all b in A, either b ≤ a or b and a are not comparable.

An element a in A is called greatest element of A if and only if for all b in A, b ≤ a.

An element a in A is called minimal element of A if and only if for all b in A, either a ≤ b or

b and a are not comparable.

An element a in A is called a least element of A if and only if for all b in A, a ≤ b.

A greatest element is maximal but a maximal element need not be greatest element.

Similarly, a least element is minimal but a minimal element need not be a least element.

18 | P a g e
 COPYRIGHT FIMT 2020

The elements a1, a2 and a3 are maximal elements of A, and the elements b1, b2 and b3 are

minimal elements. Observe that since there is no line between b2 and b3 we can conclude

that neither b3 ≤ b2 nor b2 ≤ b3 showing that b2 and b3 are not comparable.

Let A be the poset of non-negative real numbers with usual partial order ≤ (read as ― less than

or equal to ‖). Then 0 is the minimal element of A. There is no maximal element of A.

Let A be a finite non-empty poset with partial order ≤. Then A has at least one maximal

element and at

.

Let (A, ≤) be a poset and B a subset of A. An element a ∈ A is called a least upper bound

(supremum) of B if

a is an upper bound of B, that is, b ≤ a ∀ b ∈ B

a ≤ a′ whenever a′ is an upper bound of B.

An element a ∈ A is called a greatest lower bound (infimum) of B if

a is a lower bound of B, that is, a ≤ b ∀ b ∈ B

a′ ≤ a whenever a′ is a lower bound of B.

Further, upper bounds in the poset (A, ≤) correspond to lower bounds in the dual poset (A, ≥)

and the lower bounds in (A, ≤) correspond to upper bound in (A, ≥).

Similar statements also hold for greatest lower bounds and least upper bounds.

Consider Example 1.69 above:

Since B1 = {a, b} has no lower bound, it has no greatest lower bound. However,

lub (B1) = c

Since the lower bounds of B2 = {c, d, e} are c, a and b, we have

glb (B2) = c

8) Discuss lattice & its properties.

http://my.safaribooksonline.com/9789332503441/ch1_sub1_8_xhtml#ch1-exm1.69

19 | P a g e
 COPYRIGHT FIMT 2020

Ans:- Definition

A lattice is a partially ordered set (L, ≤) in which every subset {a, b} consisting of two

elements has a least upper bound and a greatest lower bound.

We denote LUB({a, b}) by a ∨ b and call it join or sum of a and b. Similarly, we denote

GLB ({a, b}) by a ∧ b and call it meet or product of a and b.

Other symbols used are

LUB: ⊕, +, ∪,

GLB: *, ·, ∩.

Thus Lattice is a mathematical structure with two binary operations, join and meet.

A totally ordered set is obviously a lattice but not all partially ordered sets are lattices.

EXAMPLE Let A be any set and P(A) be its power set. The partially ordered set (P(A), ⊆) is

a lattice in which the meet and join are the same as the operations ∩ and ∪, respectively. If A

has single element, say a, then P(A)={ϕ, {a}}

PROPERTIES OF LATTICES

Let (L, ≤) be a lattice and let a, b, c ∈ L. Then, from the definition of ∨ (join) and ∧(meet) we

have

i. a ≤ a ∨ b and b ≤ a ∨ b; a ∨ b is an upper bound of a and b.

ii. If a ≤ c and b ≤ c, then a ∨ b ≤ c; a ∨ b is the least upper bound of a and b.

iii. a ∧ b ≤ a and a ∧ b ≤ b; a ∧ b is a lower bound of a and b.

iv. If c ≤ a and c ≤ b, then c ≤ a ∧ b; a ∧ b is the greatest lower bound of a and b.

Theorem

Let L be a lattice. Then for every a and b in L,

i. a ∨ b = b if and only if a ≤ b,

ii. a ∨ b = a if and only if a ≤ b,

iii. a ∧ b = a if and only if a ∨ b = b.

I. BOUNDED, COMPLEMENTED AND DISTRIBUTIVE LATTICES

ii. Let (L, ∨, ∧) be a lattice and let S = {a1, a2, …, an} be a finite subset of L. Then,

iii.

iv. LUB of S is represented by a1 ∨ a2 ∨ … ∨ an,

GLB of S is represented by a1 ∧ a2 ∧ … ∧ an.

v. Definition A lattice is called complete if each of its non-empty subsets has a least

upper bound and a greatest lower bound.

vi. Obviously, every finite lattice is complete.

20 | P a g e
 COPYRIGHT FIMT 2020

vii. Also, every complete lattice must have a least element, denoted by 0 and a greatest

element, denoted by I.

viii. The least and greatest elements if exist are called bound (units, universal bounds) of

the lattice.

ix. Definition A lattice L is said to be bounded if it has a greatest element I and a least

element 0.

x. For the lattice (L, ∨, ∧) with L = {a1, a2, …, an},

9) Discuss DEFINITIONS AND BASIC CONCEPTS OF GRAPH

ANS:- Definition

A graph G = (V, E) is a mathematical structure consisting of two finite sets V and E. The

elements of V are called vertices (or nodes) and the elements of E are called edges. Each

edge is associated with a set consisting of either one or two vertices called its endpoints.

The correspondence from edges to endpoints is called edge-endpoint function. This

function is generally denoted by γ. Due to this function, some authors denote graph by G =

(V, E, γ).

Definition

A graph consisting of one vertex and no edges is called a trivial graph.

Definition

A graph whose vertex and edge sets are empty is called a null graph.

Definition

An edge with just one endpoint is called a loop or a self-loop.

SPECIAL GRAPHS

Definition

A graph G is said to simple if it has no parallel edges or loops. In a simple graph, an edge

with endpoints v and w is denoted by {v, w}.

Definition

For each integer n ≥ 1, let Dn denote the graph with n vertices and no edges. Then Dn is

called the discrete graph on n vertices.

Definition

Let n ≥ 1 be an integer. Then a simple graph with n vertices in which there is an edge

between each pair of distinct vertices is called the complete graph on n vertices. It is denoted

by Kn.

21 | P a g e
 COPYRIGHT FIMT 2020

For example, the complete graphs K2, K3 and K4 are shown in

10) Discuss sub graph, proper sub graph & isomorphic graph also

Ans:-

SUBGRAPHS

Definition

A graph H is said to be a subgraph of a graph G if and only if every vertex in H is also a

vertex in G, every edge in H is also an edge in G and every edge in H has the same endpoints

as in G.

We may also say that G is a super graph of H

Definition

A sub graph H is said to be a proper sub graph of a graph G if vertex set VH of H is a proper

subset of the vertex set VG of G or edge set EH is a proper subset of the edge set EG.

For example, the sub graphs in the above examples are proper sub graphs of the given

graphs.

ISOMORPHISMS OF GRAPHS

We know that shape or length of an edge and its position in space are not part of specification

of a graph. For example, the represent the same graph.

Definition

Let G and H be graphs with vertex sets V(G) and V(H) and edge sets E(G) and E(H),

respectively. Then G is said to isomorphic to H if there exist one-to-one correspondences g:

V(G) → V(H) and h: E(G) → E(H) such that for all v ∈ V(G) and e ∈ E(G),

v is an endpoint of e ⇔ g(v) is an endpoint of h(e).

Definition

The property of mapping endpoints to endpoints is called preserving incidence or the

continuity rule for graph mappings.

As a consequence of this property, a self-loop must map to a self-loop.

Thus, two isomorphic graphs are same except for the labelling of their vertices and edges.

11) DISCUSS WALKS, PATHS IN THE GRAPH

ANS:- Definition

22 | P a g e
 COPYRIGHT FIMT 2020

In a graph G, a walk from vertex v0 to vertex vn is a finite alternating sequence {v0, e1, v1,

e2, …, vn − 1, en, vn} of vertices and edges such that vi − 1 and vi are the endpoints of ei.

The trivial walk from a vertex v to v consists of the single vertex v.

Definition

In a graph G, a path from the vertex v0 to the vertex vn is a walk from v0 to vn that does not

contain a repeated edge.

Thus a path from v0 to vn is a walk of the form

{v0, e1, v1, e2, v2, …, vn − 1, en, vn},

where all the edges ei are distinct.

Definition

In a graph, a simple path from v0 to vn is a path that does not contain a repeated vertex.

Thus a simple path is a walk of the form

{v0, e1,v1, e2, v2, …, vi − 1, en, vn},

12) DISCUSS HAMILTONIAN CIRCUITS & MATRIX REPRESENTATION OF

GRAPHS

ANS:- Definition

A Hamiltonian path for a graph G is a sequence of adjacent vertices and distinct edges in

which every vertex of G appears exactly once.

Definition

A Hamiltonian circuit for a graph G is a sequence of adjacent vertices and distinct edges in

which every vertex of G appears exactly once, except for the first and the last which are the

same.

Definition

A graph is called Hamiltonian if it admits a Hamiltonian circuit.

MATRIX REPRESENTATION OF GRAPHS

A graph can be represented inside a computer by using the adjacency matrix or the incidence

matrix of the graph.

23 | P a g e
 COPYRIGHT FIMT 2020

Definition

Let G be a graph with n ordered vertices v1, v2, …, vn. Then the adjacency matrix of G is the

n × n matrix A(G) = (aij) over the set of non-negative integers such that

aij = the number of edges connecting vi and vj for all i, j = 1, 2, …, n.

We note that if G has no loop, then there is no edge joining vi to vi, i = 1, 2, …,

n.Therefore, in this case, all the entries on the main diagonal will be 0.

Further, if G has no parallel edge, then the entries of A(G) are either 0 or 1.

It may be noted that adjacent matrix of a graph is symmetric.

Conversely, given a n × n symmetric matrix A(G) = (aij) over the set of non-negative

integers, we can associate with it a graph G, whose adjacency matrix is A(G), by letting G

have n vertices and joining vi to vertex vj by aij edges

13) EXPLAIN COLOURING OF GRAPH

ANS:- Definition

Let G be a graph. The assignment of colours to the vertices of G, one colour to each vertex,

so that the adjacent vertices are assigned different colours is called vertex colouring or

colouring of the graph G.

Definition

A graph G is n-colourable if there exists a colouring of G which uses n colours.

Definition

The minimum number of colours required to paint (colour) a graph G is called the chromatic

number of G and is denoted by χ (G).

14) Discuss Propositional Logic

Ans:- Logic is essentially the study of arguments. For example, someone may say, suppose A

and B are true, can we conclude that C is true? Logic provides rules by which we can

conclude that certain things are true given other things are true. Here is a simple example: A

tells B that ―if it rains, then the grass will get wet. It is raining‖; B can then conclude that the

grass is wet, if what A has told B is true. Logic provides a mechanism for showing arguments

like this to be true or false.

The section starts by showing how to translate English sentences into a logical form,

specifically into something called ―propositions‖. In fact, our study of logic starts with

propositional calculus.

24 | P a g e
 COPYRIGHT FIMT 2020

Propositional calculus is the calculus of propositions and we plan to study propositions.

Most of us may associate the term calculus with integrals and derivatives, but if we check out

the definition of calculus in the dictionary, we will see that calculus just means ―a way of

calculating‖, so differential calculus, for instance, is how to calculate with derivatives and

integral calculus is how to calculate with integrals.

However, before going into how to translate English sentences into propositions, we are

going to introduce Boolean expressions (that is, propositions), and then discuss about

translation. Hence, we will see the same ideas in two different forms.

15) EXPLAIN ABOUT BOOLEAN EXPRESSIONS

ANS:- Definition A Boolean variable is a variable that can either be assigned true or false.

We have programmed in C++ and know about types such as integers, floats, and character

pointers. However, C++ also has a Boolean type, as do Java and Pascal. We can declare

variables to be of Boolean type, which means that they can only take on two values: true and

false. Throughout the chapter, we shall generally use the letters, p, q, and r as Boolean

variables. However, in some cases we will allow these letters to have subscripts. For

example, p0, q1492 and r1776 are all Boolean variables.

Definition A Boolean expression is either

1. a Boolean variable, or

2. it has the form ¬ϕ, where ϕ is a Boolean expression, or

3. it has the form (ϕ * ψ), where ϕ and ψ are Boolean expressions and * is one of the

following:

∧, ∨, →, or ↔.

CONSTRUCTION OF BOOLEAN EXPRESSIONS

Suppose we are given a Boolean expression and asked to prove that it is a Boolean

expression. How do we proceed? There are two different ways of doing it. The first is to

build a Boolean expression from its constituent parts. Let us start off with an example. We

want to show that ((p ∧ q) ∨ ¬r) is a Boolean expression. To do so, we will take a bottom-up

approach.

 Expression Reason

1. p Boolean variable

2. q Boolean variable

3. r Boolean variable

4. ¬r 3, ¬ϕ

5. (p ∧ q) 1, 2, (ϕ ∧ ψ)

25 | P a g e
 COPYRIGHT FIMT 2020

6. ((p ∧ q) ∨ ¬r) 5, 4, (ϕ ∧ ψ)

Notice that we start with the smallest Boolean expression (namely, Boolean variables) and

work our way up. Look at line number 4. The reason is ―3, ¬ϕ‖. This means that we are using

the rule ¬ϕ to create line 4, where ϕ is from line 3. This is just the second part of the

definition being applied. And we use lines 1 and 2 and rule (ϕ ∧ ψ) to create the expression in

line 5. Again, this rule comes from part 3 of the definition.

Definition A construction of a Boolean expression is a list of steps, where each line is either

a Boolean variable or it uses a connective (e.g., ¬, ∧, ∨, → or ↔) to connect two other

Boolean expressions (they may be the same), with line numbers that are less than itself. Each

line is a valid Boolean expression.

For example, look at the construction above. If we have to add a 7
th
 step to the

construction, we would have two choices. Either we could introduce a Boolean variable (we

could always do this) or we could use a connective and find a Boolean expression that is

already on the list and add it. For example, we could place a ¬ in front of ¬r (from step 4) and

produce ¬¬r.

The point of this exercise was to explain how to convince someone else that ((p ∧ q) ∨ ¬r)

is a Boolean expression. It is a kind of proof and uses the definition of Boolean expressions

as reasons or justifications for each step.

The only difficulty with using this (and it is a small one) is that it is sometimes easier

seeing an expression top-down than bottom-up. That is, it is intuitively simpler to take a

complicated expression like ((p ∧ q) ∨ ¬r) and try to break it down to its two parts, (p ∧ q)

and ¬r.

MEANING OF BOOLEAN EXPRESSIONS

One use of logic is as a means of deciding what things are true, given that certain facts are

already true. Logic provides us a framework for deducing new things that are true. However,

this deduction is based on form. For example, we might say that either x > 0 or x ≤ 0 and also

that x is not greater than 0. Given these two facts, we should be able to conclude that x ≤ 0.

Now both arguments actually have the same form that is, we basically said ϕ or ψ is true

and then ϕ is not true, therefore we concluded ψ is true. In the first example, ϕ was x > 0 and

ϕ was x ≤ 0, while in the second example ϕ was ―the capital of India is Mumbai‖ and ψ was

―the capital of India is New Delhi‖. In both examples, there was a similar form of the

argument and the conclusion that we drew was purely based on the form.

This is actually at the heart of logic. (Some) English arguments can be translated into

Boolean expressions, and then we can apply rules of logic to determine whether the

arguments make sense, atleast, based on their form.

We know that Boolean variables are the building blocks of Boolean expressions. Boolean

variables like p generally stand for either English or mathematical propositions.

26 | P a g e
 COPYRIGHT FIMT 2020

16) WHAT IS PREPOSITION OR STATEMENT

ANS:- Definition A proposition is something that is either true or false but not both.

Not all English sentences are propositions. For example, the sentence ―Run away‖ cannot

really be said to be true nor false. Not all mathematical ―sentences‖ are propositions either.

For example, x > y is neither true nor false. We would need to know the values of x and y

before we could draw the conclusion. Actually, we do not have to be this strict, x > y is either

true or false, so in some sense, we can consider it a proposition.

Once the translation has been made from English sentences or mathematical sentences into

Boolean expressions, then we generally do not care what the original sentence means. We can

make conclusions based on the Boolean expressions. We shall get into the details soon.

17) EXPLAIN CONJUNCTION & DISJUNCTION IN PREPOSITION

ANS:- Conjunctions

The most basic Boolean expression is a Boolean variable, which is either true or false.

Throughout this section, we shall refer to two propositions: p and q.

p I own a cat.

q I own a dog.

One way to make a more complicated sentence is to connect two sentences with ―and‖. For

example, ―I own a cat‖ AND ―I own a dog‖. In propositional calculus (which is what we are

studying now), our purpose is to determine when expressions or sentences are true. So, when

is the entire expression ―I own a cat AND I own a dog‖ true? Intuitively, we would say it is

true if both parts are true.

Now let‘s look at the Boolean expression equivalent of that same sentence. It happens to be

(p ∧ q) (again, notice the use of parentheses). The symbol for AND is ∧, which we can

pronounce as AND. If it helps us to remember, the ∧ symbol looks sort of like an ―A‖, which

is the first letter of AND. Sometimes, mathematicians say that (p ∧ q) is a conjunction of p

and q and that p and q are conjuncts of the conjunction. Despite the fancy name, the work

―conjunction‖ does come up often enough and hence we ought to remember it.

So, when is (p ∧ q) true? When both p and q are true. If either is false, then the whole

expression is false. We can actually summarize this in a truth table. A truth table tells us the

―truth‖ of a Boolean expression given that we assign either true or false to each of the

Boolean variables.

Given two different Boolean variables, p and q, there are four different ways to assign truth

values to them. Each of the four ways is listed below. T stands for true, while F stands for

false. If we look at the column for variable q, we will see that it alternates T, then F, then T,

then F, whereas the column with p to its immediate left alternates, T, T, then F, F. If we had

another variable, r and placed it to the left of p, it would alternate T, T, T, T then F, F, F, F.

There is a pattern. Starting from the rightmost Boolean variable, we will alternate every

turn T, F, T, F. The next column to its left will alternate T, T, F, F, T, T, F, F, etc. The next

one to its left will alternate T, T, T, T, F, F, F, F. As we move to the left, we repeat the Ts

27 | P a g e
 COPYRIGHT FIMT 2020

twice as many times as the previous column and twice as may Fs. This pattern actually covers

all possible ways of combining truth values for n Boolean variables.

Now, look at line 1 in the truth table. Look at the last column. We will notice that the entry

has the value T, which means that when p is assigned T and q is assigned T, then (p ∧ q) is

true as well. This is just a formalization of what we said before, (p ∧ q) is only true when p

and q are both true (that is, both assigned to true).

The key point is to notice that we can find out the truth value of a complicated expression

by knowing the truth value of the parts that make it up. This is really no different from

arithmetic expressions. For example, if we had the expression (x + y) − z, then we could tell

that the value for this expression, provided if we knew the values for each of the variables. It

is the same with Boolean expressions. If we know the truth values of the Boolean variables,

then using truth tables, we can determine the truth value of a Boolean expression.

Now, we used p and q for the truth table above. However, there was nothing special about

using those two Boolean variables. Any two different Boolean variables would have worked.

In fact, any two Boolean expressions would have worked. We could have replaced p with ϕ

and q with ψ and (p ∧ q) with (ϕ ∧ ψ) and the truth table would still have been fine.

 Disjunctions

Instead of saying ―I own a cat‖ AND ―I own a dog‖, we could connect the two statements

with OR, as in, ―I own a cat‖ OR ―I own a dog‖. When would this statement be true? It would

be true if I owned either a cat or a dog. That is, only one of the two statements has to be true.

What happens if both are true? Then is the entire statement ―I own a cat OR I own a dog‖

true? Going by propositional logic, we will say yes. That is, the entire OR statement is true if

one or the other statement or both are true.

We use the symbol ∨ to represent OR. So (p ∨ q) (again, notice the parentheses) is the

same as p OR q and the whole expression is true if p is true or q is true or both are true. It is

false if both p and q are false. Sometimes the expression (p ∨ q) is called a disjunction (with a

∧, it was a conjunction) and p and q are the disjuncts of the disjunction. Any Boolean

expression (or subexpression) can be called a disjunction if it has the pattern (ϕ ∨ ψ).

The use of ―OR‖ in propositional calculus actually contrasts with the way we normally use

it in English. For example, if A said, ―I will go to the Cinema OR I will go to the Garden‖.

Usually it means, I will go to one or the other, but NOT both. This kind of ―OR‖ is called as

exclusive OR, while the one we use in propositional calculus is called an inclusive OR. We

will almost always use the inclusive OR (the exclusive OR can be defined using inclusive

ORs and negations, which will be introduced in the next section).

Here is the truth table for OR.

Notice the rightmost column of this truth table and compare it to the rightmost column of

the truth table of (p ∧ q). In the case of conjunction (i.e., AND), (p ∧ q) is true in only one

case, namely, when p and q are both true. It is false in all other cases. However, for (p ∨ q)

(read p OR q), it is true in all cases except when both p and q are false. In other words, only

one of either p or q has to be true for the entire expression (p ∨ q) to be true.

The main point covered so far:

28 | P a g e
 COPYRIGHT FIMT 2020

The symbols we have seen: {∧, ∨, →, ↔, ¬} are often called connectives because they

connect two Boolean expressions (although in the case of ¬, it‘s only attached to a single

Boolean expression).

18) EXPLAIN NEGATION

ANS:- 3 Negations

The symbol ¬, (pronounced ―not‖) is like a negative sign in arithmetic. So, if we have p (―I

own a cat‖), the ¬p (notice there are no parentheses) can be read as ―Not I own a cat‖, or ―It

is not the case that I own a cat‖ (in which case the ¬ could be read as ―it is not the case that‖).

Both of these sound awkward, but the idea is to use the original sentence and attach

something before it, just like the connective. In English, it sounds more correct to say ―I do

not own a cat‖.

Unlike ∧ and ∨, ¬ only attaches to a single Boolean expression. So, the truth table is

actually smaller for ¬ since there is only one Boolean variable to worry about.

Line p ¬p

1 T F

2 F T

This should be an easy truth table to understand. If p is true, then ¬p is false. The reverse

holds as well. If p is false, then ¬p is true.

19) EXPLAIN ABOUT TRUTH TABLE

ANS:- CONSTRUCTION OF TRUTH TABLES

Suppose we are given a Boolean expression, say, ((p ∧ q) ∨ ¬p). We want to know whether

this expression is true or false.

We introduce a function, v. This function will be called a valuation. If we were to write

this function signature in pseudo-C++ code, it would look like

boolean v(boolExpr x);

In words, this function takes a Boolean expression as input (think of it as a class) and

returns back a Boolean value, that is, it returns either true or false.

Let us formally define a valuation.

Definition A valuation (also called, a truth value function or a truth value assignment) is a

function which assigns a truth value (that is, true or false) for a Boolean expression, under the

following restrictions.

 v((ϕ ∧ ψ)) = min(v(ϕ), v(ψ))

 v((ϕ ∨ ψ)) = max(v(ϕ), v(ψ))

 v(¬ϕ) = 0, if v(ϕ) = 1

29 | P a g e
 COPYRIGHT FIMT 2020

 = 1, if v(ϕ) = 0

 v((ϕ → ψ)) = 1, if v(ϕ) = F or v(ψ) = T

 = 0, otherwise

 v((ϕ ← ψ)) = 1, if v(ϕ) = v(ψ)

 = 0, otherwise

The interesting thing is that because of these restrictions, once a truth value function has

been defined for all the Boolean variables in a Boolean expression, the truth value for the

Boolean expression (and all its subexpressions) are defined as well.

Let us take a closer look at the definition. We shall take it line by line. In the first line, we

have

v((ϕ ∧ ψ)) = min(v(ϕ), v(ψ))

This says that if we want to find the truth value of (ϕ ∧ ψ), then we have to find the truth

value of ϕ (that is, v(ϕ)) and the truth value of ψ (that is, v(ψ)). We take the ―minimum‖ of

v(ϕ) and v(ψ). How does one take the minimum of the two? If we treat false as the number 0

and true as the number 1, then taking the minimum of two numbers makes sense. But is it an

accurate translation of AND?

Let us think about this for a moment. When is (ϕ ∧ ψ) true? When ϕ is true AND when ψ is

true. If we think of true as being the number 1, then we are asking what is the minimum of 1

and 1. And the minimum of those two numbers is 1. If we translate it back, we get true. That

seems to work.

Now, when is (ϕ ∧ ψ) false? When either ϕ or ψ is false, that is, when v(ψ) = F or (and this

is an inclusive or) when v(ψ) = F. So, let‘s think about this. If one of the two is false, then it

has a value of 0. The minimum of 0 and anything else is 0. Why? Well, since truth values are

either 0 (for false) or 1 (for true), we can only take the minimum of 0 and some other number.

That number could be 0, in which case the minimum is 0, or it could be 1, in which case the

minimum is still 0. So, the minimum of 0 and any other number (restricted to 0 or 1) is 0.

And that makes sense too because we want (v(ϕ ∧ ψ)) to be false (i.e., 0) when either v(ϕ) or

v(ψ) is false.

If we treat false as 0 and true as 1, then we can show

v((ϕ ∨ψ)) = max(v(ϕ), v(ψ))

makes sense too. max is the function that takes the maximum of two numbers (in this case,

we need to treat the truth values like numbers).

The real point of this is to show that to find out the truth value of a Boolean expression

(i.e., to find out the value of v(ϕ), we need to find out the value of the smaller

subexpressions.) For example, to find v(¬ϕ), we need to know the value of v(ϕ). And to find

out v(ϕ) we need to see what pattern ϕ follows (is it a negation, conjunction, or disjunction?)

and recursively apply the definition. At each step, we break down the equation into smaller

and smaller subexpressions until we reach the smallest subexpression, which happens to be a

Boolean variable.

30 | P a g e
 COPYRIGHT FIMT 2020

To find the truth value of a Boolean expression, we just need to know the truth value of the

Boolean variables in that expression.

 Back to Derivations

Based on the insight of the previous section, we now return to our problem. We want to

construct a truth table for ((p ∧ q) ∨ ¬p). To do so, we need to find the Boolean variables in

this expression. This is easy as there are only p and q.

This is how we will derive the Boolean expression. The reason will become clear, but we

intend to use it to construct a truth table.

Here is the derivation.

 Expression Reason

1. p Boolean variable

2. q Boolean variable

3. ¬p 1, ¬ϕ

4. (p ∧ q) 1, 2, (ϕ ∧ ψ)

5. ((p ∧ q) ∨ ¬p) 4, 3, (ϕ ∧ ψ)

We will create one column in the truth table for each line in the derivation. How many

rows do we use? If n is the number of Boolean variables (in this case, 2), then 2
n
 is the

number of rows (in this case, 2
2
 = 4 rows).

20) DISCUSS AOUT TAUTOLOGIES AND CONTRADICTIONS

ANS:-

Definition A tautology is a Boolean expression which always results in a true result,

regardless of what the Boolean variables in the expression are assigned to.

We saw this earlier on, with the expression (p ∨ ¬p). If v(p) = T, then the whole expression

is true. If v(p) = F, then also the whole expression is true. Basically, a tautology means that

the result of the expression is independent of whatever Boolean variables have been assigned

the result is always true.

Definition A contradiction is a Boolean expression which always results in a false result,

regardless of what the Boolean variables in the expression are assigned to.

A contradiction is just the opposite of a tautology, in fact, given any Boolean expression

that is a tautology, we just have to negate it to get a contradiction. For example, (p ∨ ¬p) is a

tautology. The negation of that, ¬(p ∨ ¬p), is a contradiction. We can apply DeMorgan‘s law

and get (¬p ∧ ¬¬p) and by using the simplification for double negation result in (¬p ∧ p). So,

since all of these are logically equivalent, then (¬p ∧ p) is also a contradiction.

CONTRADICTION RULE

¬p is true and then deduce a contradiction, then p is true. The idea runs something like this:

one generally believes math is consistent that is, we do not derive contradictions using the

31 | P a g e
 COPYRIGHT FIMT 2020

rules of logic (the most common contradiction is to derive ¬q when we also know that q

happens to be true). So, when we try to prove p, we try to assume ¬p and if this leads to a

contradiction, then we know that ¬p cannot be true, since our system avoids contradiction

and thus if ¬p is not true, it is false, and if it is false, then p must be true. This is often the line

of reasoning used in a proof by contradiction.

32 | P a g e
 COPYRIGHT FIMT 2020

PRINCIPLE OF MANAGEMENT

Subject Code-104

1) Explain the Fayol Principle of Management.

Fayol's principles are listed below:

1. Division of Work – When employees are specialized, output can increase because they

become increasingly skilled and efficient.

2. Authority – Managers must have the authority to give orders, but they must also keep in

mind that with authority comes responsibility.

3. Discipline – Discipline must be upheld in organizations, but methods for doing so can

vary.

4. Unity of Command – Employees should have only one direct supervisor.

5. Unity of Direction – Teams with the same objective should be working under the

direction of one manager, using one plan. This will ensure that action is properly

coordinated.

6. Subordination of Individual Interests to the General Interest – The interests of one

employee should not be allowed to become more important than those of the group. This

includes managers.

7. Remuneration – Employee satisfaction depends on fair remuneration for everyone. This

includes financial and non-financial compensation.

8. Centralization – This principle refers to how close employees are to the decision-making

process. It is important to aim for an appropriate balance.

9. Scalar Chain – Employees should be aware of where they stand in the organization's

hierarchy, or chain of command.

10. Order – The workplace facilities must be clean, tidy and safe for employees. Everything

should have its place.

11. Equity – Managers should be fair to staff at all times, both maintaining discipline as

necessary and acting with kindness where appropriate.

12. Stability of Tenure of Personnel – Managers should strive to minimize employee

turnover. Personnel planning should be a priority.

13. Initiative – Employees should be given the necessary level of freedom to create and

carry out plans.

14. Esprit de Corps – Organizations should strive to promote team spirit and unity.

33 | P a g e
 COPYRIGHT FIMT 2020

2) Explain the meaning & concept of Management

Management is essential for an organized life and necessary to run all types of

organizations. Managing life means getting things done to achieve life‘s objectives

and managing an organization means getting things done with and through other

people to achieve its objectives.

There are basically five primary functions of management. These are:

1. Planning

2. Organizing

3. Staffing

4. Directing

5. Controlling

The controlling function comprises coordination, reporting, and budgeting, and hence the

controlling function can be broken into these three separate functions. Based upon these

seven functions, Luther Gulick coined the word POSDCORB, which generally represents the

initials of these seven functions i.e. P stands for Planning, O for Organizing, S for Staffing, D

for Directing, Co for Co-ordination, R for reporting & B for Budgeting.

“Planning is the continuous process of making present entrepreneurial decisions

systematically and with best possible knowledge of their futurity, organizing systematically

the efforts needed to carry out these decisions and measuring the results of these decisions

against the expectations through organized and systematic feedback”.

Organizing requires a formal structure of authority and the direction and flow of such

authority through which work subdivisions are defined, arranged and coordinated so that each

part relates to the other part in a united and coherent manner so as to attain the prescribed

objectives.

Staffing is the function of hiring and retaining a suitable work-force for the enterprise both at

managerial as well as non-managerial levels. It involves the process of recruiting, training,

developing, compensating and evaluating employees and maintaining this workforce with

proper incentives and motivations. Since the human element is the most vital factor in the

process of management, it is important to recruit the right personnel.

The directing function is concerned with leadership, communication, motivation, and

supervision so that the employees perform their activities in the most efficient manner

possible, in order to achieve the desired goals.

https://www.managementstudyhq.com/management-as-an-art.html
https://www.managementstudyhq.com/human-resource-planning-importance-of-human-resource-planning.html
https://www.managementstudyhq.com/principles-importance-organizing-function-management.html
https://www.managementstudyhq.com/staffing-process-steps-involved-in-staffing.html
https://www.managementstudyhq.com/what-importance-of-directing-function-management.html
https://www.managementstudyhq.com/meaning-of-controlling-importance.html
https://www.managementstudyhq.com/stages-of-recruitment-process.html
https://www.managementstudyhq.com/strategic-management-proces.html
https://www.managementstudyhq.com/types-of-leadership.html
https://www.managementstudyhq.com/types-of-communication.html
https://www.managementstudyhq.com/what-is-motivation.html

34 | P a g e
 COPYRIGHT FIMT 2020

The leadership element involves issuing of instructions and guiding the subordinates about

procedures and methods.

3) Discuss the role & skills of Manager.

Certain skills, or abilities to translate knowledge into action that results in desired

performance, are required to help other employees become more productive. These skills fall

under the following categories:

 Technical: This skill requires the ability to use a special proficiency or expertise to

perform particular tasks. Accountants, engineers, market researchers, and computer

scientists, as examples, possess technical skills. Managers acquire these skills initially

through formal education and then further develop them through training and job

experience. Technical skills are most important at lower levels of management.

 Human: This skill demonstrates the ability to work well in cooperation with others.

Human skills emerge in the workplace as a spirit of trust, enthusiasm, and genuine

involvement in interpersonal relationships. A manager with good human skills has a high

degree of self‐awareness and a capacity to understand or empathize with the feelings of

others. Some managers are naturally born with great human skills, while others improve

their skills through classes or experience. No matter how human skills are acquired, they're

critical for all managers because of the highly interpersonal nature of managerial work.

 Conceptual: This skill calls for the ability to think analytically. Analytical skills enable

managers to break down problems into smaller parts, to see the relations among the parts,

and to recognize the implications of any one problem for others. As managers assume

ever‐higher responsibilities in organizations, they must deal with more ambiguous

problems that have long‐term consequences. Again, managers may acquire these skills

initially through formal education and then further develop them by training and job

experience. The higher the management level, the more important conceptual skills

become.

4) Discuss Various Managerial Levels

Most organizations have three management levels:

 Low-level managers;

 Middle-level managers; and

 Top-level managers.

https://www.managementstudyhq.com/types-of-leadership.html

35 | P a g e
 COPYRIGHT FIMT 2020

These managers are classified in a hierarchy of authority, and perform different tasks. In

many organizations, the number of managers in every level resembles a pyramid.

Below, you‘ll find the specifications of each level‘s different responsibilities and their likely

job titles.

Top-level managers

The board of directors, president, vice-president, and CEO are all examples of top-level

managers.

These managers are responsible for controlling and overseeing the entire organization. They

develop goals, strategic plans, company policies, and make decisions on the direction of the

business.

In addition, top-level managers play a significant role in the mobilization of outside

resources.

Top-level managers are accountable to the shareholders and general public.

Middle-level managers

General managers, branch managers, and department managers are all examples of middle-

level managers. They are accountable to the top management for their department‘s function.

Middle-level managers devote more time to organizational and directional functions than top-

level managers. Their roles can be emphasized as:

 Executing organizational plans in conformance with the company‘s policies and the

objectives of the top management;

 Defining and discussing information and policies from top management to lower

management; and most importantly

 Inspiring and providing guidance to low-level managers towards better performance.

Some of their functions are as follows:

 Designing and implementing effective group and intergroup work and information

systems;

 Defining and monitoring group-level performance indicators;

 Diagnosing and resolving problems within and among work groups;

 Designing and implementing reward systems supporting cooperative behavior.

36 | P a g e
 COPYRIGHT FIMT 2020

Low-level managers

Supervisors, section leads, and foremen are examples of low-level management titles. These

managers focus on controlling and directing.

Low-level managers usually have the responsibility of:

 Assigning employees tasks;

 Guiding and supervising employees on day-to-day activities;

 Ensuring the quality and quantity of production;

 Making recommendations and suggestions; and

 Upchanneling employee problems.

5) Explain the Classical & Neo-Classical Theories of Management

1. Classical Organisation Theory:

The classical writers viewed organisation as a machine and human beings as components of

that machine. They were of the view that efficiency of the organisation can be increased by

making human beings efficient. Their emphasis was on specialisation and co-ordination of

activities. Most of the writers gave emphasis on efficiency at the top level and few at lower

levels of organisation. That is why this theory has given streams; scientific management and

administrative management. The scientific management group was mainly concerned with

the tasks to be performed at operative levels.

Henry Fayol studied for the first time the principles and functions of management. Some

authors like Gullick, Oliver Sheldon, Urwick viewed the problem where identification of

activities is necessary for achieving organisation goals. Grouping or departmentation was also

considered essential for making the functions effective. Since this theory revolves around

structure it is also called ‗structural theory of organisation.‖

2. Neo-Classical Organisation Theory:

The classical theory of organisation focussed main attention on physiological and mechanical

variables of organisational functioning. The testing of these variables did not show positive

results. The Hawthorne Studies conducted by George Elton Mayo and associates discovered

37 | P a g e
 COPYRIGHT FIMT 2020

that real cause of human behaviour was somewhat more than mere physiological variables.

These studies focussed attention on human beings in the organisation.

New-classical approach is contained in two points:

(i) Organisational situation should be viewed in social, economic and technical terms, and

(ii) The social process of group behaviour can be understood in terms of clinical method

analogous to the doctor‘s diagnosis of human organism.

6) Explain the Process & Purpose of Planning

The following are some of the important purpose of planning in an organization.

1. Facilitates Accomplishment of Objectives: The aim of planning is to facilitate the

attainment of objectives. It focuses its attention on the objectives of the organization. It states

the objectives of each department in the organization and of the enterprise as a whole. This

helps personnel to see the enterprise in its entirety and see how their actions contribute to its

ultimate goals. Planning forces the managers to consider the future and revise its plans if

necessary for achieving the objectives.

2. Ensures Economy in Operations: Since planning emphasizes efficient operation and

consistency, it minimizes costs and gains economical operation. Coordinated group effort,

even flow of work and deliberate decisions are due to planning.

3. Precedes Control: Control involves those activities which are carried out to force events

to conform to plans. Plans serves as standards of performance. Control seeks to compare

actual performance with set standards. So control cannot be exercised without plans.

4. Provides for Future Contingency: Planning is required because future is uncertain.

Planning enables the management to look into the future and discover suitable alternative

course of action. Planning helps the management to have a clear-cut idea about the future and

to frame a suitable programme for action. Even when the future is highly certain, planning is

essential to decide the best course of action.

5. Facilitates Optimum Utilization of Resources: Various resources that are relevant to an

organization namely, funds, physical resources, manpower, technological know-how, etc., are

by and large inadequate due to demand from competing organizations and have alternative

uses. This necessitate the organization to make the best possible use of resources. Planning

facilitates optimum use of available resources.

38 | P a g e
 COPYRIGHT FIMT 2020

7) Discuss the Decision making Process

Step 1: Identify the decision

You realize that you need to make a decision. Try to clearly define the nature of the decision

you must make. This first step is very important.

Step 2: Gather relevant information

Collect some pertinent information before you make your decision: what information is

needed, the best sources of information, and how to get it. This step involves both internal

and external ―work.‖ Some information is internal: you‘ll seek it through a process of self-

assessment. Other information is external: you‘ll find it online, in books, from other people,

and from other sources.

Step 3: Identify the alternatives

As you collect information, you will probably identify several possible paths of action, or

alternatives. You can also use your imagination and additional information to construct new

alternatives. In this step, you will list all possible and desirable alternatives.

Step 4: Weigh the evidence

Draw on your information and emotions to imagine what it would be like if you carried out

each of the alternatives to the end. Evaluate whether the need identified in Step 1 would be

met or resolved through the use of each alternative. As you go through this difficult internal

process, you‘ll begin to favor certain alternatives: those that seem to have a higher potential

for reaching your goal. Finally, place the alternatives in a priority order, based upon your own

value system.

Step 5: Choose among alternatives

Once you have weighed all the evidence, you are ready to select the alternative that seems to

be best one for you. You may even choose a combination of alternatives. Your choice in Step

5 may very likely be the same or similar to the alternative you placed at the top of your list at

the end of Step 4.

Step 6: Take action

You‘re now ready to take some positive action by beginning to implement the alternative you

chose in Step 5.

Step 7: Review your decision & its consequences

In this final step, consider the results of your decision and evaluate whether or not it has

resolved the need you identified in Step 1. If the decision has not met the identified need, you

may want to repeat certain steps of the process to make a new decision. For example, you

39 | P a g e
 COPYRIGHT FIMT 2020

might want to gather more detailed or somewhat different information or explore additional

alternatives.

8) Distinguish between Authority & Responsibility

Authority is the power to give orders and get it obeyed or in other words it is the

power to take decisions.

Responsibility means state of being accountable or answerable for any obligation,

trust, debt or something or in other words it means obligation to complete a job

assigned on time and in best way.

Authority and responsibility are closely related and this principle states that these two

must go hand in hand. It means that proper authority should be delegated to meet the

responsibilities.

A match should be there between these two because of two main reasons:--

ü Firstly, if a person is given some responsibility without sufficient authority he can‘t perform

better, and also could not accomplish the desired goal.

ü Secondly, if there is excess authority being delegated to an individual without matching

responsibility then the delegated authority will be misused in one way or the other.

This is an important and useful principle of management because if adequate authority is not

delegated to the employees they cannot discharge their duties with efficiency and this in turn

will hamper the achievement of the organizational goal. Sometimes the relation between

management and employees is also badly effected by non delegation of proper authority.

Positive impacts of this principle:

Ø No misuse of authority.

Ø Helps to complete job effectively and efficiently.

Ø Individuals can be held accountable.

Ø Systematized and effective achievement of organizational objectives.

Consequences of violation of this principle:

Ø Misuse of authority.

Ø Responsibility can‘t be discharged effectively.

Ø No one can be held accountable.

Ø Conflicts between management and employees.

40 | P a g e
 COPYRIGHT FIMT 2020

9) Explain Decentralization

The process in which the power or authority present in the hands of the State and

Central Government is taken back and is allocated to the local government it is called

decentralization. In this mechanism the authoritative nature of people with power is

eradicated and powers are handed over to the suitable person who can make good use

of those powers for human welfare and in turn will pave way for development of their

nation.

10) Discuss the Nature & Importance of Staffing

Staffing is the process of hiring eligible candidates in the organization or company for

specific positions. In management, the meaning of staffing is an operation of recruiting

the employees by evaluating their skills, knowledge and then offering them specific job

roles accordingly.

Functions of Staffing

1. The first and foremost function of staffing is to obtain qualified personnel for different

jobs position in the organization.

2. In staffing, the right person is recruited for the right jobs, therefore it leads to maximum

productivity and higher performance.

3. It helps in promoting the optimum utilization of human resource through various aspects.

4. Job satisfaction and morale of the workers increases through the recruitment of the right

person.

5. Staffing helps to ensure better utilization of human resources.

6. It ensures the continuity and growth of the organization, through development managers.

11) Explain the Process of Directing.

DIRECTING is said to be a process in which the managers instruct, guide and

oversee the performance of the workers to achieve predetermined goals. Directing is

said to be the heart of management process. Planning, organizing, staffing have got no

importance if direction function does not take place.

Directing initiates action and it is from here actual work starts. Direction is said to be

consisting of human factors. In simple words, it can be described as providing

guidance to workers is doing work. In field of management, direction is said to be all

https://www.toppr.com/guides/business-management-entrepreneurship/organizing/structure-of-organization/
https://www.toppr.com/guides/business-laws/companies-act-2013/meaning-and-features-of-a-company/
https://www.toppr.com/guides/biology/plant-growth-and-development/growth-and-its-phases/
https://www.managementstudyguide.com/planning_function.htm
https://www.managementstudyguide.com/organizing_function.htm

41 | P a g e
 COPYRIGHT FIMT 2020

those activities which are designed to encourage the subordinates to work effectively

and efficiently. According to Human, ―Directing consists of process or technique by

which instruction can be issued and operations can be carried out as originally

planned‖ Therefore, Directing is the function of guiding, inspiring, overseeing and

instructing people towards accomplishment of organizational goals.

Direction has got following characteristics:

1. Pervasive Function - Directing is required at all levels of organization. Every

manager provides guidance and inspiration to his subordinates.

2. Continuous Activity - Direction is a continuous activity as it continuous throughout

the life of organization.

3. Human Factor - Directing function is related to subordinates and therefore it is

related to human factor. Since human factor is complex and behaviour is

unpredictable, direction function becomes important.

4. Creative Activity - Direction function helps in converting plans into performance.

Without this function, people become inactive and physical resources are

meaningless.

5. Executive Function - Direction function is carried out by all managers and

executives at all levels throughout the working of an enterprise, a subordinate receives

instructions from his superior only.

6. Delegate Function - Direction is supposed to be a function dealing with human

beings. Human behaviour is unpredictable by nature and conditioning the people‘s

behaviour towards the goals of the enterprise is what the executive does in this

function. Therefore, it is termed as having delicacy in it to tackle human behaviour.

12) Discuss Maslow Theory of Motivation.

One of the most popular needs theories is Abraham Maslow's hierarchy of needs

theory. Maslow proposed that motivation is the result of a person's attempt at

fulfilling five basic needs: physiological, safety, social, esteem and self-actualization.

According to Maslow, these needs can create internal pressures that can influence a

person's behavior.

42 | P a g e
 COPYRIGHT FIMT 2020

Physiological needs are those needs required for human survival such as air, food, water,

shelter, clothing and sleep. As a manager, you can account for the physiological needs of

your employees by providing comfortable working conditions, reasonable work hours and the

necessary breaks to use the bathroom and eat and/or drink.

Safety needs include those needs that provide a person with a sense of security and well-

being. Personal security, financial security, good health and protection from accidents, harm

and their adverse effects are all included in safety needs. As a manager, you can account for

the safety needs of your employees by providing safe working conditions, secure

compensation (such as a salary) and job security, which is especially important in a bad

economy.

Social needs, also called love and belonging, refer to the need to feel a sense of belonging

and acceptance. Social needs are important to humans so that they do not feel alone, isolated

and depressed. Friendships, family and intimacy all work to fulfill social needs. As a

manager, you can account for the social needs of your employees by making sure each of

your employees know one another, encouraging cooperative teamwork, being an accessible

and kind supervisor and promoting a good work-life balance.

Esteem needs refer to the need for self-esteem and respect, with self-respect being slightly

more important than gaining respect and admiration from others. As a manager, you can

account for the esteem needs of your employees by offering praise and recognition when the

employee does well, and offering promotions and additional responsibility to reflect your

belief that they are a valued employee.

Self-actualization needs describe a person's need to reach his or her full potential. The need

to become what one is capable of is something that is highly personal. While I might have the

need to be a good parent, you might have the need to hold an executive-level position within

your organization. Because this need is individualized, as a manager, you can account for this

need by providing challenging work, inviting employees to participate in decision-making

and giving them flexibility and autonomy in their jobs.

https://study.com/academy/lesson/safe-working-conditions-purpose-lesson-quiz.html

43 | P a g e
 COPYRIGHT FIMT 2020

13) Explain McGregor X & Y Theory of Leadership

Theory X

Theory X managers tend to take a pessimistic view of their people, and assume that they are

naturally unmotivated and dislike work. As a result, they think that team members need to be

prompted, rewarded or punished constantly to make sure that they complete their tasks.

Work in organizations that are managed like this can be repetitive, and people are often

motivated with a "carrot and stick" approach. Performance appraisals and

remuneration are usually based on tangible results, such as sales figures or product output,

and are used to control staff and "keep tabs" on them.

This style of management assumes that workers:

 Dislike their work.

 Avoid responsibility and need constant direction.

 Have to be controlled, forced and threatened to deliver work.

 Need to be supervised at every step.

 Have no incentive to work or ambition, and therefore need to be enticed by rewards to

achieve goals.

Theory Y

Theory Y managers have an optimistic, positive opinion of their people, and they use a

decentralized, participative management style. This encourages a more collaborative ,

trust-based relationship between managers and their team members.

People have greater responsibility, and managers encourage them to develop their skills and

suggest improvements. Appraisals are regular but, unlike in Theory X organizations, they are

used to encourage open communication rather than control staff.

Theory Y organizations also give employees frequent opportunities for promotion.

This style of management assumes that workers are:

 Happy to work on their own initiative.

 More involved in decision making.

 Self-motivated to complete their tasks.

 Enjoy taking ownership of their work.

 Seek and accept responsibility, and need little direction.

https://www.mindtools.com/pages/article/newTMM_54.htm
https://www.mindtools.com/pages/article/newTMM_32.htm
https://www.mindtools.com/pages/article/manage-commission-team.htm
https://www.mindtools.com/pages/article/newCDV_65.htm
https://www.mindtools.com/pages/article/building-trust.htm
https://www.mindtools.com/pages/article/holding-people-accountable.htm

44 | P a g e
 COPYRIGHT FIMT 2020

14) Discuss Herzberg Two Factor Theory.

1. Motivating Factors

The presence of motivators causes employees to work harder. They are found within the

actual job itself.

2. Hygiene Factors

The absence of hygiene factors will cause employees to work less hard. Hygiene factors are

not present in the actual job itself but surround the job.

Motivating factors include:

 Achievement: A job must give an employee a sense of achievement. This will provide a

proud feeling of having done something difficult but worthwhile.

 Recognition: A job must provide an employee with praise and recognition of their successes.

This recognition should come from both their superiors and their peers.

 The work itself: The job itself must be interesting, varied, and provide enough of a challenge

to keep employees motivated.

 Responsibility: Employees should ―own‖ their work. They should hold themselves

responsible for this completion and not feel as though they are being micromanaged.

 Advancement: Promotion opportunities should exist for the employee.

 Growth: The job should give employees the opportunity to learn new skills. This can happen

either on the job or through more formal training.

Hygiene factors include:

 Company policies: These should be fair and clear to every employee. They must also be

equivalent to those of competitors.

 Supervision: Supervision must be fair and appropriate. The employee should be given as

much autonomy as is reasonable.

 Relationships: There should be no tolerance for bullying or cliques. A healthy, amiable, and

appropriate relationship should exist between peers, superiors, and subordinates.

 Work conditions: Equipment and the working environment should be safe, fit for purpose,

and hygienic.

45 | P a g e
 COPYRIGHT FIMT 2020

 Salary: The pay structure should be fair and reasonable. It should also be competitive with

other organizations in the same industry.

 Status: The organization should maintain the status of all employees within the organization.

Performing meaningful work can provide a sense of status.

15) Elaborate on the Nature & Importance of Controlling.

One of the most essential qualities required in a manager is that he should command the

respect of his team. This allows him to direct and control their actions. In fact controlling

is one of his more important functions. Controlling is one of the important functions of a

manager. In order to seek planned results from the subordinates, a manager needs to

exercise effective control over the activities of the subordinates. In other words, the

meaning of controlling function can be defined as ensuring that activities in an

organization are performed as per the plans. Controlling also ensures that an

organization‘s resources are being used effectively & efficiently for the achievement of

predetermined goals.

 Controlling is a goal-oriented function.

 It is a primary function of every manager.

 Controlling the function of a manager is a pervasive function.

Managers at all levels of management Top, Middle & Lower – need to perform controlling

function to keep control over activities in their areas. Therefore, controlling is very much

important in an educational institution, military, hospital, & a club as in any business

organization.

Therefore, controlling function should not be misunderstood as the last function of management.

It is a function that brings back the management cycle back to the planning function. Thus, the

controlling function act as a tool that helps in finding out that how actual performance deviates

from standards and also finds the cause of deviations & attempts which are necessary to take

corrective actions based upon the same.

This process helps in the formulation of future plans in light of the problems that were identified

&, thus, helps in better planning in the future periods. So from the meaning of controlling we

understand it not only completes the management process but also improves planning in the next

cycle.

https://www.toppr.com/guides/business-economics-cs/money-and-banking/qualities-of-good-money/
https://www.toppr.com/guides/quantitative-aptitude/mensuration/volumes-and-areas/
https://www.toppr.com/guides/principles-and-practices-of-accounting/non-profit-organizations/educational-institutes-special-transactions/
https://www.toppr.com/guides/business-management-and-entrepreneurship/controlling-cs/control-process/
https://www.toppr.com/guides/business-studies/planning/planning-process/

46 | P a g e
 COPYRIGHT FIMT 2020

Importance of Controlling

After the meaning of control, let us see its importance. Control is an indispensable function of

management without which the controlling function in an organization cannot be accomplished

and the best of plans which can be executed can go away. A good control system helps an

organization in the following ways:

1. Accomplishing Organizational Goals

The controlling function is an accomplishment of measures that further makes progress towards

the organizational goals & brings to light the deviations, & indicates corrective action. Therefore

it helps in guiding the organizational goals which can be achieved by performing a controlling

function.

2. Judging Accuracy of Standards

A good control system enables management to verify whether the standards set are accurate &

objective. The efficient control system also helps in keeping careful and progress check on the

changes which help in taking the major place in the organization & in the environment and also

helps to review & revise the standards in light of such changes.

3. Making Efficient use of Resources

Another important function of controlling is that in this, each activity is performed in such

manner so an in accordance with predetermined standards & norms so as to ensure that the

resources are used in the most effective & efficient manner for the further availability of

resources.

16) Explain the need of Understanding Human Behaviour in Organization.

Organizational behavior deals with the study of human behavior within groups

or organizations and how this behavior can be modeled through analysis to impact the

organizations in a positive way. An organization in itself is composed of a group of people

working individually or often within teams. The disposition of people towards each other in

an organization remains the contributing factor towards shaping the organization.

https://www.toppr.com/guides/business-management-entrepreneurship/organizing/structure-of-organization/

47 | P a g e
 COPYRIGHT FIMT 2020

Organizational Behavior is an interdisciplinary field, in that it draws greatly from other

subjects such as psychology, sociology, anthropology, political science and economics, to

mention a few.

The success of an organization is largely dependent on effective management of its people.

Behavior of people within an organization is governed by their ideas, feelings and activities.

For effective management of people, it is crucial to perceive their requirements. However,

since human behavior can differ with each individual, it becomes almost impossible to come

with a unique solution to the organizational problems. For this reason, it is important to

consider psychological and social aspects to design solutions focused on solving

organizational issues.

The behavior of individuals within an organization can either defile the organization or aid in

its overall improvement. For instance, certain employees may be compassionate and helpful

towards their co-workers which helps to create a supportive work culture. This selfless

attitude can be a result of the employee‘s faith in the management and their satisfaction and

commitment towards the organization.

In order to solve the organizational problems, it is necessary to first understand the reason for

its occurrence. If the problems faced are due to damaging organizational behavior, it becomes

crucial to recognize the purpose behind such a behavior. Only then can measures be taken to

counter it and guide the organization in a progressive direction. Incorporation of new and

encouraging behaviors in the company culture might prove rewarding to the employees and

as such profit the company as a whole.

There are many factors that promote constructive organizational behavior, such as

accomplishments, self-actualization, encouragement, affiliation etc. Management should try

to figure out the driving force that stimulates such a behavior and try to integrate more such

factors in the work culture.

This can be in the form of promotions, new incentives, plans or rewards. It does not make

sense to hire capable people and expect complete dedication in the absence of pro-social and

rewarding company culture. In fact, people are more likely to lose interest in their work if

they don‘t feel recognized and rewarded.

48 | P a g e
 COPYRIGHT FIMT 2020

17) Discuss the Various models of OB

Organizational Behavior – Our inherent power of generalization helps us to predict

the behavior of other people, however sometimes our generalizations and predictions

fail. This happens as we fail to analyze and go into the depth of the patterns that are

affecting the behavior of people at that particular time or period. This calls for

understanding and following the systematic approach to the study of the

organizational behavior. The study helps in increasing our predictive ability to

understand the behavior of the people particularly in the group or an organization, and

how their behavior impacts the performance of an organization. Almost all

organizations develop the models on the basis of which behavior of the people is

determined. This model depends on the assumption that organizational

behavior management carries about its people and mission and goals. It is noted that

most of the organizations make the assumptions on the basis that people are not to be

trusted even in the slightest matter. For instance McGregor theories X and Y is based

on quite contradictory assumptions; Argyris focuses on the immaturity and maturity

level of the people providing two opposing views. The Organizational Behavior

models formulated would show many different variations and kind of continuum

between the two opposite poles.

In management, the focus is on the study of the five organizational behavior models:

 Autocratic Model

 Custodial Model

 Supportive Model

 Collegial Model

 System Model

1. Autocratic model

This model has its roots in the historical past, and definitely became a most prominent model

of the industrial revolution of 1800 and 1900s. It gives the owners and manager‘s power to

dictate and form decisions while making employees obey their orders. The model asserts

that employees need to be instructed and motivated to perform while managers do all the

thinking. The whole process is formalized with the managers and authority power has the

https://www.educba.com/course/organizational-behavior-course/

49 | P a g e
 COPYRIGHT FIMT 2020

right to give command to the people, ―You do this or else…‖, is a general dictatorship

command.

2. Custodial Model

Now the time came when managers began to think the security of the employees is

imperative- it could be either social as well economic security. Now managers have begun to

study about their employees needs, they found out that though in the autocratic setup

employees does not talk back yet they have many things to say but incapability to speak

result in frustrations, insecurity, and aggressive behavior towards their boss.

3. Supportive Model

Unlike the two previous approaches, the supportive model emphasis on motivated and

aspiring leader. There is no space for any control or authoritative power in this model or on

the incentives or reward schemes but it is simply based on motivating staff through the

establishment of the manager and employee relationship and the treatment that is given to

employees on daily basis.

4. The Collegial Model

In this scheme, the structure of an organization is developed in a way that there is no boss nor

subordinates, but all are colleagues who have to work as a team. Each one of the employees

has to participate and work in coordination with each other to achieve the target rate. No one

is worried about his status or a job title. Manager‘s role is here like a coach whose function

is to guide the team to perform and generate positive and motivating work environment,

instead of focusing on his own personal growth. The team requires adopting new approaches,

research and development and new technologies to better their performance.

5. The System Model

The most emerging model of the today‘s corporate era is the system model. This model

emerged from the rigorous research to attain the higher level of meaning at work. Today‘s

employees need more than salary and security from their job, they need the hours they are

putting towards the organization is giving them some value and meaning. To add to it, they

need the work that is ethical, respectful, integrated with trust and integrity and gives a space

to develop a community feeling among the co-workers.

18) Explain the concept of Personality & Learning in OB

The four main personality theories are the following: Psychoanalytic, trait,

humanistic, and social-cognitive. These theories all deal with the origin and

https://www.educba.com/25-self-development-skills-to-learn/
https://www.educba.com/technology-to-improve-productivity/

50 | P a g e
 COPYRIGHT FIMT 2020

development of personality traits and identity, and they go about studying the

personality in very different ways.

Psychoanalytic Views on Personality

Sigmund Freud believed that personality is made up of three components. The id is our

impulse energy. It is responsible for all our needs (nourishment, appreciation) and urges

(sexual instinct, hate, love and envy). According to Freud, the id seeks immediate

satisfaction of our needs without referring to logic or morals. It is demanding, impulsive,

blind, irrational, antisocial, selfish and lust oriented – our most primal instinct.

The superego, or conscience, represents morality as well as the norms of society. It

contains all the ideals for which an individual strives and makes us feel guilty if we fall

short of these standards. The superego essentially is our standard of perfection – the

person we want to be. While the id strives for pleasure and the superego for perfection, the

ego acts to moderate the two. It works on the reality principle, mediating the competing

demands of the id and the superego and choosing the most realistic solution for the long

term.

Trait Theory of Personality

According to the trait theory, personality is made up of a number of stable

characteristics, or traits, that cause a person to act in a certain way. These traits are the

blueprint for how we behave. Examples include introversion, sociability, aggressiveness,

submissiveness, loyalty and ambition.

Perhaps the most scientific of all the trait theories, in the sense that an impressive body of

research supports it, is the five-factor model, more typically known as the Big Five.

Humanistic Views on Personality

The key agent of the humanist movement is Abraham Maslow. Maslow believed that

personality was not a matter of nature or nurture but of personal choice. Specifically, he

suggested that people possess free will and are motivated to pursue the things that will

help them reach their full potential as human beings.

51 | P a g e
 COPYRIGHT FIMT 2020

Maslow developed a hierarchy of needs which typically is displayed as a pyramid. The

bottom tier of the pyramid is made up of the most basic needs: food, water, sleep and

shelter. These needs are so important that people act to meet them before doing anything

else. Once those needs are met, people can move through the other levels of the pyramid,

meeting the needs of safety, belonging and self-esteem until they reach the final level:

self-actualization. Self-actualization is the process of developing and growing in order to

reach your true potential. This, said Maslow, is a key motivator of human behavior.

Social Cognition Theory

The social cognition theory views personality through the lens of our social interactions,

so instead of developing in a black box, our personality traits interact with our

environment to influence behavior. This gives a much clearer view of the effect that other

people have on our personalities.

The pioneer of the social cognition theory is a scientist named Albert Bandura. He

argued that when people see someone gaining benefit from a certain behavior, they copy

that behavior in order to earn a similar reward. His famous experiment saw a child being

rewarded with a doll for punching a doll. When other children were shown the video, they

acted in a similarly aggressive way to earn a reward. Thus, personality traits (in this case

aggression) may be learned.

19) Define Perception & Attitude building.

Attitude is someone‘s reaction towards a certain situation or person according to their

perception.

Personality is the quality of a person that makes their character. Someone‘s

personality is what differentiates them from any other human being. I like to think

that it gives everyone their aura.

Behaviour is the way a person treats other people, the way they carry themselves in a

society. It comprises of manners, language.

Perception is the way a person views situations and how they make that person feel. It

relates to positive or negative way of thinking.

52 | P a g e
 COPYRIGHT FIMT 2020

1. Perception

Each of us has a particular way of perceiving and making sense of the world around us. It is

tempting to assume that human behavior is a response to an objective reality but, as the

comedian Lily Tomlin noted, ―Reality is nothing more than a collective hunch.‖ The same

stimuli may be present in our environment, but what we do with that stimuli is affected by

individual differences.

Perception is the selection and organization of environmental information to provide

meaningful experiences to the perceiver. It is the process of making sense of sensory data.

Perception serves as a filter or gatekeeper so that we are not overwhelmed by all the stimuli

that bombard us. We need to pay attention to three aspects of perception: organizing data,

selective attention, and perceptual bias. We organize information according to similarity,

figure ground (what is in front compared to what is in the background), proximity, closure

(filling in the gaps), continuity (continue things in a direction they seem to be heading), and

simplicity (reducing things to their simplest shapes or patterns). We also have patterns of

perception based in our life experience that become our schemas. (Schemas are mental

frameworks that help us manage information by grouping individuals, objects and situations

together). And we put together information into cause-and-effect patterns. All these

together – organization, schemas, cause-and-effect patterns -- become our frame of reference.

Once our frame of reference is established, it is usually efficient in managing environmental

stimuli. It serves to focus our attention.

2. Selective Attention, Perceptual Distortion and Stereotypes

Selective attention means that we perceive only some of the stimuli that are actually present –

usually information that fits into our existing frame of reference. Our ability to perceive

information outside the frame or information that would eliminate the frame itself (discon

organizationing data) is usually limited once this process is in use. We have a number of

perceptual distortions that result from our particular way of organizing information and

attentional focus. Some common distortions include halo / horn effects, projection, self-

fulfilling prophecy and stereotyping. The halo effect occurs when one positive characteristic

or skill a person has is used to develop an overall positive impression of that person, often in

unrelated or irrelevant areas. The horn effect is when one negative characteristic or skill is

made into a negative overall impression of a person. Projection is when an individual

53 | P a g e
 COPYRIGHT FIMT 2020

attributes his/her attitudes or feelings to another person. It is a defense mechanism which

serves to transfer blame and/or provide protection from our own unacceptable thoughts and

feelings. Self-fulfilling prophecy occurs when our beliefs-expectations determine our

behavior thereby making our expectations come true.

Stereotyping is the all too frequent result of rapid, automatic perception and attribution

processes when we are dealing with people we consider to be different from us. A

stereotype is an oversimplified evaluative opinion or judgement about a group of people

applied to an individual. Stereotyping occurs when we attribute behavior, attitudes, motives,

and/or attributes to a person on the basis of the group to which that person belongs. Just

because stereotyping is so common in society does not mean we should accept stereotypical

relating as inevitable. Stereotypes have negative consequences in relationships at work.

Slowing down, describing rather than evaluating behavior, learning more about the individual

or group with whom you are interacting, and consciously choosing behaviors that will

enhance your relationship will all reduce, if not eliminate the negative impact of stereotyping.

 Our perception processes have both advantages and drawbacks. The drawbacks are that

selective attention and perceptual bias can prevent us from considering all the relevant

information, thereby making our interpretations about the meaning of that information

unreliable. The advantage is that our perceptual processes improve our decision making

efficiency by preventing information overload and saving us time by organizing the

information.

3. Attribution Process

Attribution refers to the specification of the perceived causes of events. It is our way to

answer the question ―Why did I/they do that?‖ We have learned through our study of

attribution processes that:

· Different people often attribute different causes to the same event.

· When people try to understand their own or others‘ behavior they focus on the

personal (internal) or situational (external) factors.

54 | P a g e
 COPYRIGHT FIMT 2020

We have predictable attributional biases based on a combination of three factors:

· Consensus. How many others behaved in the same way as that individual? If

that person‘s behavior is unique we attribute the cause of the behavior to that

person‘s internal personality. If that person‘s behavior is like the behavior of

others we attribute the cause of the behavior to the situation.

· Distinctiveness. How consistent or unusual is that person‘s behavior across

situations? If that person‘s behavior is routine for them across situations we

attribute the cause of the behavior to the personal factors. If that person‘s

behavior is unusual when compared to their behavior in other situations, we

attribute the cause of the behavior in this case to the situation.

· Consistency. How consistent is this person‘s behavior over time? If this

person always acts this way and has done so all their life, we attribute the cause of

the behavior to individual personality. If this person‘s behavior is different from

their past or typical behavior we attribute the cause of the behavior to the situation

or circumstances.

 So in each case there is a decision made whether the cause of the behavior is due more to the

personality or to the situation. We tend to be more generous with ourselves though, than with

others.

4. The Fundamental Attribution Error and Self-Serving Bias

We also have a tendency to under estimate the influence of the situation and to over estimate

the influence of personality when we are making judgements about others. We do the reverse

for ourselves. This is called the Fundamental Attribution Error.

Moreover, we have a self-serving bias depending upon whether the behavior is considered

good-positive or bad-negative. If it is good, it‘s because I am good. If it is bad, it is because

the situation made me do it. Self-serving bias is the tendency to take credit and responsibility

for positive outcomes of behavior and to deny credit and responsibility for negative

outcomes.

55 | P a g e
 COPYRIGHT FIMT 2020

Recent research supports the notion of a difference in these biases by gender. Women are

more likely to attribute failure to themselves and success to external factors such as luck or

task ease. Men are more likely to attribute success to their own efforts and failure to external

factors such as time limitations or monetary constraints.

56 | P a g e
 COPYRIGHT FIMT 2020

5. Attitudes

Attitudes are relatively lasting tendencies to consistently respond to various aspects of

people, situations, or objects. Attitudes have three components: cognition (beliefs), affect

(emotions), and behavior. These components of an attitude do not exist or function

separately. Of the three, we can observe behavior, we infer beliefs, and we sense feelings.

From these we attribute motives to people, including ourselves. Attitudes reflect how we

feel, think and act. When I say ―I am committed to my job‖ I am expressing my attitude

about my work. When I attend work every day, I am expressing my attitude about my work.

Attitudes are the result of our learned experiences in life. We develop our attitudes through

easily available information, personal experiences, and repeated expression. We learn them

from our friends, family, media, culture, teachers, peers and role models. Attitudes are

related to but different from values which we will discuss in the next module. It is important

for individuals to have alignment between their cognition, affect and behavior. Festinger

coined the term cognitive dissonance to refer to internal conflict between our beliefs. We can

extend this idea of dissonance to include conflict between our personal beliefs, feelings and

behaviors – attitudinal dissonance. Dissonance is an unpleasant state. When we experience

cognitive or attitudinal dissonance, we are compelled to change one or the other component

of our attitude to regain alignment. We tend to change either our beliefs, or our behaviors.

Because behaviors can be seen and somewhat controlled, many people change attitudes

through encouraging acceptable behaviors and constraining unacceptable behaviors. The

person then feels compelled / motivated to change any beliefs or feelings aligned with the old

behaviors, and to develop new beliefs that would be consistent with the new behaviors. Our

attitudes influence our behavior -- when they are relevant and brought to mind. The reverse

is also true: we are as likely to act ourselves into a way of thinking as to think ourselves into

action. We are as likely to believe in what we have stood up for as to stand up for what we

believe. Especially when we feel responsible for how we have acted, our beliefs and feelings

follow our behavior. It is important to realize that inner feelings and thoughts and outer

behaviors – all components of our attitudes -- like chickens and eggs generate one another.

57 | P a g e
 COPYRIGHT FIMT 2020

20) How people are manage within the Organization. Elaborate

Managers who work in small corporations and companies must have people

management skills to effectively perform their jobs. Most companies use a

hierarchical organization structure that requires managers or supervisors to oversee

the work of others. Hence, these managers must oversee and coordinate the work of

others to complete various projects. People management skills can include

communication, leadership, delegation, motivation, training and even performance

feedback.

Communication

One important people management skill is communication. Managers of small companies

must know how to effectively communicate with employees to let them know what they

expect from them on the job. Often, managers conduct one-on-one or even group meetings to

keep employees apprised of certain projects or management decisions. Managers also

communicate with their employees through status reports. In addition, management

employees should know how to listen to employees, as some workers may have suggestions

on performing tasks more efficiently. Employees may also have personal problems, where a

manager may need to give a worker time off when needed.

Training

Training is particularly important for new employees. Managers train employees directly,

have experienced coworkers train them or coordinate an employee's offsite classroom

training. Whatever the case, a manager needs to recognize an employee's skills and determine

what training the worker needs to effectively perform his job.

Delegating

People management skills also include delegating. Managers usually have numerous projects

to complete, and there are specific deadlines for these projects. Because managers in small

companies cannot do all the work themselves, they need to delegate or assign tasks to other

workers. The manager then holds each worker accountable for completing their tasks before

the project deadline.

Managers must know the right employee to whom to delegate a specific task, according to the

article titled "Free Basic Guide to Leadership and Supervision" on the Free Management

58 | P a g e
 COPYRIGHT FIMT 2020

Library website. In other words, managers should assign tasks to employees based on their

abilities and strengths. That way managers can be more confident that the work will be

completed correctly.

Motivating

People management skills also include motivation, which is getting employees to have more

excitement about performing their jobs. An effective manager knows that different things

motivate employees. Some employees prefer closer supervision. Other employees prefer to

be challenged in their jobs, desiring to take on more responsibility. Managers can often learn

what best motivates employees by discussing their personal goals with them. Managers can

then start helping them achieve these goals by assigning projects that best utilizes their

creativity.

Performance Feedback

All managers must provide performance feedback to their workers. The formal way of

conducting performance feedback is a performance appraisal. A performance appraisal is a

half hour or hour session where the manager reviews an employee's work over the past six to

12 months. She may explain what tasks the worker performs well and areas where he needs

improvement. Effective managers will not just evaluate an employee's work. They will write

a development plan for the employee to help improve his performance.

59 | P a g e
 COPYRIGHT FIMT 2020

Digital electronics

BCA 106

Unit 1

Q1. Explain Logic gate AND, OR, XOR, NOT, NAND, NOR and XNOR.

A logic gate is a building block of a digital circuit. Most logic gates have two inputs and one

output and are based on Boolean algebra. At any given moment, every terminal is in one of

the two binary conditions false (high) or true (low). False represents 0, and true represents 1.

Depending on the type of logic gate being used and the combination of inputs, the binary

output will differ. A logic gate can be thought of like a light switch, wherein one position the

output is off—0, and in another, it is on—1. Logic gates are commonly used in integrated

circuits (IC).

Basic logic gates

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

AND Gate: The AND gate is so named because, if 0 is called "false" and 1 is called "true,"

the gate acts in the same way as the logical "and" operator. The following illustration and

table show the circuit symbol and logic combinations for an AND gate. (In the symbol, the

input terminals are at left and the output terminal is at right.) The output is "true" when both

inputs are "true." Otherwise, the output is "false." In other words, the output is 1 only when

both inputs one AND two are 1.

AND gate

Input 1 Input 2 Output

 1

1

1 1 1

https://whatis.techtarget.com/definition/digital
https://whatis.techtarget.com/definition/circuit
https://whatis.techtarget.com/definition/Boolean
https://whatis.techtarget.com/definition/binary
https://whatis.techtarget.com/definition/integrated-circuit-IC

60 | P a g e
 COPYRIGHT FIMT 2020

The OR gate gets its name from the fact that it behaves after the fashion of the logical

inclusive "or." The output is "true" if either or both of the inputs are "true." If both inputs are

"false," then the output is "false." In other words, for the output to be 1, at least input one OR

two must be 1.

OR gate

Input 1 Input 2 Output

 1 1

1 1

1 1 1

The XOR (exclusive-OR) gate acts in the same way as the logical "either/or." The output is

"true" if either, but not both, of the inputs are "true." The output is "false" if both inputs are

"false" or if both inputs are "true." Another way of looking at this circuit is to observe that the

output is 1 if the inputs are different, but 0 if the inputs are the same.

XOR gate

Input 1 Input 2 Output

 1 1

1 1

1 1

A logical inverter, sometimes called a NOT gate to differentiate it from other types of

electronic inverter devices, has only one input. It reverses the logic state. If the input is 1,

then the output is 0. If the input is 0, then the output is 1.

61 | P a g e
 COPYRIGHT FIMT 2020

Inverter or NOT gate

Input Output

1

 1

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner of

the logical operation "and" followed by negation. The output is "false" if both inputs are

"true." Otherwise, the output is "true."

NAND gate

Input 1 Input 2 Output

 1

 1 1

1 1

1 1

The NOR gate is a combination OR gate followed by an inverter. Its output is "true" if both

inputs are "false." Otherwise, the output is "false."

NOR gate

Input 1 Input 2 Output

 1

 1

1

1 1

62 | P a g e
 COPYRIGHT FIMT 2020

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its

output is "true" if the inputs are the same, and "false" if the inputs are different.

XNOR gate

Input 1 Input 2 Output

 1

 1

1

1 1 1

Using combinations of logic gates, complex operations can be performed. In theory, there is

no limit to the number of gates that can be arrayed together in a single device. But in practice,

there is a limit to the number of gates that can be packed into a given physical space. Arrays

of logic gates are found in digital ICs. As IC technology advances, the required physical

volume for each individual logic gate decreases and digital devices of the same or smaller

size become capable of performing ever-more-complicated operations at ever-increasing

speeds.

Composition of logic gates

High or low binary conditions are represented by different voltage levels. The logic state of a

terminal can, and generally does, change often as the circuit processes data. In most logic

gates, the low state is approximately zero volts (0 V), while the high state is approximately

five volts positive (+5 V).

Logic gates can be made of resistors and transistors, or diodes. A resistor can commonly be

used as a pull-up or pull-down resistor. Pull-up or pull-down resistors are used when there are

any unused logic gate inputs to connect to either a logic level 1 or 0 respectively. This

prevents any false switching of the gate. Pull-up resistors are connected to Vcc (+5V), and

pull-down resistors are connected to ground (0 V).

Commonly used logic gates are TTL and CMOS. TTL, or Transistor-Transistor Logic, ICs

will use NPN and PNP type Bipolar Junction Transistors. CMOS, or Complementary Metal-

Oxide-Silicon, ICs are constructed from MOSFET or JFET type Field Effect Transistors.

TTL IC‘s may commonly be labeled as the 7400 series of chips, while CMOS ICs may often

be marked as a 4000 series of chips.

Q2. Explain Diode & Transistor as Switch.

https://whatis.techtarget.com/definition/voltage
https://whatis.techtarget.com/definition/volt
https://whatis.techtarget.com/definition/resistor
https://whatis.techtarget.com/definition/transistor-to-transistor-logic-TTL
https://whatis.techtarget.com/definition/transistor-to-transistor-logic-TTL
https://whatis.techtarget.com/definition/MOSFET-metal-oxide-semiconductor-field-effect-transistor
https://whatis.techtarget.com/definition/field-effect-transistor-FET

63 | P a g e
 COPYRIGHT FIMT 2020

Electronic Circuits - Diode as a Switch

Diode is a two terminal PN junction that can be used in various applications. One of such

applications is an electrical switch. The PN junction, when forward biased acts as close

circuited and when reverse biased acts as open circuited. Hence the change of forward and

reverse biased states makes the diode work as a switch, the forward being ON and

the reverse being OFF state.

Electrical Switches over Mechanical Switches

Electrical switches are a preferred choice over mechanical switches due to the following

reasons −

Mechanical switches are prone to oxidation of metals whereas electrical switches don‘t.

Mechanical switches have movable contacts.

They are more prone to stress and strain than electrical switches.

The worn and torn of mechanical switches often affect their working.

Hence an electrical switch is more useful than a Mechanical switch.

Working of Diode as a Switch

Whenever a specified voltage is exceeded, the diode resistance gets increased, making the

diode reverse biased and it acts as an open switch. Whenever the voltage applied is below the

reference voltage, the diode resistance gets decreased, making the diode forward biased, and

it acts as a closed switch.

The following circuit explains the diode acting as a switch.

64 | P a g e
 COPYRIGHT FIMT 2020

A switching diode has a PN junction in which P-region is lightly doped and N-region is

heavily doped. The above circuit symbolizes that the diode gets ON when positive voltage

forward biases the diode and it gets OFF when negative voltage reverse biases the diode.

Ringing

As the forward current flows till then, with a sudden reverse voltage, the reverse current

flows for an instance rather than getting switched OFF immediately. The higher the leakage

current, the greater the loss. The flow of reverse current when diode is reverse biased

suddenly, may sometimes create few oscillations, called as RINGING.

This ringing condition is a loss and hence should be minimized. To do this, the switching

times of the diode should be understood.

Diode Switching Times

While changing the bias conditions, the diode undergoes a transient response. The response

of a system to any sudden change from an equilibrium position is called as transient response.

The sudden change from forward to reverse and from reverse to forward bias, affects the

circuit. The time taken to respond to such sudden changes is the important criterion to define

the effectiveness of an electrical switch.

The time taken before the diode recovers its steady state is called as Recovery Time.

The time interval taken by the diode to switch from reverse biased state to forward biased

state is called as Forward Recovery Time.$tfr$$tfr$

The time interval taken by the diode to switch from forward biased state to reverse biased

state is called as Reverse Recovery Time. $tfr$$tfr$

To understand this more clearly, let us try to analyze what happens once the voltage is

applied to a switching PN diode.

Carrier Concentration

Minority charge carrier concentration reduces exponentially as seen away from the junction.

When the voltage is applied, due to the forward biased condition, the majority carriers of one

side move towards the other. They become minority carriers of the other side. This

concentration will be more at the junction.

For example, if N-type is considered, the excess of holes that enter into N-type after applying

forward bias, adds to the already present minority carriers of N-type material.

Let us consider few notations.

The majority carriers in P-type holesholes = PpoPpo

The majority carriers in N-type electronselectrons = NnoNno

The minority carriers in P-type electronselectrons = NpoNpo

65 | P a g e
 COPYRIGHT FIMT 2020

The majority carriers in N-type holesholes = PnoPno

During Forward biased Condition − The minority carriers are more near junction and less

far away from the junction. The graph below explains this.

Excess minority carrier charge in P-type

= Pn−PnoPn−Pno with pnopno steadystatevaluesteadystatevalue

Excess minority carrier charge in N-type

= Np−NpoNp−Npo with NpoNpo steadystatevaluesteadystatevalue

During reverse bias condition − Majority carriers doesn‘t conduct the current through the

junction and hence don‘t participate in current condition. The switching diode behaves as a

short circuited for an instance in reverse direction.

The minority carriers will cross the junction and conduct the current, which is called

as Reverse Saturation Current. The following graph represents the condition during reverse

bias.

In the above figure, the dotted line represents equilibrium values and solid lines represent

actual values. As the current due to minority charge carriers is large enough to conduct, the

circuit will be ON until this excess charge is removed.

The time required for the diode to change from forward bias to reverse bias is called Reverse

recovery time $trr$$trr$. The following graphs explain the diode switching times in detail.

66 | P a g e
 COPYRIGHT FIMT 2020

From the above figure, let us consider the diode current graph.

At t1t1 the diode is suddenly brought to OFF state from ON state; it is known as Storage

time. Storage time is the time required to remove the excess minority carrier charge. The

67 | P a g e
 COPYRIGHT FIMT 2020

negative current flowing from N to P type material is of a considerable amount during the

Storage time. This negative current is,

−IR=−VRR−IR=−VRR

The next time period is the transition time‖ from$t2$to$t3$from$t2$to$t3$

Transition time is the time taken for the diode to get completely to open circuit condition.

After t3t3 diode will be in steady state reverse bias condition. Before t1t1 diode is under

steady state forward bias condition.

So, the time taken to get completely to open circuit condition is

Reverserecoverytime(trr)=Storagetime(Ts)+Transitiontime(Tt)

Whereas to get to ON condition from OFF, it takes less time called as Forward recovery

time. Reverse recovery time is greater than Forward recovery time. A diode works as a better

switch if this Reverse recovery time is made less.

Definitions

Let us just go through the definitions of the time periods discussed.

Storage time − The time period for which the diode remains in the conduction state even in

the reverse biased state, is called as Storage time.

Transition time − The time elapsed in returning back to the state of non-conduction, i.e.

steady state reverse bias, is called Transition time.

Reverse recovery time − The time required for the diode to change from forward bias to

reverse bias is called as Reverse recovery time.

Forward recovery time − The time required for the diode to change from reverse bias to

forward bias is called as Forward recovery time.

Factors that affect diode switching times

There are few factors that affect the diode switching times, such as

Diode Capacitance − The PN junction capacitance changes depending upon the bias

conditions.

Diode Resistance − The resistance offered by the diode to change its state.

Doping Concentration − The level of doping of the diode, affects the diode switching times.

Depletion Width − The narrower the width of the depletion layer, the faster the switching

will be. A Zener diode has narrow depletion region than an avalanche diode, which makes the

former a better switch.

Applications

There are many applications in which diode switching circuits are used, such as −

1. High speed rectifying circuits

68 | P a g e
 COPYRIGHT FIMT 2020

2. High speed switching circuits

3. RF receivers

4. General purpose applications

5. Consumer applications

6. Automotive applications

7. Telecom applications etc.

Transistor as a Switch.

Transistor switches can be used to switch a low voltage DC device (e.g. LED‘s) ON or OFF

by using a transistor in its saturated or cut-off state.

When used as an AC signal amplifier, the transistors Base biasing voltage is applied in such a

way that it always operates within its ―active‖ region, that is the linear part of the output

characteristics curves are used.

However, both the NPN & PNP type bipolar transistors can be made to operate as ―ON/OFF‖

type solid state switch by biasing the transistors Base terminal differently to that for a signal

amplifier.

Solid state switches are one of the main applications for the use of transistor to switch a DC

output ―ON‖ or ―OFF‖. Some output devices, such as LED‘s only require a few milliamps at

logic level DC voltages and can therefore be driven directly by the output of a logic gate.

However, high power devices such as motors, solenoids or lamps, often require more power

than that supplied by an ordinary logic gate so transistor switches are used.

If the circuit uses the Bipolar Transistor as a Switch, then the biasing of the transistor,

either NPN or PNP is arranged to operate the transistor at both sides of the ― I-V ‖

characteristics curves we have seen previously.

The areas of operation for a transistor switch are known as the Saturation Region and

the Cut-off Region. This means then that we can ignore the operating Q-point biasing and

voltage divider circuitry required for amplification, and use the transistor as a switch by

https://www.electronics-tutorials.ws/transistor/tran_4.html

69 | P a g e
 COPYRIGHT FIMT 2020

driving it back and forth between its ―fully-OFF‖ (cut-off) and ―fully-ON‖ (saturation)

regions as shown below.

Operating Regions

The pink shaded area at the bottom of the curves represents the ―Cut-off‖ region while the

blue area to the left represents the ―Saturation‖ region of the transistor. Both these transistor

regions are defined as:

1. Cut-off Region

Here the operating conditions of the transistor are zero input base current (IB), zero output

collector current (IC) and maximum collector voltage (VCE) which results in a large

depletion layer and no current flowing through the device. Therefore the transistor is

switched ―Fully-OFF‖.

Cut-off Characteristics

• The input and Base are grounded (0v)

• Base-Emitter voltage VBE < 0.7v

• Base-Emitter junction is reverse biased

• Base-Collector junction is reverse biased

• Transistor is ―fully-OFF‖ (Cut-off region)

• No Collector current flows (IC = 0)

70 | P a g e
 COPYRIGHT FIMT 2020

• VOUT = VCE = VCC = ‖1″

• Transistor operates as an ―open switch‖

Then we can define the ―cut-off region‖ or ―OFF mode‖ when using a bipolar transistor as a

switch as being, both junctions reverse biased, VB < 0.7v and IC = 0. For a PNP transistor, the

Emitter potential must be negative with respect to the Base.

2. Saturation Region

Here the transistor will be biased so that the maximum amount of base current is applied,

resulting in maximum collector current resulting in the minimum collector emitter voltage

drop which results in the depletion layer being as small as possible and maximum current

flowing through the transistor. Therefore the transistor is switched ―Fully-ON‖.

Saturation Characteristics

• The input and Base are connected to VCC

• Base-Emitter voltage VBE > 0.7v

• Base-Emitter junction is forward biased

• Base-Collector junction is forward biased

• Transistor is ―fully-ON‖ (saturation region)

• Max Collector current flows (IC = Vcc/RL)

• VCE = 0 (ideal saturation)

• VOUT = VCE = ‖0″

• Transistor operates as a ―closed switch‖

Then we can define the ―saturation region‖ or ―ON mode‖ when using a bipolar transistor as

a switch as being, both junctions forward biased, VB > 0.7v and IC = Maximum. For a PNP

transistor, the Emitter potential must be positive with respect to the Base.

Then the transistor operates as a ―single-pole single-throw‖ (SPST) solid state switch. With a

zero signal applied to the Base of the transistor it turns ―OFF‖ acting like an open switch and

zero collector current flows. With a positive signal applied to the Base of the transistor it

turns ―ON‖ acting like a closed switch and maximum circuit current flows through the

device.

The simplest way to switch moderate to high amounts of power is to use the transistor with

an open-collector output and the transistors Emitter terminal connected directly to ground.

71 | P a g e
 COPYRIGHT FIMT 2020

When used in this way, the transistors open collector output can thus ―sink‖ an externally

supplied voltage to ground thereby controlling any connected load.

An example of an NPN Transistor as a switch being used to operate a relay is given below.

With inductive loads such as relays or solenoids a flywheel diode is placed across the load to

dissipate the back EMF generated by the inductive load when the transistor switches ―OFF‖

and so protect the transistor from damage. If the load is of a very high current or voltage

nature, such as motors, heaters etc, then the load current can be controlled via a suitable relay

as shown.

Basic NPN Transistor Switching Circuit

The circuit resembles that of the Common Emitter circuit we looked at in the previous

tutorials. The difference this time is that to operate the transistor as a switch the transistor

needs to be turned either fully ―OFF‖ (cut-off) or fully ―ON‖ (saturated). An ideal transistor

switch would have infinite circuit resistance between the Collector and Emitter when turned

―fully-OFF‖ resulting in zero current flowing through it and zero resistance between the

Collector and Emitter when turned ―fully-ON‖, resulting in maximum current flow.

In practice when the transistor is turned ―OFF‖, small leakage currents flow through the

transistor and when fully ―ON‖ the device has a low resistance value causing a small

saturation voltage (VCE) across it. Even though the transistor is not a perfect switch, in both

the cut-off and saturation regions the power dissipated by the transistor is at its minimum.

In order for the Base current to flow, the Base input terminal must be made more positive

than the Emitter by increasing it above the 0.7 volts needed for a silicon device. By varying

this Base-Emitter voltage VBE, the Base current is also altered and which in turn controls the

amount of Collector current flowing through the transistor as previously discussed.

72 | P a g e
 COPYRIGHT FIMT 2020

When maximum Collector current flows the transistor is said to be Saturated. The value of

the Base resistor determines how much input voltage is required and corresponding Base

current to switch the transistor fully ―ON‖.

Transistor as a Switch Example No1

Using the transistor values from the previous tutorials of: β = 200, Ic = 4mA and Ib = 20uA,

find the value of the Base resistor (Rb) required to switch the load fully ―ON‖ when the input

terminal voltage exceeds 2.5v.

The next lowest preferred value is: 82kΩ, this guarantees the transistor switch is always

saturated.

Transistor as a Switch Example No2

Again using the same values, find the minimum Base current required to turn the transistor

―fully-ON‖ (saturated) for a load that requires 200mA of current when the input voltage is

increased to 5.0V. Also calculate the new value of Rb.

Transistor Base current:

Transistor Base resistance:

Transistor switches are used for a wide variety of applications such as interfacing large

current or high voltage devices like motors, relays or lamps to low voltage digital IC‘s or

logic gates like AND gates or OR gates. Here, the output from a digital logic gate is only +5v

but the device to be controlled may require a 12 or even 24 volts supply. Or the load such as a

DC Motor may need to have its speed controlled using a series of pulses (Pulse Width

Modulation). transistor switches will allow us to do this faster and more easily than with

conventional mechanical switches.

73 | P a g e
 COPYRIGHT FIMT 2020

Digital Logic Transistor Switch

The base resistor, Rb is required to limit the output current from the logic gate.

PNP Transistor Switch

We can also use the PNP Transistors as a switch, the difference this time is that the load is

connected to ground (0v) and the PNP transistor switches the power to it. To turn the PNP

transistor operating as a switch ―ON‖, the Base terminal is connected to ground or zero volts

(LOW) as shown.

PNP Transistor Switching Circuit

74 | P a g e
 COPYRIGHT FIMT 2020

The equations for calculating the Base resistance, Collector current and voltages are exactly

the same as for the previous NPN transistor switch. The difference this time is that we are

switching power with a PNP transistor (sourcing current) instead of switching ground with an

NPN transistor (sinking current).

Darlington Transistor Switch

Sometimes the DC current gain of the bipolar transistor is too low to directly switch the load

current or voltage, so multiple switching transistors are used. Here, one small input transistor

is used to switch ―ON‖ or ―OFF‖ a much larger current handling output transistor. To

maximise the signal gain, the two transistors are connected in a ―Complementary Gain

Compounding Configuration‖ or what is more commonly called a ―Darlington

Configuration‖ were the amplification factor is the product of the two individual transistors.

Darlington Transistors simply contain two individual bipolar NPN or PNP type transistors

connected together so that the current gain of the first transistor is multiplied with that of the

current gain of the second transistor to produce a device which acts like a single transistor

with a very high current gain for a much smaller Base current. The overall current gain Beta

(β) or hfe value of a Darlington device is the product of the two individual gains of the

transistors and is given as:

So Darlington Transistors with very high β values and high Collector currents are possible

compared to a single transistor switch. For example, if the first input transistor has a current

gain of 100 and the second switching transistor has a current gain of 50 then the total current

gain will be 100 * 50 = 5000. So for example, if our load current from above is 200mA, then

the darlington base current is only 200mA/5000 = 40uA. A huge reduction from the

previous 1mA for a single transistor.

An example of the two basic types of Darlington transistor configurations are given below.

Darlington Transistor Configurations

The above NPN Darlington transistor switch configuration shows the Collectors of the two

transistors connected together with the Emitter of the first transistor connected to the Base

terminal of the second transistor therefore, the Emitter current of the first transistor becomes

the Base current of the second transistor switching it ―ON‖.

The first or ―input‖ transistor receives the input signal to its Base. This transistor amplifies it

in the usual way and uses it to drive the second larger ―output‖ transistors. The second

transistor amplifies the signal again resulting in a very high current gain. One of the main

75 | P a g e
 COPYRIGHT FIMT 2020

characteristics of Darlington Transistors is their high current gains compared to single

bipolar transistors.

As well as its high increased current and voltage switching capabilities, another advantage of

a ―Darlington Transistor Switch‖ is in its high switching speeds making them ideal for use in

inverter circuits, lighting circuits and DC motor or stepper motor control applications.

One difference to consider when using Darlington transistors over the conventional single

bipolar types when using the transistor as a switch is that the Base-Emitter input voltage

(VBE) needs to be higher at approx 1.4v for silicon devices, due to the series connection of

the two PN junctions.

76 | P a g e
 COPYRIGHT FIMT 2020

Transistor as a Switch Summary

Then to summaries when using a Transistor as a Switch the following conditions apply:

Transistor switches can be used to switch and control lamps, relays or even motors.

When using the bipolar transistor as a switch they must be either ―fully-OFF‖ or ―fully-ON‖.

Transistors that are fully ―ON‖ are said to be in their Saturation region.

Transistors that are fully ―OFF‖ are said to be in their Cut-off region.

When using the transistor as a switch, a small Base current controls a much larger Collector

load current.

When using transistors to switch inductive loads such as relays and solenoids, a ―Flywheel

Diode‖ is used.

When large currents or voltages need to be controlled, Darlington Transistors can be used.

77 | P a g e
 COPYRIGHT FIMT 2020

Q3. Explain the logic families in digital electronics

In computer engineering, a logic family may refer to one of two related concepts. A logic

family of monolithic digital integrated circuit devices is a group of electronic logic

gates constructed using one of several different designs, usually with compatible logic

levels and power supply characteristics within a family. Many logic families were produced

as individual components, each containing one or a few related basic logical functions, which

could be used as "building-blocks" to create systems or as so-called "glue" to interconnect

more complex integrated circuits. A "logic family" may also refer to a set of techniques used

to implement logic within VLSI integrated circuits such as central processors, memories, or

other complex functions. Some such logic families use static techniques to minimize design

complexity. Other such logic families, such as domino logic, use clocked dynamic

techniques to minimize size, power consumption and delay.

Before the widespread use of integrated circuits, various solid-state and vacuum-tube logic

systems were used but these were never as standardized and interoperable as the integrated-

circuit devices. The most common logic family in modern semiconductor devices is metal–

oxide–semiconductor (MOS) logic, due to low power consumption, small transistor sizes, and

high transistor density.

Different circuit configurations and production technologies are used during the production

of digital integrated circuits. Each of these approaches is called a specific Logic Families.

Now the idea of having different approaches or different logic families is that each ICs of

same family when fabricated will have identical electrical characteristics. The characteristics

which are bound to be identical are supply voltage range, speed of response, dissipation of

power, input and output logic levels, current sinking capability, current sourcing capability,

noise margin, fan-out etc.

Significance of Logic Families

When we talk about digital systems actually the digital ICs are the ones which make up the

whole system. And if all the ICs are of same logic family then they are compatible to each

other and the intended logic functions are performed and the goal is achieved.

But in case ICs belonging to different logic families are used in a digital system then to

ensure compatibility interfacing techniques must be used. And that is the reason why we must

understand different logic families and use the best combination of ICs during the design of a

digital system. Now the question arises what might be the consequence of choosing wrong

combinations of ICs. The answer is that it may not match the necessary capability needed.

Types of Logic Family

https://en.wikipedia.org/wiki/Computer_engineering
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/VLSI
https://en.wikipedia.org/wiki/Integrated_circuits
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Dynamic_logic_(digital_logic)#Static_versus_dynamic_logic
https://en.wikipedia.org/wiki/Domino_logic
https://en.wikipedia.org/wiki/Dynamic_logic_(digital_logic)
https://en.wikipedia.org/wiki/Dynamic_logic_(digital_logic)
https://en.wikipedia.org/wiki/Power_consumption
https://en.wikipedia.org/wiki/Semiconductor_devices
https://en.wikipedia.org/wiki/Metal%E2%80%93oxide%E2%80%93semiconductor
https://en.wikipedia.org/wiki/Metal%E2%80%93oxide%E2%80%93semiconductor
https://en.wikipedia.org/wiki/MOSFET_scaling
https://en.wikipedia.org/wiki/Transistor_density
https://www.electrical4u.com/integrated-circuits-types-of-ic/
https://www.electrical4u.com/integrated-circuits-types-of-ic/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
https://www.electrical4u.com/electric-current-and-theory-of-electricity/

78 | P a g e
 COPYRIGHT FIMT 2020

The digital ICs are designed using any of either bipolar devices or MOS or a combination of

both. The logic families which fall under the first kind are called bipolar families, this include

diode logic (DL), emitted coupled logic (ECL), resistor transistor logic (RTL), diode

transistor logic (DTL), transistor transistor logic (TTL). The members of other logic family

i.e. MOS family are PMOS, NMOS family, CMOS family. Now the Bi-MOS logic family is

the one that uses both bipolar and MOS devices.

Of the above mentioned families DL, RTL and DTL are not used these days they have

become obsolete. TTL, CMOS, ECL, NMOS and Bi-CMOS are the families which are still

used. We will discuss about few of them in this article.

TTL subfamilies.

The TTL family consists of various subfamilies such as standard TTL, low-power TTL, high

power TTL, low power Schottky TTL, Schottky TTL, advanced low-power Schottky TTL,

advanced Schottky TTL and fast TTL. The ICs which belong to TTL family are designated as

follows – 74 or 54 for standard TTL, 74L or 54L for low-power TTL, 74H or 54H for high

power TTL, 74LS or 54LS for Low power schottky TTL and so on.

CMOS subfamilies

This is a popular logic family which includes 4000A, 4000B, 4000UB, 54/74C, 54/74HC,

54/74HCT, 54/74AC and 54/74ACT families. The subfamilies are divided on the basis of

voltage difference and other parameters.

ECL Subfamilies

ECL stands for Emitter Coupled Logic family and it was introduced by ON semiconductor in

1962. The first product launched of this family was MECL-1 series. Later MECL-II, MECL-

III, MECL-10K, MECL-10H series came into existence.

Resistor-Transistor Logic (RTL):

Resistor-transistor logic gates use Transistors to combine multiple input signals, which also

amplify and invert the resulting combined signal. Often an additional transistor is included to

https://www.electrical4u.com/diode-working-principle-and-types-of-diode/
https://www.electrical4u.com/transistor-transistor-logic-or-ttl/
https://www.electrical4u.com/nmos-and-pmos-logic/
https://www.electrical4u.com/nmos-and-pmos-logic/
https://www.electrical4u.com/transistor-transistor-logic-or-ttl/
https://www.electrical4u.com/theory-of-semiconductor/

79 | P a g e
 COPYRIGHT FIMT 2020

re-invert the output signal. This combination provides clean output signals and either

inversion or non-inversion as needed.

RTL gates are almost as simple as DL gates, and remain inexpensive. They also are handy

because both normal and inverted signals are often available. However, they do draw a

significant amount of current from the power supply for each gate. Another limitation is that

RTL gates cannot switch at the high speeds used by today‘s computers, although they are still

useful in slower applications.

Although they are not designed for linear operation, RTL integrated circuits are sometimes

used as inexpensive small-signal amplifiers, or as interface devices between linear and digital

circuits.

RTL Logic Circuit:

Resistor-transistor logic (RTL) is a class of digital circuits built using resistors as the input

network and bipolar junction transistors (BJTs) as switching devices. RTL is the earliest class

of transistorized digital logic circuit used; other classes include diode-transistor logic (DTL)

and transistor-transistor logic (TTL).

Advantages of RTL Logic circuit:

The primary advantage of RTL technology was that it involved a minimum number of

transistors, which was an important consideration before integrated circuit technology (that

is, in circuits using discrete components), as transistors were the most expensive component

to produce. Early IC logic production (such as Fairchild‘s in 1961) used the same approach

briefly, but quickly transitioned to higher-performance circuits such as diode-transistor logic

and then transistor-transistor logic (starting 1963 at Sylvania), since diodes and transistors

were no more expensive than resistors in the IC.

Limitations:

The obvious disadvantage of RTL is its high current dissipation when the transistor conducts

to overdrive the output biasing resistor. This requires that more current be supplied to and

heat be removed from RTL circuits. In contrast, TTL circuits minimize both of these

requirements.

Lancaster says that integrated circuit RTL NOR gates (which have one transistor per input)

may be constructed with ―any reasonable number‖ of logic inputs, and gives an example of

an 8-input NOR gate.

A standard integrated circuit RTL NOR gate can drive up to 3 other similar gates.

Alternatively, it has enough output to drive up to 2 standard integrated circuit RTL ―buffers‖,

each of which can drive up to 25 other standard RTL NOR gates.

80 | P a g e
 COPYRIGHT FIMT 2020

Diode-Transistor Logic (DTL):

By letting diodes perform the logical AND or OR function and then amplifying the result

with a transistor, we can avoid some of the limitations of RTL. DTL takes diode logic gates

and adds a transistor to the output, in order to provide logic inversion and to restore the signal

to full logic levels.

Diode-transistor logic

Diode-Transistor Logic (DTL) is a class of digital circuits built from bipolar junction

transistors (BJT), diodes and resistors; it is the direct ancestor of transistor-transistor logic. It

is called diode-transistor logic because the logic gating function (e.g., AND) is performed by

a diode network and the amplifying function is performed by a transistor (contrast this with

RTL and TTL).

Operation:

With the simplified circuit shown in the picture the negative bias voltage at the base is

required to prevent unstable or invalid operation. In an integrated circuit version of the gate,

two diodes replace R3 to prevent any base current when one or more inputs are at low logic

level. Alternatively to increase fan-out of the gate an additional transistor and diode may be

used. The IBM 1401 used DTL circuits almost identical to this simplified circuit, but solved

the base bias level problem mentioned above by alternating NPN and PNP based gates

operating on different power supply voltages instead of adding extra diodes.

Advantages of DTL:

One advantage of digital circuits when compared to analog circuits is that signals represented

digitally can be transmitted without degradation due to noise. For example, a continuous

audio signal, transmitted as a sequence of 1s and 0s, can be reconstructed without error

provided the noise picked up in transmission is not enough to prevent identification of the 1s

and 0s. An hour of music can be stored on a compact disc as about 6 billion binary digits.

In a digital system, a more precise representation of a signal can be obtained by using more

binary digits to represent it. While this requires more digital circuits to process the signals,

each digit is handled by the same kind of hardware. In an analog system, additional resolution

requires fundamental improvements in the linearity and noise charactersitics of each step of

the signal chain.

Computer-controlled digital systems can be controlled by software, allowing new functions to

be added without changing hardware. Often this can be done outside of the factory by

updating the product‘s software. So, the product‘s design errors can be corrected after the

product is in a customer‘s hands.

81 | P a g e
 COPYRIGHT FIMT 2020

Information storage can be easier in digital systems than in analog ones. The noise-immunity

of digital systems permits data to be stored and retrieved without degradation. In an analog

system, noise from aging and wear degrade the information stored. In a digital system, as

long as the total noise is below a certain level, the information can be recovered perfectly.

Disadvantages:

In some cases, digital circuits use more energy than analog circuits to accomplish the same

tasks, thus producing more heat. In portable or battery-powered systems this can limit use of

digital systems.

For example, battery-powered cellular telephones often use a low-power analog front-end to

amplify and tune in the radio signals from the base station. However, a base station has grid

power and can use power-hungry, but very flexible software radios. Such base stations can be

easily reprogrammed to process the signals used in new cellular standards.

Digital circuits are sometimes more expensive, especially in small quantities.

The sensed world is analog, and signals from this world are analog quantities. For example,

light, temperature, sound, electrical conductivity, electric and magnetic fields are analog.

Most useful digital systems must translate from continuous analog signals to discrete digital

signals. This causes quantization errors. Quantization error can be reduced if the system

stores enough digital data to represent the signal to the desired degree of fidelity. The

Nyquist-Shannon sampling theorem provides an important guideline as to how much digital

data is needed to accurately portray a given analog signal.

In some systems, if a single piece of digital data is lost or misinterpreted, the meaning of

large blocks of related data can completely change. Because of the cliff effect, it can be

difficult for users to tell if a particular system is right on the edge of failure, or if it can

tolerate much more noise before failing.

Digital fragility can be reduced by designing a digital system for robustness. For example, a

parity bit or other error management method can be inserted into the signal path. These

schemes help the system detect errors, and then either correct the errors, or at least ask for a

new copy of the data. In a state-machine, the state transition logic can be designed to catch

unused states and trigger a reset sequence or other error recovery routine.

Embedded software designs that employ Immunity Aware Programming, such as the practice

of filling unused program memory with interrupt instructions that point to an error recovery

routine. This helps guard against failures that corrupt the microcontroller‘s instruction pointer

which could otherwise cause random code to be executed. Digital memory and transmission

82 | P a g e
 COPYRIGHT FIMT 2020

systems can use techniques such as error detection and correction to use additional data to

correct any errors in transmission and storage.

On the other hand, some techniques used in digital systems make those systems more

vulnerable to single-bit errors. These techniques are acceptable when the underlying bits are

reliable enough that such errors are highly unlikely.

TTL Logic Circuit:

Transistor-transistor logic (TTL) is a class of digital circuits built from bipolar junction

transistors (BJT) and resistors. It is called transistor-transistor logic because both the logic

gating function (e.g., AND) and the amplifying function are performed by transistors

(contrast this with RTL and DTL).

TTL is notable for being a widespread integrated circuit (IC) family used in many

applications such as computers, industrial controls, test equipment and instrumentation,

consumer electronics, synthesizers, etc. The designation TTL is sometimes used to mean

TTL-compatible logic levels, even when not associated directly with TTL integrated circuits,

for example as a label on the inputs and outputs of electronic instruments.

*TTL contrasts with the preceding resistor-transistor logic (RTL) and diode-transistor logic

(DTL) generations by using transistors not only to amplify the output but also to isolate the

inputs. The p-n junction of a diode has considerable capacitance, so changing the logic level

of an input connected to a diode, as in DTL, requires considerable time and energy.

As shown in the top schematic at right, the fundamental concept of TTL is to isolate the

inputs by using a common-base connection, and amplify the function using a common emitter

connection. Note that the base of the output transistor is driven high only by the forward-

biased base-collector junction of the input transistor. The second schematic adds to this a

―totem-pole output‖. When V2 is off (output equals 1), the resistors turn V3 on and V4 off,

resulting in a stronger 1 output. When V2 is on, it activates V4, driving 0 to the output. The

diode forces the emitter of V3 to ~0.7 V, while V4 base-emitter junction and V2 collector-

emitter junction pull its base to a voltage ~0.7, turning it off. By removing pull-up and pull-

down resistors from the output stage, this allows the strength of the gate to be increased

without proportionally affecting power consumption.

TTL is particularly well suited to integrated circuits because the inputs of a gate may all be

integrated into a single base region to form a multiple-emitter transistor. Such a highly

customized part might increase the cost of a circuit where each transistor is in a separate

package, but, by combining several small on-chip components into one larger device, it

conversely reduces the cost of implementation on an IC.

83 | P a g e
 COPYRIGHT FIMT 2020

As with all bipolar logic, a small current must be drawn from a TTL input to ensure proper

logic levels. The total current drawn must be within the capacities of the preceding stage,

which limits the number of nodes that can be connected (the fanout).

All standardized common TTL circuits operate with a 5-volt power supply. A TTL input

signal is defined as ―low‖ when between 0V and 0.8V with respect to the ground terminal,

and ―high‖ when between 2.2V and 5V (precise logic levels vary slightly between sub-types).

TTL outputs are typically restricted to narrower limits of between 0V and 0.4V for a ―low‖

and between 2.6V and 5V for a ―high‖, providing 0.4V of noise immunity. Standardization of

the TTL levels was so ubiquitous that complex circuit boards often contained TTL chips

made by many different manufacturers selected for availability and cost, compatibility being

assured; two circuit board units off the same assembly line on different successive days or

weeks might have a different mix of brands of chips in the same positions on the board;

repair was possible with chips manufactured years (sometimes over a decade) later than

original components. Within usefully broad limits, logic gates could be treated as ideal

Boolean devices without concern for electrical limitations.

Advantages of TTL Logic circuit:

Advantages of TTL logic family, one should have a basic idea about RTL, DTL etc. Diode

logic (DL) uses diodes to implement logical functions like AND and OR. But the

disadvantage is that it can not perform NOT operation. As AND and OR are not complete

functions by themselves, they can not perform several logic functions without NOT. Hence,

there was a need for some device which can perform a NOT function as diodes can not. That

device is a transistor. Then came the DTL which uses a transistor along with diodes. As a

transistor can act as an inverter, NAND (NOT-AND) & NOR (NOT-OR) operations can be

performed. But this logic uses several diodes which will slow down its operation. Due to the

delay offered by them, the logic levels may sometimes change i. e. 0 t0 1 or 1 to 0. Then

came TTL. This logic uses a multi emitter transistor, a transistor with many emitter terminals.

As every emitter is nothing but a diode, this logic eliminates the use of all diodes. This is the

major advantage.

As transistor becomes ON and OFF much rapidly than a diode, switching time will be faster.

TTL, or Transistor-transistor logic replaced resistor-transistor logic, and used much less

power. The TTL family is very fast and reliable, and newer faster, less power-consuming, etc.

types are always being developed.

In TTL (Transistor-Transistor Logic), think that the device using this technology is made

from several transistors.

84 | P a g e
 COPYRIGHT FIMT 2020

85 | P a g e
 COPYRIGHT FIMT 2020

Q4. Explain Current and voltage parameters of logic families, FANIN FANOUT, Noise

Margins

Current and voltage parameters of logic families

Logic 1 and Logic 0

Logic 1 and Logic 0 are not simply 5V and 0V or even Vcc and Ground. Within any family

of ICs the voltages and currents indicating 1 and 0 cover defined ranges unique to that logic

family. The range of voltages allowed for a particular logic level depends on the amount of

current flowing into or out of the logic gate inputs or output, the larger the current the output

is supplying, the lower the output voltage will be.

Each output will supply a certain amount of current before the output voltage falls too far to

be called logic 1, and each gate input will need to be supplied with a certain amount of

current to raise the input voltage sufficiently to be recognized as logic 1.

Examples of typical logic levels at inputs and outputs in a range of logic families are

illustrated in Fig. 3.3.1. These levels are fairly standard throughout a particular family,

although there can be minor differences in these and other parameters, between products from

different manufacturers. In addition there are sub families within these families that may have

different defined levels. When designing digital circuits, or replacing ICs in critical

equipment, it is therefore essential to consult the appropriate manufacturer‘s data sheets.

86 | P a g e
 COPYRIGHT FIMT 2020

Logic 1 levels for inputs and outputs are shown in red and logic 0 in green. To highlight the

fact that true ECL gates, have negative logic levels, these colours have been changed to

yellow and blue respectively.

Notice that the logic levels for outputs (left column) and inputs (right column) in all of the

families are different. This ensures that provided that the output voltage of a gate is within its

defined logic limits for 1 or 0, any compatible gate input connected to that output will

recognise the correct 1 or 0 levels. The difference between levels at the output and input in

any particular family is called the ‗Noise Margin‘.

87 | P a g e
 COPYRIGHT FIMT 2020

Fig. 3.3.2 Logic IC Decoupling

Noise Margin

Because voltages in digital circuits can be continually changing very rapidly between logic 1

and logic 0, (virtually between supply voltage and ground), they have the potential to produce

a lot of noise, in the form of high frequency voltage spikes on the IC power supply lines.

To counteract this it is important to include effective decoupling, not only at the power

supply unit, but also by connecting decoupling capacitors across the VDD and 0V

connections at each IC. These capacitors are normally connected as physically close to the IC

as possible, as shown in Fig. 3.3.2.

88 | P a g e
 COPYRIGHT FIMT 2020

Fan In and Fan Out in Digital Electronics

Fan In and Fan Out are characteristics of Digital ICs. Digital ICs are complete functioning

logic networks. Typically, a Digital IC requires only a power supply, I/P (input) and O/P

(output). Here are the definitions of Fan In and Fan Out.

Fan In: The fan-in defined as the maximum number of inputs that a logic gate can accept. If

number of input exceeds, the output will be undefined or incorrect. It is specified by

manufacturer and is provided in the data sheet.

Fan Out: The fan-out is defined as the maximum number of inputs (load) that can be

connected to the output of a gate without degrading the normal operation. Fan Out is

calculated from the amount of current available in the output of a gate and the amount of

current needed in each input of the connecting gate. It is specified by manufacturer and is

provided in the data sheet. Exceeding the specified maximum load may cause a malfunction

because the circuit will not be able supply the demanded power.

89 | P a g e
 COPYRIGHT FIMT 2020

Q5. Explain Simplifying Boolean Expression using K Map

Simplifying Boolean Expression using K Map

Minterm Solution of K Map

The following are the steps to obtain simplified minterm solution using K-map.

Step 1: Initiate Express the given expression in its canonical form

Step 2: Populate the K-map Enter the value of ‗one‘ for each product-term into the K-map

cell, while filling others with zeros.

Step 3: Form Groups Consider the consecutive ‗ones‘ in the K-map cells and group them

(green boxes).

Each group should contain the largest number of ‗ones‘ and no blank cell.

The number of ‗ones‘ in a group must be a power of 2 i.e. a group can contain

Grouping has to be carried-on in decreasing order meaning, one has to try to group for 8

(octet) first, then for 4 (quad), followed by 2 and lastly for 1 (isolated ‗ones‘).

https://www.electrical4u.com/k-map/

90 | P a g e
 COPYRIGHT FIMT 2020

Grouping is to done either horizontally or vertically or interms of squares or rectangles.

Diagonal grouping of ‗ones‘ is not permitted.

The same element(s) may repeat in multiple groups only if this increases the size of the

group.

The elements around the edges of the table are considered to be adjacent and can be grouped

together.

Don‘t care conditions are to be considered only if they aid in increasing the group-size (else

neglected).

Step 4: Obtain Boolean Expression for Each Group

Express each group interms of input variables by looking at the common variables seen in

91 | P a g e
 COPYRIGHT FIMT 2020

cell-labelling. For example in the figure shown below there are two groups with two and one

number of ‗ones‘ in them (Group 1 and Group 2, respectively). All the ‗ones‘ in the Group 1

of the K-map are present in the row for which A = 0. Thus they contain the variable A .

Further these two ‗ones‘ are present in adjacent columns which have only B term in common

as indicated by the pink arrow in the figure.

Hence the next term is B. This yields the product term corresponding to this group as A B.

Similarly the ‗one‘ in the Group 2 of the K-map is present in the row for which A = 1.

Further the variables corresponding to its column are B C . Thus one gets the overall product-

term for this group as AB C .

Step 5: Obtain Boolean Expression for the Output The product-terms obtained for individual

groups are to be combined to form sum-of-product (SOP) form which yields the overall

simplified Boolean expression. This means that for the K-map shown in Step 4, the overall

simplified output expression is

A few more examples elaborating K-map simplification process are shown below.

https://www.electrical4u.com/k-map/

92 | P a g e
 COPYRIGHT FIMT 2020

Maxterm Solution of K Map

The method to be followed in order to obtain simplified maxterm solution using K-map is

similar to that for minterm solution except minor changes listed below.

K-map cells are to be populated by ‗zeros‘ for each sum-term of the expression instead of

‗ones‘.

Grouping is to be carried-on for ‗zeros‘ and not for ‗ones‘.

Boolean expressions for each group are to be expressed as sum-terms and not as product-

terms.

Sum-terms of all individual groups are to be combined to obtain the overall simplified

Boolean expression in product-of-sums (POS) form.

https://www.electrical4u.com/k-map/

93 | P a g e
 COPYRIGHT FIMT 2020

94 | P a g e
 COPYRIGHT FIMT 2020

Unit 2

Q.1 Explain Parity Generator and Parity Check

What is Parity Bit?

The parity generating technique is one of the most widely used error detection techniques for

the data transmission. In digital systems, when binary data is transmitted and processed , data

may be subjected to noise so that such noise can alter 0s (of data bits) to 1s and 1s to 0s.

Hence, parity bit is added to the word containing data in order to make number of 1s either

even or odd. Thus it is used to detect errors , during the transmission of binary data .The

message containing the data bits along with parity bit is transmitted from transmitter node to

receiver node.

At the receiving end, the number of 1s in the message is counted and if it doesn‘t match with

the transmitted one, then it means there is an error in the data.

Parity generator and checker

A parity generator is a combinational logic circuit that generates the parity bit in the

transmitter. On the other hand, a circuit that checks the parity in the receiver is called parity

checker. A combined circuit or devices of parity generators and parity checkers are

commonly used in digital systems to detect the single bit errors in the transmitted data word.

The sum of the data bits and parity bits can be even or odd . In even parity, the added parity

bit will make the total number of 1s an even amount whereas in odd parity the added parity

bit will make the total number of 1s odd amount.

The basic principle involved in the implementation of parity circuits is that sum of odd

number of 1s is always 1 and sum of even number of 1s is always zero. Such error detecting

and correction can be implemented by using Ex-OR gates (since Ex-OR gate produce zero

output when there are even number of inputs).

To produce two bits sum, one Ex-OR gate is sufficient whereas for adding three bits two Ex-

OR gates are required as shown in below figure.

95 | P a g e
 COPYRIGHT FIMT 2020

Parity Generator

It is combinational circuit that accepts an n-1 bit stream data and generates the additional bit

that is to be transmitted with the bit stream. This additional or extra bit is termed as a parity

bit.

In even parity bit scheme, the parity bit is ‗0‘ if there are even number of 1s in the data

stream and the parity bit is ‗1‘ if there are odd number of 1s in the data stream.

In odd parity bit scheme, the parity bit is ‗1‘ if there are even number of 1s in the data

stream and the parity bit is ‗0‘ if there are odd number of 1s in the data stream. Let us

discuss both even and odd parity generators.

Even Parity Generator

Let us assume that a 3-bit message is to be transmitted with an even parity bit. Let the three

inputs A, B and C are applied to the circuits and output bit is the parity bit P. The total

number of 1s must be even, to generate the even parity bit P.

The figure below shows the truth table of even parity generator in which 1 is placed as parity

bit in order to make all 1s as even when the number of 1s in the truth table is odd.

https://www.electronicshub.org/wp-content/uploads/2015/07/Summing-of-Bits-Using-Ex-OR-gates.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Generator-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Summing-of-Bits-Using-Ex-OR-gates.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Generator-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Summing-of-Bits-Using-Ex-OR-gates.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Generator-Truth-Table.jpg

96 | P a g e
 COPYRIGHT FIMT 2020

The K-map simplification for 3-bit message even parity generator is

From the above truth table, the simplified expression of the parity bit can be written as

The above expression can be implemented by using two Ex-OR gates. The logic diagram of

even parity generator with two Ex – OR gates is shown below. The three bit message along

with the parity generated by this circuit which is transmitted to the receiving end where parity

checker circuit checks whether any error is present or not.

To generate the even parity bit for a 4-bit data, three Ex-OR gates are required to add the 4-

bits and their sum will be the parity bit.

https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Even-Parity-Generator.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/even-parity-generator-exp.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Generator-Logic-Circuit.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Even-Parity-Generator.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/even-parity-generator-exp.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Generator-Logic-Circuit.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Even-Parity-Generator.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/even-parity-generator-exp.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Generator-Logic-Circuit.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Even-Parity-Generator.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/even-parity-generator-exp.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Generator-Logic-Circuit.jpg

97 | P a g e
 COPYRIGHT FIMT 2020

Odd Parity Generator

Let us consider that the 3-bit data is to be transmitted with an odd parity bit. The three inputs

are A, B and C and P is the output parity bit. The total number of bits must be odd in order to

generate the odd parity bit.

In the given truth table below, 1 is placed in the parity bit in order to make the total number

of bits odd when the total number of 1s in the truth table is even.

The truth table of the odd parity generator can be simplified by using K-map as

The output parity bit expression for this generator circuit is obtained as

P = A ⊕ B Ex-NOR C

https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Generator-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Odd-Parity-Generator.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Generator-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Odd-Parity-Generator.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Generator-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Odd-Parity-Generator.jpg

98 | P a g e
 COPYRIGHT FIMT 2020

The above Boolean expression can be implemented by using one Ex-OR gate and one Ex-

NOR gate in order to design a 3-bit odd parity generator.

The logic circuit of this generator is shown in below figure , in which . two inputs are applied

at one Ex-OR gate, and this Ex-OR output and third input is applied to the Ex-NOR gate , to

produce the odd parity bit. It is also possible to design this circuit by using two Ex-OR gates

and one NOT gate.

Parity Check

It is a logic circuit that checks for possible errors in the transmission. This circuit can be an

even parity checker or odd parity checker depending on the type of parity generated at the

transmission end. When this circuit is used as even parity checker, the number of input bits

must always be even.

When a parity error occurs, the ‗sum even‘ output goes low and ‗sum odd‘ output goes high.

If this logic circuit is used as an odd parity checker, the number of input bits should be odd,

but if an error occurs the ‗sum odd‘ output goes low and ‗sum even‘ output goes high.

Even Parity Checker

Consider that three input message along with even parity bit is generated at the transmitting

end. These 4 bits are applied as input to the parity checker circuit which checks the

possibility of error on the data. Since the data is transmitted with even parity, four bits

received at circuit must have an even number of 1s.

If any error occurs, the received message consists of odd number of 1s. The output of the

parity checker is denoted by PEC (parity error check).

https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Checker-Logic-Circuit.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Checker-Logic-Circuit.jpg

99 | P a g e
 COPYRIGHT FIMT 2020

The below table shows the truth table for the even parity checker in which PEC = 1 if the

error occurs, i.e., the four bits received have odd number of 1s and PEC = 0 if no error

occurs, i.e., if the 4-bit message has even number of 1s.

The above truth table can be simplified using K-map as shown below.

https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Checker-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Even-Parity-Checker.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Checker-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Even-Parity-Checker.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Checker-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Even-Parity-Checker.jpg

100 | P a g e
 COPYRIGHT FIMT 2020

The above logic expression for the even parity checker can be implemented by using three

Ex-OR gates as shown in figure. If the received message consists of five bits, then one more

Ex-OR gate is required for the even parity checking.

Odd Parity Checker

Consider that a three bit message along with odd parity bit is transmitted at the transmitting

end. Odd parity checker circuit receives these 4 bits and checks whether any error are present

in the data.

If the total number of 1s in the data is odd, then it indicates no error, whereas if the total

number of 1s is even then it indicates the error since the data is transmitted with odd parity at

transmitting end.

The below figure shows the truth table for odd parity generator where PEC =1 if the 4-bit

message received consists of even number of 1s (hence the error occurred) and PEC= 0 if

the message contains odd number of 1s (that means no error).

https://www.electronicshub.org/wp-content/uploads/2015/07/even-parity-checker-img.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Checker-Logic-Circuit.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/even-parity-checker-img.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Checker-Logic-Circuit.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/even-parity-checker-img.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Checker-Logic-Circuit.jpg

101 | P a g e
 COPYRIGHT FIMT 2020

The expression for the PEC in the above truth table can be simplified by K-map as shown

below.

After simplification, the final expression for the PEC is obtained as

PEC = (A Ex-NOR B) Ex-NOR (C Ex-NOR D)

The expression for the odd parity checker can be designed by using three Ex-NOR gates as

shown below.

https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Checker-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Odd-Parity-Checker.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Checker-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Odd-Parity-Checker.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Checker-Truth-Table.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/K-map-for-Odd-Parity-Checker.jpg

102 | P a g e
 COPYRIGHT FIMT 2020

Parity Generator/Checker ICs

There are different types of parity generator /checker ICs are available with different input

configurations such as 5-bit, 4-bit, 9-bit, 12-bit, etc. A most commonly used and standard

type of parity generator/checker IC is 74180.

It is a 9-bit parity generator or checker used to detect errors in high speed data transmission

or data retrieval systems. The figure below shows the pin diagram of 74180 IC.

This IC can be used to generate a 9-bit odd or even parity code or it can be used to check for

odd or even parity in a 9-bit code (8 data bits and one parity bit).

This IC consists of eight parity inputs from A through H and two cascading inputs. There are

two outputs even sum and odd sum. In implementing generator or checker circuits, unused

parity bits must be tied to logic zero and the cascading inputs must not be equal.

https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Checker-Logic-Circuit1.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/IC-74180.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Checker-Logic-Circuit1.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/IC-74180.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Checker-Logic-Circuit1.jpg
https://www.electronicshub.org/wp-content/uploads/2015/07/IC-74180.jpg

103 | P a g e
 COPYRIGHT FIMT 2020

Q2. Write a Short note on Half Adder & Full Adder

Binary Adder

The most basic arithmetic operation is addition. The circuit, which performs the addition of

two binary numbers is known as Binary adder. First, let us implement an adder, which

performs the addition of two bits.

Half Adder

Half adder is a combinational circuit, which performs the addition of two binary numbers A

and B are of single bit. It produces two outputs sum, S & carry, C.

The Truth table of Half adder is shown below.

Inputs Outputs

A B C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

When we do the addition of two bits, the resultant sum can have the values ranging from 0

to 2 in decimal. We can represent the decimal digits 0 and 1 with single bit in binary. But,

we can‘t represent decimal digit 2 with single bit in binary. So, we require two bits for

representing it in binary.

Let, sum, S is the Least significant bit and carry, C is the Most significant bit of the resultant

sum. For first three combinations of inputs, carry, C is zero and the value of S will be either

zero or one based on the number of ones present at the inputs. But, for last combination of

inputs, carry, C is one and sum, S is zero, since the resultant sum is two.

From Truth table, we can directly write the Boolean functions for each output as

104 | P a g e
 COPYRIGHT FIMT 2020

S=A⊕BS=A⊕B

C=ABC=AB

We can implement the above functions with 2-input Ex-OR gate & 2-input AND gate.

The circuit diagram of Half adder is shown in the following figure.

In the above circuit, a two input Ex-OR gate & two input AND gate produces sum, S &

carry, C respectively. Therefore, Half-adder performs the addition of two bits.

Full Adder

Full adder is a combinational circuit, which performs the addition of three bits A, B and

Cin. Where, A & B are the two parallel significant bits and Cin is the carry bit, which is

generated from previous stage. This Full adder also produces two outputs sum, S & carry,

Cout, which are similar to Half adder.

The Truth table of Full adder is shown below.

Inputs Outputs

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

105 | P a g e
 COPYRIGHT FIMT 2020

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

When we do the addition of three bits, the resultant sum can have the values ranging from 0

to 3 in decimal. We can represent the decimal digits 0 and 1 with single bit in binary. But,

we can‘t represent the decimal digits 2 and 3 with single bit in binary. So, we require two

bits for representing those two decimal digits in binary.

Let, sum, S is the Least significant bit and carry, Cout is the Most significant bit of resultant

sum. It is easy to fill the values of outputs for all combinations of inputs in the truth table.

Just count the number of ones present at the inputs and write the equivalent binary number

at outputs. If Cin is equal to zero, then Full adder truth table is same as that of Half adder

truth table.

We will get the following Boolean functions for each output after simplification.

S=A⊕B⊕CinS=A⊕B⊕Cin

cout=AB+(A⊕B)cincout=AB+(A⊕B)cin

The sum, S is equal to one, when odd number of ones present at the inputs. We know that

Ex-OR gate produces an output, which is an odd function. So, we can use either two 2input

Ex-OR gates or one 3-input Ex-OR gate in order to produce sum, S. We can implement

carry, Cout using two 2-input AND gates & one OR gate. The circuit diagram of Full adder

is shown in the following figure.

106 | P a g e
 COPYRIGHT FIMT 2020

This adder is called as Full adder because for implementing one Full adder, we require two

Half adders and one OR gate. If Cin is zero, then Full adder becomes Half adder. We can

verify it easily from the above circuit diagram or from the Boolean functions of outputs of

Full adder.

4-bit Binary Adder

The 4-bit binary adder performs the addition of two 4-bit numbers. Let the 4-bit binary

numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1B0B=B3B2B1B0. We can

implement 4-bit binary adder in one of the two following ways.

 Use one Half adder for doing the addition of two Least significant bits and three Full

adders for doing the addition of three higher significant bits.

 Use four Full adders for uniformity. Since, initial carry Cin is zero, the Full adder

which is used for adding the least significant bits becomes Half adder.

For the time being, we considered second approach. The block diagram of 4-bit binary

adder is shown in the following figure.

107 | P a g e
 COPYRIGHT FIMT 2020

Here, the 4 Full adders are cascaded. Each Full adder is getting the respective bits of two

parallel inputs A & B. The carry output of one Full adder will be the carry input of

subsequent higher order Full adder. This 4-bit binary adder produces the resultant sum

having at most 5 bits. So, carry out of last stage Full adder will be the MSB.

In this way, we can implement any higher order binary adder just by cascading the required

number of Full adders. This binary adder is also called as ripple

carry binarybinary adder because the carry propagates ripplesripples from one stage to the

next stage.

108 | P a g e
 COPYRIGHT FIMT 2020

Q3. Explain Half Subtarctor & Full Subtarctor.

Half Subtractor Circuit Construction using Logic Gates

Half subtractor is the most essential combinational logic circuit which is used in digital

electronics. Basically, this is an electronic device or in other terms, we can say it as a logic

circuit. Half subtractor is used to perform two binary digits subtraction. In the previous

article, we have already discussed the concepts of half adder and a full adder circuit which

uses the binary numbers for the calculation. Similarly, the subtractor circuit uses binary

numbers (0,1) for the subtraction. The circuit of the half subtractor can be built with two logic

gates namely NAND and EX-OR gates. This circuit gives two elements such as the

difference as well as the borrow. This article gives half subtractor theory concept which

includes theories like what is a subtractor, half subtractor with the truth table, etc.

What is a Half Subtractor?

Before going to discuss the half subtractor, we have to know the binary subtraction. In binary

subtraction, the process of subtraction is similar to arithmetic subtraction. In arithmetic

subtraction the base 2 number system is used whereas in binary subtraction, binary numbers

are used for subtraction. The resultant terms can be denoted with the difference and borrow.

Half Subtractor Block Diagram

As in binary subtraction, the major digit is 1, we can generate borrow while the subtrahend 1

is superior to minuend 0 and due to this, borrow will need. The following example gives the

binary subtraction of two binary bits.

First Digit
Second Digit Difference Borrow

0 0 0 0

https://www.elprocus.com/introduction-to-combinational-logic-circuits/
https://www.elprocus.com/digital-electronics-flip-flop-circuit-types-and-applications/
https://www.elprocus.com/digital-electronics-flip-flop-circuit-types-and-applications/
https://www.elprocus.com/half-adder-and-full-adder/
https://www.elprocus.com/basic-logic-gates-with-truth-tables/
https://www.elprocus.com/basic-logic-gates-with-truth-tables/

109 | P a g e
 COPYRIGHT FIMT 2020

1 0 1 0

0 1 1 1

1 1 0 0

In the above subtraction, the two digits can be represented with A and B. These two digits

can be subtracted and gives the resultant bits as difference and borrow.

When we observe the first two and fourth rows, the difference of these rows, then the

difference and borrow are similar because subtrahend is lesser than the minuend. Similarly,

when we observe the third row, the minuend value is subtracted from the subtrahend. So the

difference and borrow bits are 1 because the subtrahend digit is superior to the minuend digit.

Half-Subtractor Block Diagram

The block diagram of the half subtractor is shown above. It requires two inputs as well as

gives two outputs. Here inputs are represented with A&B, and outputs are Difference and

Borrow.

The above circuit can be designed with EX-OR & NAND gates. Here, NAND gate can be

build by using AND and NOT gates. So we require three logic gates for making half

subtractor circuit namely EX-OR gate, NOT gate, and NAND gate.

Combination of AND and NOT gate produce a different combined gate named as NAND

Gate. The Ex-OR gate output will be the Diff bit and the NAND Gate output will be the

Borrow bit for the same inputs A&B.

AND-Gate

The AND-gate is one type of digital logic gate with multiple inputs and a single output and

based on the inputs combinations it will perform the logical conjunction. When all the inputs

of this gate are high, then the output will be high otherwise the output will be low. The logic

diagram of AND gate with truth table is shown below.

110 | P a g e
 COPYRIGHT FIMT 2020

AND Gate and its Truth Table

NOT Gate

The NOT-gate is one type of digital logic gate with a single input and based on the input the

output will be reversed. For instance, when the input of the NOT gate is high then the output

will be low. The logic diagram of NOT-gate with truth table is shown below. By using this

type of logic gate, we can execute NAND and NOR gates.

NOT Gate and its Truth Table

Ex-OR Gate

The Exclusive-OR or EX-OR gate is one type of digital logic gate with 2-inputs & single

output. The working of this logic gate depends on OR gate. If any one of the inputs of this

gate is high, then the output of the EX-OR gate will be high. The symbol and truth table of

the EX-OR are shown below.

111 | P a g e
 COPYRIGHT FIMT 2020

EXOR Gate and its Truth Table

Half Subtractor Circuit using Nand Gate

The designing of half subtractor can be done by using logic gates like NAND gate & Ex-OR

gate. In order to design this half subtractor circuit, we have to know the two concepts namely

difference and borrow.

Half Subtractor Circuit using Nand Gate

If we monitor cautiously, it is fairly clear that the variety of operation executed by this circuit

which is accurately related to the EX-OR gate operation. Therefore, we can simply use the

EX-OR gate for making difference. In the same way, the borrow produced by half adder

circuit can be simply attained by using the blend of logic gates like AND- gate and NOT-

gate.

Truth Table

The truth table of the half adder circuit is shown below. It is an essential tool for any kind

of digital circuit to know the possible combinations of inputs and outputs. For instance, if the

subtractor has two inputs then the resultant outputs will be four. The o/p of the half subtractor

is mentioned in the below table that will signify the difference bit as well as borrow bit. The

https://www.elprocus.com/types-of-digital-logic-gates/
https://www.elprocus.com/difference-between-analog-circuit-and-digital-circuit/

112 | P a g e
 COPYRIGHT FIMT 2020

half subtractor truth table explanation can be done by using the logic gates like EX-OR logic

gate and AND gate operation followed by NOT gate.

First Bit
Second Bit

Difference

(EX-OR Out)

Borrow

(NAND Out)

0 0 0 0

1 0 1 0

0 1 1 1

1 1 0 0

Solving the truth table using K-Map is shown below.

half subtractor k map

The Boolean expression of the half subtractor using truth table and K-map can be derived as

Difference (D) = (x‘y + xy’)

 = x ⊕ y

Borrow (B) = x‘y

Application of Half Subtractor

The applications of half subtractor include the following.

 Half subtractor is used to reduce the force of audio or radio signals

 It can be used in amplifiers to reduce the sound distortion

 Half subtractor is used in ALU of processor

 It can be used to increase and decrease operators and also calculates the addresses

https://www.elprocus.com/classification-of-amplifiers-classes-its-applications/
https://www.elprocus.com/evolution-of-microprocessor-with-applications/

113 | P a g e
 COPYRIGHT FIMT 2020

 Half subtractor is used to subtract the least significant column numbers. For subtraction of

multi-digit numbers, it can be used for the LSB.

Therefore, from the above half subtractor theory, at last, we can close that by using this

circuit we can subtract from one binary bit from another to provide the outputs like

Difference and Borrow. Similarly, we can design half subtractor using NAND gates circuit as

well as NOR gates.

Full Subtractor Circuit Construction using Logic Gates

Generally, the full subtractor is one of the most used and essential combinational logic

circuits. It is a basic electronic device, used to perform subtraction of two binary numbers. In

the earlier article, already we have given the basic theory of half adder & a full adder which

uses the binary digits for the computation. Likewise, the full-subtractor uses binary digits like

0,1 for the subtraction. The circuit of full subtractor can be built with logic gates such as OR,

Ex-OR, NAND gate. The inputs of this subtractor are A, B, Bin and outputs are D, Bout.

This article gives full-subtractor theory idea which comprises the premises like what is a

subtractor, full subtractor design with logic gates, truth table, etc. This article is useful for

engineering students who can go through these topics in HDL Practical lab.

What is Full Subtractor?

Full subtractor is an electronic device or logic circuit which performs subtraction of two

binary digits. It is a combinational logic circuit used in digital electronics. Many

combinational circuits are available in integrated circuit technology namely adders, encoders,

decoders and multiplexers. In this article, we are going to discuss full subtractor construction

using half subtractor and also the terms like truth table.

A full subtractor is formed by two half subtractors, which involves three inputs such as

minuend, subtrahend and borrow, borrow bit among the inputs is obtained from subtraction

https://www.elprocus.com/introduction-to-combinational-logic-circuits/
https://www.elprocus.com/introduction-to-combinational-logic-circuits/
https://www.elprocus.com/half-adder-and-full-adder/
https://www.elprocus.com/different-types-of-digital-logic-circuits/
https://www.elprocus.com/how-integrated-circuits-work-physically/

114 | P a g e
 COPYRIGHT FIMT 2020

of two binary digits and is subtracted from next higher order pair of bits, outputs as difference

and borrow.

Full Subtractor Block Diagram

The foremost disadvantage of the half subtractor is, we cannot make a Borrow bit in this

subtractor. Whereas in full subtractor design, actually we can make a Borrow bit in the circuit

& can subtract with remaining two i/ps. Here A is minuend, B is subtrahend & Bin is borrow

in. The outputs are Difference (Diff) & Bout (Borrow out). The complete subtractor circuit

can obtain by using two half subtractors with an extra OR gate.

Full Subtractor Circuit Diagram with Logic Gates

The circuit diagram of full subtractor using basic gates is shown in the following block

diagram. This circuit can be done with two half-Subtractor circuits.

In the initial half-Subtractor circuit, the binary inputs are A and B. As we have discussed in

the previous half-Subtractor article, it will generate two outputs namely difference (Diff) &

Borrow.

115 | P a g e
 COPYRIGHT FIMT 2020

Full Subtractor using Logic Gates

The difference o/p of the left subtractor is given to the Left half-Subtractor circuit‘s. Diff

output is further provided to the input of the right half Subtractor circuit. We offered the

Borrow in bit across the other i/p of next half subtractor circuit. Once more it will give Diff

out as well as Borrow out the bit. The final output of this subtractor is Diff output.

On the other hand, the Borrow out of both the half Subtractor circuits is connected to OR

logic gate. Later than giving out OR logic for two output bits of the subtractor, we acquire the

final Borrow out of the subtractor. The last Borrow out to signify the MSB (a most significant

bit).

If we observe the internal circuit of the full Subtractor, we can see two Half Subtractors with

NAND gate and XOR gate with an extra OR gate.

Full Subtractor Truth Table

This subtractor circuit executes a subtraction between two bits, which has 3- inputs (A, B and

Bin) and two outputs (D and Bout). Here the inputs indicate minuend, subtrahend, & previous

borrow, whereas the two outputs are denoted as borrow o/p and difference. The following

image shows the truth table of full-subtractor.

Inputs
Outputs

Minuend (A)
Subtrahend (B) Borrow (Bin) Difference (D)

Borrow (Bout)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

https://www.elprocus.com/half-subtractor-circuit-construction-using-logic-gates/
https://en.wikipedia.org/wiki/Subtractor

116 | P a g e
 COPYRIGHT FIMT 2020

1 1 0 0 0

1 1 1 1 1

Full Subtractor K-Map

The simplification of the K-map for the above difference and borrow is shown below.

The full subtractor equations for the difference as well as Bin are mentioned below.

The full subtractor expression for Difference is,

D = A’B’Bin + AB’Bin’+ A’BBin’ + ABBin

The full-subtractor expression for Borrow is,

Bout = A’Bin + A’B + BBin

Applications of Full Subtractor

117 | P a g e
 COPYRIGHT FIMT 2020

Some of the applications of full-subtractor include the following

 These are generally employed for ALU (Arithmetic logic unit) in computers to subtract as

CPU & GPU for the applications of graphics to decrease the circuit difficulty.

 Subtractors are mostly used for performing arithmetical functions like subtraction, in

electronic calculators as well as digital devices.

 These are also applicable for different microcontrollers for arithmetic subtraction, timers,

and program counter (PC)

 Subtractors are used in processors to compute tables, address, etc.

 It is also useful for DSP and networking based systems.

From the above information, by evaluating the adder, full subtractor using two half subtractor

circuits, and its tabular forms, one can notice that Dout in the full-subtractor is accurately

similar to the Sout of the full-adder. The only variation is that A (input variable) is

complemented in the full-subtractor. Thus, it is achievable to change the full-adder circuit

into full-subtractor by just complementing the i/p A before it is given to the logic gates to

generate the last borrow-bit output (Bout).

https://www.elprocus.com/different-microcontrollers-used-in-automobiles/
https://www.elprocus.com/basic-logic-gates-with-truth-tables/

118 | P a g e
 COPYRIGHT FIMT 2020

Q4. Explain Parallel Adder and Parallel Subtarctor

Parallel Adder and Parallel Subtarctor

Parallel Adder –

A single full adder performs the addition of two one bit numbers and an input carry. But

a Parallel Adder is a digital circuit capable of finding the arithmetic sum of two binary

numbers that is greater than one bit in length by operating on corresponding pairs of bits in

parallel. It consists of full adders connected in a chain where the output carry from each full

adder is connected to the carry input of the next higher order full adder in the chain. A n bit

parallel adder requires n full adders to perform the operation. So for the two-bit number,

two adders are needed while for four bit number, four adders are needed and so on. Parallel

adders normally incorporate carry lookahead logic to ensure that carry propagation between

subsequent stages of addition does not limit addition speed.

Working of parallel Adder –

1. As shown in the figure, firstly the full adder FA1 adds A1 and B1 along with the carry

C1 to generate the sum S1 (the first bit of the output sum) and the carry C2 which is

connected to the next adder in chain.

2. Next, the full adder FA2 uses this carry bit C2 to add with the input bits A2 and B2 to

generate the sum S2(the second bit of the output sum) and the carry C3 which is again further

connected to the next adder in chain and so on.

119 | P a g e
 COPYRIGHT FIMT 2020

3. The process continues till the last full adder FAn uses the carry bit Cn to add with its

input An and Bn to generate the last bit of the output along last carry bit Cout.

Parallel Subtractor –

A Parallel Subtractor is a digital circuit capable of finding the arithmetic difference of two

binary numbers that is greater than one bit in length by operating on corresponding pairs of

bits in parallel. The parallel subtractor can be designed in several ways including combination

of half and full subtractors, all full subtractors or all full adders with subtrahend complement

input.

Working of Parallel Subtractor –

1. As shown in the figure, the parallel binary subtractor is formed by combination of all

full adders with subtrahend complement input.

2. This operation considers that the addition of minuend along with the 2‘s complement

of the subtrahend is equal to their subtraction.

3. Firstly the 1‘s complement of B is obtained by the NOT gate and 1 can be added

through the carry to find out the 2‘s complement of B. This is further added to A to carry out

the arithmetic subtraction.

4. The process continues till the last full adder FAn uses the carry bit Cn to add with its

input An and 2‘s complement of Bn to generate the last bit of the output along last carry bit

Cout.

Advantages of parallel Adder/Subtractor –

120 | P a g e
 COPYRIGHT FIMT 2020

1. The parallel adder/subtractor performs the addition operation faster as compared to

serial adder/subtractor.

2. Time required for addition does not depend on the number of bits.

3. The output is in parallel form i.e all the bits are added/subtracted at the same time.

4. It is less costly.

Disadvantages of parallel Adder/Subtractor –

1. Each adder has to wait for the carry which is to be generated from the previous adder

in chain.

2. The propagation delay(delay associated with the travelling of carry bit) is found to

increase with the increase in the number of bits to be added.

121 | P a g e
 COPYRIGHT FIMT 2020

Q5. What is Digital Binary Multiplier?

A binary multiplier is a combinational logic circuit or digital device used for multiplying

two binary numbers. The two numbers are more specifically known

as multiplicand and multiplier and the result is known as a product.

The multiplicand & multiplier can be of various bit size. The product‘s bit size depends on

the bit size of the multiplicand & multiplier. The bit size of the product is equal to the sum of

the bit size of multiplier & multiplicand.

Binary multiplication method is same as decimal multiplication. Binary multiplication of

more than 1-bit numbers contains 2 steps. The 1
st
 step is single bit-wise multiplication known

as partial product and the 2
nd

 step is adding all partial products into a single product.

Partial products or single bit products can be obtained by using AND gates. However, to add

these partial products we need full adders & half adders.

The schematic design of a digital multiplier differs with bit size. The design becomes

complex with the increase in bit size of the multiplier.

Types of Binary Multipliers

 2×2 Bit Multiplier

lets discuss one by one as follow:

2×2 Bit Multiplier

This multiplier can multiply two numbers having bit size = 2 i.e. the multiplier and

multiplicand can be of 2 bits. The product bit size will be the sum of the bit size of the input

i.e. 2+2=4. The maximum range of its output is 3 x 3 = 9. So we can accommodate decimal 9

in 4 bits. It is another way of finding the bit size of the product.

Suppose multiplicand A1 A0 & multiplier B1 B0 & P3 P2 P1 P0 as a product of the 2×2

multiplier.

First, multiplicand A1A0 is multiplied with LSB B0 of the multiplier to obtain the partial

product. This is obtained using AND gates. Then the same multiplicand is multiplied (AND)

with the 2
nd

 LSB to get the 2
nd

 partial product. The multiplicand is multiplied with each bit of

the multiplier (from LSB to MSB) to obtain partial products.

The number of partial products is equal to the number of bit size of the multiplier. In 2×2

multiplier, multiplier size is 2 bits so we get 2 partial products.

Now we need to add these partial products. There are two ways of adding;

 Using 2-bit full adder

https://www.electricaltechnology.org/2018/04/digital-logic-and-gate.html

122 | P a g e
 COPYRIGHT FIMT 2020

 Using individual single bit adders.

2×2 Bit Multiplier using 2-Bit Full Adder

if we use 2-bit full adder all we have to do is to know which term should be added.

The partial product of LSBs of inputs is the LSB of the product. So it should remain

untouched.

The other terms of each partial product should be considered and added using 2-bit full adder.

Construction and design schematic of 2×2 bit multiplier is given in the figure below;

The single bit from LSB partial product, 2 bits from the Sum & a carry bit makes the 4 bits of

the products.

Truth Table for 2 Bit Multiplier

Multiplier

Bits
Multiple of Multiplicand

Yi+1 Y1 Multiples Implementation

0 0 0 0

0 1 1 x

1 0 2 Shift left X by 1

https://www.electricaltechnology.org/wp-content/uploads/2018/05/Schematic-of-2x2-bit-Multiplier-Using-2-bit-full-adder-1.png
https://www.electricaltechnology.org/wp-content/uploads/2018/05/Schematic-of-2x2-bit-Multiplier-Using-2-bit-full-adder-1.png

123 | P a g e
 COPYRIGHT FIMT 2020

1 1 3
(Shift left X by

1) + X

124 | P a g e
 COPYRIGHT FIMT 2020

Unit 3

Q1. Explain Digital Circuits – Multiplexers & Demultiplexer.

Multiplexers

Multiplexer is a combinational circuit that has maximum of 2
n
 data inputs, ‗n‘ selection

lines and single output line. One of these data inputs will be connected to the output based on

the values of selection lines.

Since there are ‗n‘ selection lines, there will be 2
n
 possible combinations of zeros and ones.

So, each combination will select only one data input. Multiplexer is also called as Mux.

4x1 Multiplexer

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one output

Y. The block diagram of 4x1 Multiplexer is shown in the following figure.

One of these 4 inputs will be connected to the output based on the combination of inputs

present at these two selection lines. Truth table of 4x1 Multiplexer is shown below.

Selection Lines Output

S1 S0 Y

0 0 I0

0 1 I1

125 | P a g e
 COPYRIGHT FIMT 2020

1 0 I2

1 1 I3

From Truth table, we can directly write the Boolean function for output, Y as

Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3

We can implement this Boolean function using Inverters, AND gates & OR gate. The circuit

diagram of 4x1 multiplexer is shown in the following figure.

We can easily understand the operation of the above circuit. Similarly, you can implement

8x1 Multiplexer and 16x1 multiplexer by following the same procedure.

Implementation of Higher-order Multiplexers.

Now, let us implement the following two higher-order Multiplexers using lower-order

Multiplexers.

 8x1 Multiplexer

 16x1 Multiplexer

8x1 Multiplexer

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1

Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one

output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output.

126 | P a g e
 COPYRIGHT FIMT 2020

So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs. Since,

each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by

considering the outputs of first stage as inputs and to produce the final output.

Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0 and one

output Y. The Truth table of 8x1 Multiplexer is shown below.

Selection Inputs Output

S2 S1 S0 Y

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

We can implement 8x1 Multiplexer using lower order Multiplexers easily by considering the

above Truth table. The block diagram of 8x1 Multiplexer is shown in the following figure.

127 | P a g e
 COPYRIGHT FIMT 2020

The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data inputs of

upper 4x1 Multiplexer are I7 to I4 and the data inputs of lower 4x1 Multiplexer are I3 to I0.

Therefore, each 4x1 Multiplexer produces an output based on the values of selection lines,

s1 & s0.

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is

present in second stage. The other selection line, s2 is applied to 2x1 Multiplexer.

 If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I3 to I0 based on

the values of selection lines s1 & s0.

 If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I7 to I4 based on the

values of selection lines s1 & s0.

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer

performs as one 8x1 Multiplexer.

16x1 Multiplexer

In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1

Multiplexer. We know that 8x1 Multiplexer has 8 data inputs, 3 selection lines and one

output. Whereas, 16x1 Multiplexer has 16 data inputs, 4 selection lines and one output.

So, we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs. Since,

each 8x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by

considering the outputs of first stage as inputs and to produce the final output.

Let the 16x1 Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0 and one

output Y. The Truth table of 16x1 Multiplexer is shown below.

Selection Inputs Output

S3 S2 S1 S0 Y

0 0 0 0 I0

0 0 0 1 I1

0 0 1 0 I2

0 0 1 1 I3

0 1 0 0 I4

128 | P a g e
 COPYRIGHT FIMT 2020

0 1 0 1 I5

0 1 1 0 I6

0 1 1 1 I7

1 0 0 0 I8

1 0 0 1 I9

1 0 1 0 I10

1 0 1 1 I11

1 1 0 0 I12

1 1 0 1 I13

1 1 1 0 I14

1 1 1 1 I15

We can implement 16x1 Multiplexer using lower order Multiplexers easily by considering

the above Truth table. The block diagram of 16x1 Multiplexer is shown in the following

figure.

129 | P a g e
 COPYRIGHT FIMT 2020

The same selection lines, s2, s1 & s0 are applied to both 8x1 Multiplexers. The data inputs of

upper 8x1 Multiplexer are I15 to I8 and the data inputs of lower 8x1 Multiplexer are I7 to I0.

Therefore, each 8x1 Multiplexer produces an output based on the values of selection lines, s2,

s1 & s0.

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is

present in second stage. The other selection line, s3 is applied to 2x1 Multiplexer.

 If s3 is zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is7 to I0 based on

the values of selection lines s2, s1 & s0.

 If s3 is one, then the output of 2x1 Multiplexer will be one of the 8 inputs I15 to I8 based on

the values of selection lines s2, s1 & s0.

Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer

performs as one 16x1 Multiplexer.

 Demultiplexer.

130 | P a g e
 COPYRIGHT FIMT 2020

De-Multiplexer is a combinational circuit that performs the reverse operation of

Multiplexer. It has single input, ‗n‘ selection lines and maximum of 2
n
 outputs. The input

will be connected to one of these outputs based on the values of selection lines.

Since there are ‗n‘ selection lines, there will be 2
n
 possible combinations of zeros and ones.

So, each combination can select only one output. De-Multiplexer is also called as De-Mux.

1x4 De-Multiplexer

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four outputs Y3, Y2,

Y1 &Y0. The block diagram of 1x4 De-Multiplexer is shown in the following figure.

The single input ‗I‘ will be connected to one of the four outputs, Y3 to Y0 based on the

values of selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown below.

Selection Inputs Outputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

131 | P a g e
 COPYRIGHT FIMT 2020

From the above Truth table, we can directly write the Boolean functions for each output as

Y3=s1s0IY3=s1s0I

Y2=s1s0′IY2=s1s0′I

Y1=s1′s0IY1=s1′s0I

Y0=s1′s0′IY0=s1′s0′I

We can implement these Boolean functions using Inverters & 3-input AND gates.

The circuit diagram of 1x4 De-Multiplexer is shown in the following figure.

We can easily understand the operation of the above circuit. Similarly, you can implement

1x8 De-Multiplexer and 1x16 De-Multiplexer by following the same procedure.

132 | P a g e
 COPYRIGHT FIMT 2020

Implementation of Higher-order De-Multiplexers

Now, let us implement the following two higher-order De-Multiplexers using lower-order

De-Multiplexers.

 1x8 De-Multiplexer

 1x16 De-Multiplexer

1x8 De-Multiplexer

In this section, let us implement 1x8 De-Multiplexer using 1x4 De-Multiplexers and 1x2

De-Multiplexer. We know that 1x4 De-Multiplexer has single input, two selection lines and

four outputs. Whereas, 1x8 De-Multiplexer has single input, three selection lines and eight

outputs.

So, we require two 1x4 De-Multiplexers in second stage in order to get the final eight

outputs. Since, the number of inputs in second stage is two, we require 1x2

DeMultiplexer in first stage so that the outputs of first stage will be the inputs of second

stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x8 De-Multiplexer.

Let the 1x8 De-Multiplexer has one input I, three selection lines s2, s1 & s0 and outputs Y7 to

Y0. The Truth table of 1x8 De-Multiplexer is shown below.

Selection Inputs Outputs

s2 s1 s0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 I

0 0 1 0 0 0 0 0 0 I 0

0 1 0 0 0 0 0 0 I 0 0

0 1 1 0 0 0 0 I 0 0 0

1 0 0 0 0 0 I 0 0 0 0

133 | P a g e
 COPYRIGHT FIMT 2020

1 0 1 0 0 I 0 0 0 0 0

1 1 0 0 I 0 0 0 0 0 0

1 1 1 I 0 0 0 0 0 0 0

We can implement 1x8 De-Multiplexer using lower order Multiplexers easily by considering

the above Truth table. The block diagram of 1x8 De-Multiplexer is shown in the following

figure.

The common selection lines, s1 & s0 are applied to both 1x4 De-Multiplexers. The outputs

of upper 1x4 De-Multiplexer are Y7 to Y4 and the outputs of lower 1x4 De-Multiplexer are

Y3 to Y0.

The other selection line, s2 is applied to 1x2 De-Multiplexer. If s2 is zero, then one of the

four outputs of lower 1x4 De-Multiplexer will be equal to input, I based on the values of

134 | P a g e
 COPYRIGHT FIMT 2020

selection lines s1 & s0. Similarly, if s2 is one, then one of the four outputs of upper 1x4

DeMultiplexer will be equal to input, I based on the values of selection lines s1 & s0.

1x16 De-Multiplexer

In this section, let us implement 1x16 De-Multiplexer using 1x8 De-Multiplexers and 1x2

De-Multiplexer. We know that 1x8 De-Multiplexer has single input, three selection lines

and eight outputs. Whereas, 1x16 De-Multiplexer has single input, four selection lines and

sixteen outputs.

So, we require two 1x8 De-Multiplexers in second stage in order to get the final sixteen

outputs. Since, the number of inputs in second stage is two, we require 1x2

DeMultiplexer in first stage so that the outputs of first stage will be the inputs of second

stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x16 De-Multiplexer.

Let the 1x16 De-Multiplexer has one input I, four selection lines s3, s2, s1 & s0 and outputs

Y15 to Y0. The block diagram of 1x16 De-Multiplexer using lower order Multiplexers is

shown in the following figure.

135 | P a g e
 COPYRIGHT FIMT 2020

The common selection lines s2, s1 & s0 are applied to both 1x8 De-Multiplexers. The

outputs of upper 1x8 De-Multiplexer are Y15 to Y8 and the outputs of lower 1x8

DeMultiplexer are Y7 to Y0.

The other selection line, s3 is applied to 1x2 De-Multiplexer. If s3 is zero, then one of the

eight outputs of lower 1x8 De-Multiplexer will be equal to input, I based on the values of

selection lines s2, s1 & s0. Similarly, if s3 is one, then one of the 8 outputs of upper 1x8 De-

Multiplexer will be equal to input, I based on the values of selection lines s2, s1 & s0.

136 | P a g e
 COPYRIGHT FIMT 2020

Q2. Explain Decoders

Decoder is a combinational circuit that has ‗n‘ input lines and maximum of 2
n
 output lines.

One of these outputs will be active High based on the combination of inputs present, when

the decoder is enabled. That means decoder detects a particular code. The outputs of the

decoder are nothing but the min terms of ‗n‘ input variables lineslines, when it is enabled.

2 to 4 Decoder

Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y0. The block

diagram of 2 to 4 decoder is shown in the following figure.

One of these four outputs will be ‗1‘ for each combination of inputs when enable, E is ‗1‘.

The Truth table of 2 to 4 decoder is shown below.

Enable Inputs Outputs

E A1 A0 Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

From Truth table, we can write the Boolean functions for each output as

Y3=E.A1.A0Y3=E.A1.A0

Y2=E.A1.A0′Y2=E.A1.A0′

Y1=E.A1′.A0Y1=E.A1′.A0

137 | P a g e
 COPYRIGHT FIMT 2020

Y0=E.A1′.A0′Y0=E.A1′.A0′

Each output is having one product term. So, there are four product terms in total. We can

implement these four product terms by using four AND gates having three inputs each &

two inverters. The circuit diagram of 2 to 4 decoder is shown in the following figure.

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input

variables A1 & A0, when enable, E is equal to one. If enable, E is zero, then all the outputs of

decoder will be equal to zero.

Similarly, 3 to 8 decoder produces eight min terms of three input variables A2, A1 & A0 and

4 to 16 decoder produces sixteen min terms of four input variables A3, A2, A1 & A0.

Implementation of Higher-order Decoders

Now, let us implement the following two higher-order decoders using lower-order decoders.

 3 to 8 decoder

 4 to 16 decoder

3 to 8 Decoder

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders. We know that 2 to 4

Decoder has two inputs, A1 & A0 and four outputs, Y3 to Y0. Whereas, 3 to 8 Decoder has

three inputs A2, A1 & A0 and eight outputs, Y7 to Y0.

138 | P a g e
 COPYRIGHT FIMT 2020

We can find the number of lower order decoders required for implementing higher order

decoder using the following formula.

Requirednumberoflowerorderdecoders=m2m1Requirednumberoflowerorderdecoders=m2m1

Where,

m1m1 is the number of outputs of lower order decoder.

m2m2 is the number of outputs of higher order decoder.

Here, m1m1 = 4 and m2m2 = 8. Substitute, these two values in the above formula.

Requirednumberof2to4decoders=84=2Requirednumberof2to4decoders=84=2

Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder. The block

diagram of 3 to 8 decoder using 2 to 4 decoders is shown in the following figure.

The parallel inputs A1 & A0 are applied to each 2 to 4 decoder. The complement of input

A2 is connected to Enable, E of lower 2 to 4 decoder in order to get the outputs, Y3 to Y0.

These are the lower four min terms. The input, A2 is directly connected to Enable, E of

upper 2 to 4 decoder in order to get the outputs, Y7 to Y4. These are the higher four min

terms.

4 to 16 Decoder

139 | P a g e
 COPYRIGHT FIMT 2020

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders. We know that 3 to

8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0. Whereas, 4 to 16

Decoder has four inputs A3, A2, A1 & A0 and sixteen outputs, Y15 to Y0

We know the following formula for finding the number of lower order decoders required.

Requirednumberoflowerorderdecoders=m2m1Requirednumberoflowerorderdecoders=m2m1

Substitute, m1m1 = 8 and m2m2 = 16 in the above formula.

Requirednumberof3to8decoders=168=2Requirednumberof3to8decoders=168=2

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16 decoder. The block

diagram of 4 to 16 decoder using 3 to 8 decoders is shown in the following figure.

The parallel inputs A2, A1 & A0 are applied to each 3 to 8 decoder. The complement of

input, A3 is connected to Enable, E of lower 3 to 8 decoder in order to get the outputs, Y7 to

Y0. These are the lower eight min terms. The input, A3 is directly connected to Enable, E of

upper 3 to 8 decoder in order to get the outputs, Y15 to Y8. These are the higher eight min

terms.

140 | P a g e
 COPYRIGHT FIMT 2020

Q.3. Explain Encoders.

An Encoder is a combinational circuit that performs the reverse operation of Decoder. It has

maximum of 2
n
 input lines and ‗n‘ output lines. It will produce a binary code equivalent to

the input, which is active High. Therefore, the encoder encodes 2
n
 input lines with ‗n‘ bits. It

is optional to represent the enable signal in encoders.

4 to 2 Encoder

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The block

diagram of 4 to 2 Encoder is shown in the following figure.

At any time, only one of these 4 inputs can be ‗1‘ in order to get the respective binary code

at the output. The Truth table of 4 to 2 encoder is shown below.

Inputs Outputs

Y3 Y2 Y1 Y0 A1 A0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

From Truth table, we can write the Boolean functions for each output as

141 | P a g e
 COPYRIGHT FIMT 2020

A1=Y3+Y2A1=Y3+Y2

A0=Y3+Y1A0=Y3+Y1

We can implement the above two Boolean functions by using two input OR gates.

The circuit diagram of 4 to 2 encoder is shown in the following figure.

The above circuit diagram contains two OR gates. These OR gates encode the four inputs

with two bits

Octal to Binary Encoder

Octal to binary Encoder has eight inputs, Y7 to Y0 and three outputs A2, A1 & A0. Octal to

binary encoder is nothing but 8 to 3 encoder. The block diagram of octal to binary Encoder

is shown in the following figure.

At any time, only one of these eight inputs can be ‗1‘ in order to get the respective binary

code. The Truth table of octal to binary encoder is shown below.

142 | P a g e
 COPYRIGHT FIMT 2020

Inputs Outputs

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A2 A1 A0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

From Truth table, we can write the Boolean functions for each output as

A2=Y7+Y6+Y5+Y4A2=Y7+Y6+Y5+Y4

A1=Y7+Y6+Y3+Y2A1=Y7+Y6+Y3+Y2

A0=Y7+Y5+Y3+Y1A0=Y7+Y5+Y3+Y1

We can implement the above Boolean functions by using four input OR gates. The circuit

diagram of octal to binary encoder is shown in the following figure.

143 | P a g e
 COPYRIGHT FIMT 2020

The above circuit diagram contains three 4-input OR gates. These OR gates encode the eight

inputs with three bits.

Drawbacks of Encoder

Following are the drawbacks of normal encoder.

 There is an ambiguity, when all outputs of encoder are equal to zero. Because, it

could be the code corresponding to the inputs, when only least significant input is

one or when all inputs are zero.

 If more than one input is active High, then the encoder produces an output, which

may not be the correct code. For example, if both Y3 and Y6 are ‗1‘, then the

encoder produces 111 at the output. This is neither equivalent code corresponding to

Y3, when it is ‗1‘ nor the equivalent code corresponding to Y6, when it is ‗1‘.

So, to overcome these difficulties, we should assign priorities to each input of encoder.

Then, the output of encoder will be the binarybinary code corresponding to the active High

inputss, which has higher priority. This encoder is called as priority encoder.

144 | P a g e
 COPYRIGHT FIMT 2020

Q4.Explain Priority Encoders.

Priority Encoder

A 4 to 2 priority encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. Here,

the input, Y3 has the highest priority, whereas the input, Y0 has the lowest priority. In this

case, even if more than one input is ‗1‘ at the same time, the output will be

the binarybinary code corresponding to the input, which is having higher priority.

We considered one more output, V in order to know, whether the code available at outputs

is valid or not.

 If at least one input of the encoder is ‗1‘, then the code available at outputs is a valid

one. In this case, the output, V will be equal to 1.

 If all the inputs of encoder are ‗0‘, then the code available at outputs is not a valid

one. In this case, the output, V will be equal to 0.

The Truth table of 4 to 2 priority encoder is shown below.

Inputs Outputs

Y3 Y2 Y1 Y0 A1 A0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 x 0 1 1

0 1 x x 1 0 1

1 x x x 1 1 1

Use 4 variable K-maps for getting simplified expressions for each output.

145 | P a g e
 COPYRIGHT FIMT 2020

The simplified Boolean functions are

A1=Y3+Y2A1=Y3+Y2

A0=Y3+Y2′Y1A0=Y3+Y2′Y1

Similarly, we will get the Boolean function of output, V as

V=Y3+Y2+Y1+Y0V=Y3+Y2+Y1+Y0

We can implement the above Boolean functions using logic gates. The circuit diagram of 4

to 2 priority encoder is shown in the following figure.

146 | P a g e
 COPYRIGHT FIMT 2020

The above circuit diagram contains two 2-input OR gates, one 4-input OR gate, one 2input

AND gate & an inverter. Here AND gate & inverter combination are used for producing a

valid code at the outputs, even when multiple inputs are equal to ‗1‘ at the same time.

Hence, this circuit encodes the four inputs with two bits based on the priority assigned to

each input.

147 | P a g e
 COPYRIGHT FIMT 2020

Q5. Explain Flip Flops

The JK Flip Flop

The JK Flip-flop is similar to the SR Flip-flop but there is no change in state when the J and

K inputs are both LOW

The basic S-R NAND flip-flop circuit has many advantages and uses in sequential logic

circuits but it suffers from two basic switching problems.

 1. the Set = 0 and Reset = 0 condition (S = R = 0) must always be avoided

 2. if Set or Reset change state while the enable (EN) input is high the correct latching

action may not occur

Then to overcome these two fundamental design problems with the SR flip-flop design,

the JK flip Flop was developed.

This simple JK flip Flop is the most widely used of all the flip-flop designs and is considered

to be a universal flip-flop circuit. The two inputs labelled ―J‖ and ―K‖ are not shortened

abbreviated letters of other words, such as ―S‖ for Set and ―R‖ for Reset, but are themselves

autonomous letters chosen by its inventor Jack Kilby to distinguish the flip-flop design from

other types.

The sequential operation of the JK flip flop is exactly the same as for the previous SR flip-

flop with the same ―Set‖ and ―Reset‖ inputs. The difference this time is that the ―JK flip flop‖

has no invalid or forbidden input states of the SR Latch even when S and R are both at logic

―1‖.

148 | P a g e
 COPYRIGHT FIMT 2020

The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuitry

that prevents the illegal or invalid output condition that can occur when both inputs S and R

are equal to logic level ―1‖. Due to this additional clocked input, a JK flip-flop has four

possible input combinations, ―logic 1‖, ―logic 0‖, ―no change‖ and ―toggle‖. The symbol for

a JK flip flop is similar to that of an SR Bistable Latch as seen in the previous tutorial except

for the addition of a clock input.

The Basic JK Flip-flop

Both the S and the R inputs of the previous SR bistable have now been replaced by two

inputs called the J and K inputs, respectively after its inventor Jack Kilby. Then this equates

to: J = S and K = R.

The two 2-input AND gates of the gated SR bistable have now been replaced by two 3-

input NAND gates with the third input of each gate connected to the outputs at Q and Q. This

cross coupling of the SR flip-flop allows the previously invalid condition of S = ―1‖ and R =

―1‖ state to be used to produce a ―toggle action‖ as the two inputs are now interlocked.

If the circuit is now ―SET‖ the J input is inhibited by the ―0‖ status of Q through the

lower NAND gate. If the circuit is ―RESET‖ the K input is inhibited by the ―0‖ status

of Q through the upper NAND gate. As Q and Q are always different we can use them to

control the input. When both inputs J and K are equal to logic ―1‖, the JK flip flop toggles as

shown in the following truth table.

The Truth Table for the JK Function

149 | P a g e
 COPYRIGHT FIMT 2020

same as

for the

SR

Latch

Clock Input Output

Description

Clk J K Q Q

X 0 0 1 0
Memory

no change
X 0 0 0 1

   0 1 1 0

Reset Q » 0

X 0 1 0 1

   1 0 0 1

Set Q » 1

X 1 0 1 0

toggle

action

   1 1 0 1

Toggle

   1 1 1 0

Then the JK flip-flop is basically an SR flip flop with feedback which enables only one of its

two input terminals, either SET or RESET to be active at any one time thereby eliminating

the invalid condition seen previously in the SR flip flop circuit.

Also when both the J and the K inputs are at logic level ―1‖ at the same time, and the clock

input is pulsed ―HIGH‖, the circuit will ―toggle‖ from its SET state to a RESET state, or visa-

versa. This results in the JK flip flop acting more like a T-type toggle flip-flop when both

terminals are ―HIGH‖.

Although this circuit is an improvement on the clocked SR flip-flop it still suffers from

timing problems called ―race‖ if the output Q changes state before the timing pulse of the

clock input has time to go ―OFF‖. To avoid this the timing pulse period (T) must be kept as

short as possible (high frequency). As this is sometimes not possible with modern TTL IC‘s

the much improved Master-Slave JK Flip-flop was developed.

150 | P a g e
 COPYRIGHT FIMT 2020

Master-Slave JK Flip-flop

The master-slave flip-flop eliminates all the timing problems by using two SR flip-flops

connected together in a series configuration. One flip-flop acts as the ―Master‖ circuit, which

triggers on the leading edge of the clock pulse while the other acts as the ―Slave‖ circuit,

which triggers on the falling edge of the clock pulse. This results in the two sections, the

master section and the slave section being enabled during opposite half-cycles of the clock

signal.

The TTL 74LS73 is a Dual JK flip-flop IC, which contains two individual JK type bistable‘s

within a single chip enabling single or master-slave toggle flip-flops to be made. Other JK

flip flop IC‘s include the 74LS107 Dual JK flip-flop with clear, the 74LS109 Dual positive-

edge triggered JK flip flop and the 74LS112 Dual negative-edge triggered flip-flop with both

preset and clear inputs.

Dual JK Flip-flop 74LS73

Other Popular JK Flip-flop ICs

Device

Number
Subfamily Device Description

74LS73 LS TTL Dual JK-type Flip Flops with Clear

74LS76 LS TTL Dual JK-type Flip Flops with Preset and Clear

151 | P a g e
 COPYRIGHT FIMT 2020

74LS107 LS TTL Dual JK-type Flip Flops with Clear

4027B Standard CMOS Dual JK-type Flip Flop

The Master-Slave JK Flip-flop

The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in a

series configuration with the slave having an inverted clock pulse. The outputs

from Q and Q from the ―Slave‖ flip-flop are fed back to the inputs of the ―Master‖ with the

outputs of the ―Master‖ flip flop being connected to the two inputs of the ―Slave‖ flip flop.

This feedback configuration from the slave‘s output to the master‘s input gives the

characteristic toggle of the JK flip flop as shown below.

The Master-Slave JK Flip Flop

The input signals J and K are connected to the gated ―master‖ SR flip flop which ―locks‖ the

input condition while the clock (Clk) input is ―HIGH‖ at logic level ―1‖. As the clock input of

the ―slave‖ flip flop is the inverse (complement) of the ―master‖ clock input, the ―slave‖ SR

flip flop does not toggle. The outputs from the ―master‖ flip flop are only ―seen‖ by the gated

―slave‖ flip flop when the clock input goes ―LOW‖ to logic level ―0‖.

When the clock is ―LOW‖, the outputs from the ―master‖ flip flop are latched and any

additional changes to its inputs are ignored. The gated ―slave‖ flip flop now responds to the

state of its inputs passed over by the ―master‖ section.

152 | P a g e
 COPYRIGHT FIMT 2020

Then on the ―Low-to-High‖ transition of the clock pulse the inputs of the ―master‖ flip flop

are fed through to the gated inputs of the ―slave‖ flip flop and on the ―High-to-Low‖

transition the same inputs are reflected on the output of the ―slave‖ making this type of flip

flop edge or pulse-triggered.

Then, the circuit accepts input data when the clock signal is ―HIGH‖, and passes the data to

the output on the falling-edge of the clock signal. In other words, the Master-Slave JK Flip

flop is a ―Synchronous‖ device as it only passes data with the timing of the clock signal.

In the next tutorial about Sequential Logic Circuits, we will look at Multivibrators that are

used as waveform generators to produce the clock signals to switch sequential circuits.

Designing of T Flip Flop

T flip – flop is also known as ―Toggle Flip – flop‖. To avoid the occurrence of intermediate

state in SR flip – flop, we should provide only one input to the flip – flop called Trigger input

or Toggle input (T). Then the flip – flop acts as a Toggle switch. Toggling means ‗Changing

the next state output to complement of the present state output‘.

We can design the T flip – flop by making simple modifications to the JK flip – flop. The T

flip – flop is a single input device and hence by connecting J and K inputs together and giving

them with single input called T we can convert a JK flip – flop into T flip – flop. So a T flip –

flop is sometimes called as single input JK flip – flop.

The logic symbol of T flip – flop is shown below. It has one Toggle input (T) & one clock

signal input (CLK).

T Flip – flop Circuit

We can construct a T flip – flop by any of the following methods.

https://www.electronicshub.org/wp-content/uploads/2015/06/Symbol-of-T-flip-flop.jpg
https://www.electronicshub.org/wp-content/uploads/2015/06/Symbol-of-T-flip-flop.jpg

153 | P a g e
 COPYRIGHT FIMT 2020

Connecting the output feedback to the input, in SR flip – flop.

Connecting the XOR of T input and Q PREVIOUS output to the Data input, in D flip – flop.

Hard – wiring the J and K inputs together and connecting it to T input, in JK flip – flop.

Construction

We can construct a T flip – flop by connecting AND gates as input to the NOR gate SR latch.

And these AND gate inputs are fed back with the present state output Q and its complement

Q‘ to each AND gate. A toggle input (T) is connected in common to both the AND gates as

an input. The AND gates are also connected with common Clock (CLK) signal. In the T flip

– flop, a pulse train of narrow triggers are provided as input (T) which will cause the change

in output state of flip – flop. So these flip – flops are also called Toggle flip – flops. The

circuit diagram of a T flip – flop constructed from SR latch is shown below

Similarly, a T flip – flop can be constructed by modifying D flip – flop. In D flip – flop, the

output QPREV is XORed with the T input and given at the D input. The circuit of a T flip –

flop constructed from a D flip – flop is shown below.

https://www.electronicshub.org/wp-content/uploads/2015/06/Circuit-diagram-of-T-flip-flop-using-SR-latch.jpg
https://www.electronicshub.org/wp-content/uploads/2015/06/Circuit-diagram-of-T-flip-flop-using-SR-latch.jpg

154 | P a g e
 COPYRIGHT FIMT 2020

The simplest of the constructions of a D flip – flop is with JK flip – flop. The J input and K

input of the JK flip – flop are connected together and provided with the T input. The logic

circuit of a T flip – flop constructed from a JK flip – flop is shown below.

Working

T flip – flop is an edge triggered device i.e. the low to high or high to low transitions on a

clock signal of narrow triggers that is provided as input will cause the change in output state

of flip – flop.

Truth Table of T flip – flop

The truth table of a T flip – flop is shown below.

https://www.electronicshub.org/wp-content/uploads/2015/06/Logic-diagram-of-T-flip-flop-using-D-flip-flop.jpg
https://www.electronicshub.org/wp-content/uploads/2015/06/Circuit-diagram-of-T-flip-flop-using-JK-flip-flop.jpg
https://www.electronicshub.org/wp-content/uploads/2015/06/Logic-diagram-of-T-flip-flop-using-D-flip-flop.jpg
https://www.electronicshub.org/wp-content/uploads/2015/06/Circuit-diagram-of-T-flip-flop-using-JK-flip-flop.jpg
https://www.electronicshub.org/wp-content/uploads/2015/06/Logic-diagram-of-T-flip-flop-using-D-flip-flop.jpg
https://www.electronicshub.org/wp-content/uploads/2015/06/Circuit-diagram-of-T-flip-flop-using-JK-flip-flop.jpg

155 | P a g e
 COPYRIGHT FIMT 2020

https://www.electronicshub.org/wp-content/uploads/2015/06/tff.jpg
https://www.electronicshub.org/wp-content/uploads/2015/06/tff.jpg

156 | P a g e
 COPYRIGHT FIMT 2020

Q6. Explain Shift Registers.

The Shift Register

The Shift Register is another type of sequential logic circuit that can be used for the storage

or the transfer of binary data

This sequential device loads the data present on its inputs and then moves or ―shifts‖ it to its

output once every clock cycle, hence the name Shift Register.

A shift register basically consists of several single bit ―D-Type Data Latches‖, one for each

data bit, either a logic ―0‖ or a ―1‖, connected together in a serial type daisy-chain

arrangement so that the output from one data latch becomes the input of the next latch and so

on.

Data bits may be fed in or out of a shift register serially, that is one after the other from either

the left or the right direction, or all together at the same time in a parallel configuration.

The number of individual data latches required to make up a single Shift Register device is

usually determined by the number of bits to be stored with the most common being 8-bits

(one byte) wide constructed from eight individual data latches.

Shift Registers are used for data storage or for the movement of data and are therefore

commonly used inside calculators or computers to store data such as two binary numbers

before they are added together, or to convert the data from either a serial to parallel or parallel

to serial format. The individual data latches that make up a single shift register are all driven

by a common clock (Clk) signal making them synchronous devices.

157 | P a g e
 COPYRIGHT FIMT 2020

Shift register IC‘s are generally provided with a clear or reset connection so that they can be

―SET‖ or ―RESET‖ as required. Generally, shift registers operate in one of four different

modes with the basic movement of data through a shift register being:

 Serial-in to Parallel-out (SIPO) - the register is loaded with serial data, one bit at a time,

with the stored data being available at the output in parallel form.

 Serial-in to Serial-out (SISO) - the data is shifted serially ―IN‖ and ―OUT‖ of the

register, one bit at a time in either a left or right direction under clock control.

 Parallel-in to Serial-out (PISO) - the parallel data is loaded into the register

simultaneously and is shifted out of the register serially one bit at a time under clock

control.

 Parallel-in to Parallel-out (PIPO) - the parallel data is loaded simultaneously into the

register, and transferred together to their respective outputs by the same clock pulse.

The effect of data movement from left to right through a shift register can be presented

graphically as:

Also, the directional movement of the data through a shift register can be either to the left,

(left shifting) to the right, (right shifting) left-in but right-out, (rotation) or both left and right

shifting within the same register thereby making it bidirectional. In this tutorial it is assumed

that all the data shifts to the right, (right shifting).

Serial-in to Parallel-out (SIPO) Shift Register

4-bit Serial-in to Parallel-out Shift Register

158 | P a g e
 COPYRIGHT FIMT 2020

The operation is as follows. Lets assume that all the flip-flops (FFA to FFD) have just been

RESET (CLEAR input) and that all the outputs QA to QD are at logic level ―0‖ ie, no parallel

data output.

If a logic ―1‖ is connected to the DATA input pin of FFA then on the first clock pulse the

output of FFA and therefore the resulting QA will be set HIGH to logic ―1‖ with all the other

outputs still remaining LOW at logic ―0‖. Assume now that the DATA input pin of FFA has

returned LOW again to logic ―0‖ giving us one data pulse or 0-1-0.

The second clock pulse will change the output of FFA to logic ―0‖ and the output

of FFB and QB HIGH to logic ―1‖ as its input D has the logic ―1‖ level on it from QA. The

logic ―1‖ has now moved or been ―shifted‖ one place along the register to the right as it is

now at QA.

When the third clock pulse arrives this logic ―1‖ value moves to the output of FFC (QC) and

so on until the arrival of the fifth clock pulse which sets all the outputs QA to QD back again

to logic level ―0‖ because the input to FFA has remained constant at logic level ―0‖.

The effect of each clock pulse is to shift the data contents of each stage one place to the right,

and this is shown in the following table until the complete data value of 0-0-0-1 is stored in

the register. This data value can now be read directly from the outputs of QA to QD.

Then the data has been converted from a serial data input signal to a parallel data output. The

truth table and following waveforms show the propagation of the logic ―1‖ through the

register from left to right as follows.

Basic Data Movement Through A Shift Register

159 | P a g e
 COPYRIGHT FIMT 2020

Clock Pulse

No
QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 0 0 0 0

Note that after the fourth clock pulse has ended the 4-bits of data (0-0-0-1) are stored in the

register and will remain there provided clocking of the register has stopped. In practice the

160 | P a g e
 COPYRIGHT FIMT 2020

input data to the register may consist of various combinations of logic ―1‖ and ―0‖.

Commonly available SIPO IC‘s include the standard 8-bit 74LS164 or the 74LS594.

Serial-in to Serial-out (SISO) Shift Register

This shift register is very similar to the SIPO above, except were before the data was read

directly in a parallel form from the outputs QA to QD, this time the data is allowed to flow

straight through the register and out of the other end. Since there is only one output,

the DATA leaves the shift register one bit at a time in a serial pattern, hence the name Serial-

in to Serial-Out Shift Register or SISO.

The SISO shift register is one of the simplest of the four configurations as it has only three

connections, the serial input (SI) which determines what enters the left hand flip-flop, the

serial output (SO) which is taken from the output of the right hand flip-flop and the

sequencing clock signal (Clk). The logic circuit diagram below shows a generalized serial-in

serial-out shift register.

4-bit Serial-in to Serial-out Shift Register

You may think what‘s the point of a SISO shift register if the output data is exactly the same

as the input data. Well this type of Shift Register also acts as a temporary storage device or it

can act as a time delay device for the data, with the amount of time delay being controlled by

the number of stages in the register, 4, 8, 16 etc or by varying the application of the clock

pulses. Commonly available IC‘s include the 74HC595 8-bit Serial-in to Serial-out Shift

Register all with 3-state outputs.

Parallel-in to Serial-out (PISO) Shift Register

The Parallel-in to Serial-out shift register acts in the opposite way to the serial-in to parallel-

out one above. The data is loaded into the register in a parallel format in which all the data

161 | P a g e
 COPYRIGHT FIMT 2020

bits enter their inputs simultaneously, to the parallel input pins PA to PD of the register. The

data is then read out sequentially in the normal shift-right mode from the register

at Q representing the data present at PA to PD.

This data is outputted one bit at a time on each clock cycle in a serial format. It is important

to note that with this type of data register a clock pulse is not required to parallel load the

register as it is already present, but four clock pulses are required to unload the data.

4-bit Parallel-in to Serial-out Shift Register

As this type of shift register converts parallel data, such as an 8-bit data word into serial

format, it can be used to multiplex many different input lines into a single serial DATA

stream which can be sent directly to a computer or transmitted over a communications line.

Commonly available IC‘s include the 74HC166 8-bit Parallel-in/Serial-out Shift Registers.

Parallel-in to Parallel-out (PIPO) Shift Register

The final mode of operation is the Parallel-in to Parallel-out Shift Register. This type of shift

register also acts as a temporary storage device or as a time delay device similar to the SISO

configuration above. The data is presented in a parallel format to the parallel input

pins PA to PD and then transferred together directly to their respective output

pins QA to QD by the same clock pulse. Then one clock pulse loads and unloads the register.

This arrangement for parallel loading and unloading is shown below.

162 | P a g e
 COPYRIGHT FIMT 2020

4-bit Parallel-in to Parallel-out Shift Register

The PIPO shift register is the simplest of the four configurations as it has only three

connections, the parallel input (PI) which determines what enters the flip-flop, the parallel

output (PO) and the sequencing clock signal (Clk).

Similar to the Serial-in to Serial-out shift register, this type of register also acts as a

temporary storage device or as a time delay device, with the amount of time delay being

varied by the frequency of the clock pulses. Also, in this type of register there are no

interconnections between the individual flip-flops since no serial shifting of the data is

required.

Universal Shift Register

Today, there are many high speed bi-directional ―universal‖ type Shift Registers available

such as the TTL 74LS194, 74LS195 or the CMOS 4035 which are available as 4-bit multi-

function devices that can be used in either serial-to-serial, left shifting, right shifting, serial-

to-parallel, parallel-to-serial, or as a parallel-to-parallel multifunction data register, hence

their name ―Universal‖.

163 | P a g e
 COPYRIGHT FIMT 2020

These universal shift registers can perform any combination of parallel and serial input to

output operations but require additional inputs to specify desired function and to pre-load and

reset the device. A commonly used universal shift register is the TTL 74LS194 as shown

below.

4-bit Universal Shift Register 74LS194

Universal shift registers are very useful digital devices. They can be configured to respond to

operations that require some form of temporary memory storage or for the delay of

information such as the SISO or PIPO configuration modes or transfer data from one point to

another in either a serial or parallel format. Universal shift registers are frequently used in

arithmetic operations to shift data to the left or right for multiplication or division.

Shift Register Tutorial Summary

Then to summarise a little about Shift Registers

 A simple Shift Register can be made using only D-type flip-Flops, one flip-Flop for

each data bit.

 The output from each flip-Flop is connected to the D input of the flip-flop at its right.

 Shift registers hold the data in their memory which is moved or ―shifted‖ to their

required positions on each clock pulse.

164 | P a g e
 COPYRIGHT FIMT 2020

 Each clock pulse shifts the contents of the register one bit position to either the left or

the right.

 The data bits can be loaded one bit at a time in a series input (SI) configuration or be

loaded simultaneously in a parallel configuration (PI).

 Data may be removed from the register one bit at a time for a series output (SO) or

removed all at the same time from a parallel output (PO).

 One application of shift registers is in the conversion of data between serial and parallel,

or parallel to serial.

 Shift registers are identified individually as SIPO, SISO, PISO, PIPO, or as a Universal

Shift Register with all the functions combined within a single device.

Serial in Serial out (SISO) Shift Register

Serial In Serial Out (SISO) shift registers are a kind of shift registers where both data

loading as well as data retrieval to/from the shift register occurs in serial-mode. Figure 1

shows a n-bit synchronous SISO shift register sensitive to positive edge of the clock pulse.

Here the data word which is to be stored is fed bit-by-bit at the input of the first flip-flop.

Further it is seen that the inputs of all other flip-flops (except the first flip-flop FF1) are

driven by the outputs of the preceding ones say for example, the input of FF2 is driven by the

output of FF1. At last the data stored within the register is obtained at the output pin of the n
th

flip-flop in serial-fashion.

Initially all the flip-flops in the register are cleared by applying high on their clear pins. Next

the input data word is fed serially to FF1.

This causes the bit appearing at the D1 pin (B1) to be stored into FF1 as soon as the first

https://www.electrical4u.com/shift-registers/
https://www.electrical4u.com/latches-and-flip-flops/

165 | P a g e
 COPYRIGHT FIMT 2020

leading edge of the clock appears. Further at the second clock tick, B1 gets stored into FF2

while a new bit enters into FF1 (B2).

This kind of shift in data bits continues for every rising edge of the clock pulse. This indicates

that for every single clock pulse the data within the register moves towards right by a single

bit. Thus the design shown in Figure 1 is regarded as a right-shift SISO shift register.

Following the data transmission as explained, one can note that the first bit of an input word

appears at the output of n
th

 flip-flop for the n
th

 clock tick. On applying further clock cycles,

one gets the next successive bits of the input data word as the serial output (Table I). The

waveforms pertaining to the same are shown by Figure 2.

166 | P a g e
 COPYRIGHT FIMT 2020

Similar to the right-shift SISO shift-register shown, there can exist a left-shift SISO shift-

register also (Figure 3). However the working principle remains the same except the fact that

167 | P a g e
 COPYRIGHT FIMT 2020

the data movement will be from right to left.

Serial in Parallel Out (SIPO) Shift Register

In Serial In Parallel Out (SIPO) shift registers, the data is stored into the register serially

while it is retrieved from it in parallel-fashion. Figure 1 shows an n-bit synchronous SIPO

shift register sensitive to positive edge of the clock pulse. Here the data word which is to be

stored (Data in) is fed serially at the input of the first flip-flop (D1 of FF1). It is also seen that

the inputs of all other flip-flops (except the first flip-flop FF1) are driven by the outputs of the

preceding ones say for example, the input of FF2 is driven by the output of FF1. In this kind

of shift register, the data stored within the register is obtained as a parallel-output data word

(Data out) at the individual output pins of the flip-flops (Q1 to Qn).

https://www.electrical4u.com/latches-and-flip-flops/
https://www.electrical4u.com/shift-registers/

168 | P a g e
 COPYRIGHT FIMT 2020

In general, the register contents are cleared by applying high on the clear pins of all the flip-

flops at the initial stage. After this, the first bit, B1 of the input data word is fed at the D1 pin

of FF1.

This bit (B1) will enter into FF1, get stored and thereby appears at its output Q1 on the

appearance of first leading edge of the clock. Further at the second clock tick, the bit B1 right-

shifts and gets stored into FF2 while appearing at its output pin Q2 while a new bit, B2 enters

into FF1. Similarly at each clock tick the data within the register moves towards right by a

single bit while a new bit of the input word enters into the register. Meanwhile one can

extract the bits stored within the register in parallel-fashion at the individual flip-flop outputs.

Analyzing on the same grounds, one can note that the n-bit input data word is obtained as an

n-bit output data word from the shift register at the rising edge of the n
th

 clock pulse. This

working of the shift-register can be summarized as in Table I and the corresponding wave

forms are given by Figure 2.

169 | P a g e
 COPYRIGHT FIMT 2020

In the right-shift SIPO shift-register, data bits shift from left to right for each clock tick.

However if the data bits are made to shift from right to left in the same design, one gets a left-

shift SIPO shift-register as shown by Figure 3. Nevertheless the basic working principle

remains the same except the fact that now Bn down to B1 is stored in Qn down to Q1 i.e. Q1 =

170 | P a g e
 COPYRIGHT FIMT 2020

B1, Q2 = B2 … Qn = Bn at the n
th

clock tick.

Parallel in Serial Out (PISO) Shift Register

In Parallel In Serial Out (PISO) shift registers, the data is loaded onto the register in

parallel format while it is retrieved from it serially. Figure 1 shows a PISO shift register

which has a control-line and combinational circuit (AND and OR gates) in

addition to the basic register components (flip-flops) fed with clock and clear pins.

https://www.electrical4u.com/logical-or-gate/
https://www.electrical4u.com/latches-and-flip-flops/

171 | P a g e
 COPYRIGHT FIMT 2020

Here control line is used to select the functionality of the shift register amongst shift

or load at a given instant of time. This is because when the line is made low, A2

AND gates of all the combinational circuits become active while A1 gates become inactive.

Thus the bits of the input data word (Data in) appearing as inputs to the gates A2 are passed

on as the outputs of OR gates at each individual combinational circuit. This causes the

individual bits of the Data in to be loaded/stored into respective flip-flops at the appearance

of first leading edge of the clock (except the bit B1 which gets directly stored into FF1 at the

first clock tick). This indicates that all the bits of the input data word are stored into the

register components at the same clock tick.

Next, line is driven high to activate the gates A1 of the combinational circuits which

inturn disables the gates A2. This causes output bit of each flip-flop to appear at the output of

the OR gate driving the very-next flip-flop (except the last flip-flop FFn) i.e. output bit of FF1

(Q1) appears as the output of OR gate 1 (O1) connected to D2; Q2 = output of O2 = D3 and so

on. At this stage, if the rising edge of the clock pulse appears, then Q1 appears at Q2, Q2

appears at Q3, … and Qn-1 appears at Qn.

This is nothing but right-shift of the data stored within the register by one-bit. Similarly it is

seen that for each of the further clock pulses applied, one bit exits the PISO shift register

through the output pin of n
th

 flip-flop (Data out = Qn of FFn), which is nothing but the serial

https://www.electrical4u.com/logical-and-gate/
https://www.electrical4u.com/logical-or-gate/
https://www.electrical4u.com/latches-and-flip-flops/
https://www.electrical4u.com/logical-or-gate/

172 | P a g e
 COPYRIGHT FIMT 2020

output. Thus one requires n clock cycles to obtain the entire n-bit input data word as a serial

output of PISO shift register.

The truth table of the PISO shift register emphasizing the loading and retrieval processes is

shown by Table I, while the corresponding wave forms are shown by Figure 2.

By slightly modifying the design of Figure 1, one can make the data bits within the register to

shift from right to left, thus obtaining a left-shift PISO shift-register (Figure 3). However the

173 | P a g e
 COPYRIGHT FIMT 2020

basic working principle remains unaltered.

Parallel in Parallel Out (PIPO) Shift Register

Parallel In Parallel Out (PIPO) shift registers are the type of storage devices in which both

data loading as well as data retrieval processes occur in parallel mode. Figure 1 shows a PIPO

register capable of storing n-bit input data word (Data in). Here each flip-flop stores an

individual bit of the data in appearing as its input (FF1 stores B1 appearing at D1; FF2 stores

B2 appearing at D2 … FFn stores Bn appearing at Dn) at the instant of first clock pulse.

Further, at the same instant, the bit stored in each individual flip-flop also appears at their

respective output pins (Q1 = D1; Q2 = D2 … Qn = Bn). This indicates that both data storage as

well as data recovery occur at a single (and at the same) clock pulse in PIPO registers.

https://www.electrical4u.com/latches-and-flip-flops/

174 | P a g e
 COPYRIGHT FIMT 2020

However one has to note that the PIPO register shown in Figure 1 is not capable of shifting

the data bits. In order to convert PIPO register of Figure 1 into PIPO shift register, one has to

modify its circuit by adding combinational circuit and control line as shown by

Figure 2.

Here if line goes low, A2 AND gates of all the combinational circuits become active

while A1 gates become inactive.

175 | P a g e
 COPYRIGHT FIMT 2020

Thus the bits of the input data word (Data in) appearing as inputs to the gates A2 are passed

on as the OR gate outputs which are further loaded/stored into respective flip-flops at the

appearance of first leading edge of the clock (except the bit B1 which gets directly stored into

FF1 at the first clock tick). This indicates that all the bits of the input data word are stored into

the register components at the same clock tick. At the same time, these bits also appear at the

output pins of the respective flip-flops thus yielding parallel-output data word at the same

clock tick.

Further when line is made high, A1 gates of all the combinational circuits enable

while A2 gates get disabled. This causes the output bit of each flip-flop to appear at the output

of the OR gate driving the very-next flip-flop (except the last flip-flop FFn) i.e. output bit of

FF1 (Q1) appears as the output of OR gate 1 (O1) connected to D2; Q2 = output of O2 = D3 and

so on. At this stage, if the rising edge of the clock pulse appears, then Q1 appears at Q2, Q2

appears at Q3, … and Qn-1 appears at Qn. This is nothing but right-shift of the data stored

within the register by one-bit. This working is further emphasized in the Table I and Figure 3.

https://www.electrical4u.com/logical-or-gate/
https://www.electrical4u.com/logical-or-gate/

176 | P a g e
 COPYRIGHT FIMT 2020

Similar to the right-shift PIPO shift register, there can also be a left-shift PIPO shift register

as shown by Figure 4. Nevertheless the mode of working remains the same.

Unit4

Q1. Explain Digital counters.

177 | P a g e
 COPYRIGHT FIMT 2020

Counter is a sequential circuit. A digital circuit which is used for a counting pulses is known

counter. Counter is the widest application of flip-flops. It is a group of flip-flops with a

clock signal applied. Counters are of two types.

 Asynchronous or ripple counters.

 Synchronous counters.

Asynchronous or ripple counters

The logic diagram of a 2-bit ripple up counter is shown in figure. The toggle (T) flip-flop are

being used. But we can use the JK flip-flop also with J and K connected permanently to

logic 1. External clock is applied to the clock input of flip-flop A and QA output is applied to

the clock input of the next flip-flop i.e. FF-B.

Logical Diagram

Operation

S.N. Condition Operation

1 Initially let both

the FFs be in

the reset state

QBQA = 00 initially

178 | P a g e
 COPYRIGHT FIMT 2020

2 After 1st

negative clock

edge

As soon as the first negative clock edge is applied, FF-A will toggle

and QA will be equal to 1.

QA is connected to clock input of FF-B. Since QA has changed from

0 to 1, it is treated as the positive clock edge by FF-B. There is no

change in QB because FF-B is a negative edge triggered FF.

QBQA = 01 after the first clock pulse.

3 After 2nd

negative clock

edge

On the arrival of second negative clock edge, FF-A toggles again

and QA = 0.

The change in QA acts as a negative clock edge for FF-B. So it will

also toggle, and QB will be 1.

QBQA = 10 after the second clock pulse.

4 After 3rd

negative clock

edge

On the arrival of 3rd negative clock edge, FF-A toggles again and

QA become 1 from 0.

Since this is a positive going change, FF-B does not respond to it

and remains inactive. So QB does not change and continues to be

equal to 1.

QBQA = 11 after the third clock pulse.

5 After 4th

negative clock

edge

On the arrival of 4th negative clock edge, FF-A toggles again and

QA becomes 1 from 0.

This negative change in QA acts as clock pulse for FF-B. Hence it

toggles to change QB from 1 to 0.

QBQA = 00 after the fourth clock pulse.

Truth Table

179 | P a g e
 COPYRIGHT FIMT 2020

Synchronous counters

If the "clock" pulses are applied to all the flip-flops in a counter simultaneously, then such a

counter is called as synchronous counter.

2-bit Synchronous up counter

The JA and KA inputs of FF-A are tied to logic 1. So FF-A will work as a toggle flip-flop.

The JB and KB inputs are connected to QA.

Logical Diagram

Operation

180 | P a g e
 COPYRIGHT FIMT 2020

S.N. Condition Operation

1 Initially let both the

FFs be in the reset

state

QBQA = 00 initially.

2 After 1st negative

clock edge

As soon as the first negative clock edge is applied, FF-A will

toggle and QA will change from 0 to 1.

But at the instant of application of negative clock edge, QA , JB =

KB = 0. Hence FF-B will not change its state. So QB will remain

0.

QBQA = 01 after the first clock pulse.

3 After 2nd negative

clock edge

On the arrival of second negative clock edge, FF-A toggles again

and QA changes from 1 to 0.

But at this instant QA was 1. So JB = KB= 1 and FF-B will toggle.

Hence QB changes from 0 to 1.

QBQA = 10 after the second clock pulse.

4 After 3rd negative

clock edge

On application of the third falling clock edge, FF-A will toggle

from 0 to 1 but there is no change of state for FF-B.

QBQA = 11 after the third clock pulse.

5 After 4th negative

clock edge

On application of the next clock pulse, QA will change from 1 to

0 as QB will also change from 1 to 0.

QBQA = 00 after the fourth clock pulse.

Classification of counters

Depending on the way in which the counting progresses, the synchronous or asynchronous

counters are classified as follows −

181 | P a g e
 COPYRIGHT FIMT 2020

 Up counters

 Down counters

 Up/Down counters

UP/DOWN Counter

Up counter and down counter is combined together to obtain an UP/DOWN counter. A

mode control (M) input is also provided to select either up or down mode. A combinational

circuit is required to be designed and used between each pair of flip-flop in order to achieve

the up/down operation.

 Type of up/down counters

 UP/DOWN ripple counters

 UP/DOWN synchronous counter

UP/DOWN Ripple Counters

In the UP/DOWN ripple counter all the FFs operate in the toggle mode. So either T flip-

flops or JK flip-flops are to be used. The LSB flip-flop receives clock directly. But the clock

to every other FF is obtained from (Q = Q bar) output of the previous FF.

 UP counting mode (M=0) − The Q output of the preceding FF is connected to the

clock of the next stage if up counting is to be achieved. For this mode, the mode

select input M is at logic 0 (M=0).

 DOWN counting mode (M=1) − If M = 1, then the Q bar output of the preceding FF

is connected to the next FF. This will operate the counter in the counting mode.

Example

3-bit binary up/down ripple counter.

 3-bit − hence three FFs are required.

 UP/DOWN − So a mode control input is essential.

 For a ripple up counter, the Q output of preceding FF is connected to the clock input

of the next one.

182 | P a g e
 COPYRIGHT FIMT 2020

 For a ripple up counter, the Q output of preceding FF is connected to the clock input

of the next one.

 For a ripple down counter, the Q bar output of preceding FF is connected to the clock

input of the next one.

 Let the selection of Q and Q bar output of the preceding FF be controlled by the

mode control input M such that, If M = 0, UP counting. So connect Q to CLK. If M

= 1, DOWN counting. So connect Q bar to CLK.

Block Diagram

Truth Table

183 | P a g e
 COPYRIGHT FIMT 2020

Operation

S.N. Condition Operation

1 Case 1 − With M =

0 (Up counting

mode)

If M = 0 and M bar = 1, then the AND gates 1 and 3 in fig.

will be enabled whereas the AND gates 2 and 4 will be

disabled.

Hence QA gets connected to the clock input of FF-B and

QB gets connected to the clock input of FF-C.

These connections are same as those for the normal up

184 | P a g e
 COPYRIGHT FIMT 2020

counter. Thus with M = 0 the circuit work as an up counter.

2 Case 2: With M = 1

(Down counting

mode)

If M = 1, then AND gates 2 and 4 in fig. are enabled whereas

the AND gates 1 and 3 are disabled.

Hence QA bar gets connected to the clock input of FF-B and

QB bar gets connected to the clock input of FF-C.

These connections will produce a down counter. Thus with M

= 1 the circuit works as a down counter.

Modulus Counter (MOD-N Counter)

The 2-bit ripple counter is called as MOD-4 counter and 3-bit ripple counter is called as

MOD-8 counter. So in general, an n-bit ripple counter is called as modulo-N counter.

Where, MOD number = 2
n
.

Type of modulus

 2-bit up or down (MOD-4)

 3-bit up or down (MOD-8)

 4-bit up or down (MOD-16)

Application of counters

 Frequency counters

 Digital clock

 Time measurement

 A to D converter

 Frequency divider circuits

 Digital triangular wave generator.

Counters in Digital Logic

According to Wikipedia, in digital logic and computing, a Counter is a device which stores

(and sometimes displays) the number of times a particular event or process has occurred,

https://en.wikipedia.org/wiki/Counter_(digital)

185 | P a g e
 COPYRIGHT FIMT 2020

often in relationship to a clock signal. Counters are used in digital electronics for counting

purpose, they can count specific event happening in the circuit. For example, in UP counter a

counter increases count for every rising edge of clock. Not only counting, a counter can

follow the certain sequence based on our design like any random sequence 0,1,3,2… .They

can also be designed with the help of flip flops.

Counter Classification

Counters are broadly divided into two categories

1. Asynchronous counter

2. Synchronous counter

1. Asynchronous Counter

In asynchronous counter we don‘t use universal clock, only first flip flop is driven by main

clock and the clock input of rest of the following counters is driven by output of previous flip

186 | P a g e
 COPYRIGHT FIMT 2020

flops. We can understand it by following diagram-

It is evident from timing diagram that Q0 is changing as soon as the rising edge of clock

pulse is encountered, Q1 is changing when rising edge of Q0 is encountered(because Q0 is

https://media.geeksforgeeks.org/wp-content/uploads/counters-in-digital-logic.png
https://media.geeksforgeeks.org/wp-content/uploads/counters-in-digital-logic.png

187 | P a g e
 COPYRIGHT FIMT 2020

like clock pulse for second flip flop) and so on. In this way ripples are generated through

Q0,Q1,Q2,Q3 hence it is also called RIPPLE counter.

2. Synchronous Counter

Unlike the asynchronous counter, synchronous counter has one global clock which drives

each flip flop so output changes in parallel. The one advantage of synchronous counter over

asynchronous counter is, it can operate on higher frequency than asynchronous counter as it

does not have cumulative delay because of same clock is given to each flip flop.

Synchronous counter circuit

https://media.geeksforgeeks.org/wp-content/uploads/synchronous-counters.png
https://media.geeksforgeeks.org/wp-content/uploads/synchronous-counters.png

188 | P a g e
 COPYRIGHT FIMT 2020

Timing diagram synchronous counter

From circuit diagram we see that Q0 bit gives response to each falling edge of clock while

Q1 is dependent on Q0, Q2 is dependent on Q1 and Q0 , Q3 is dependent on Q2,Q1 and Q0.

Decade Counter

A decade counter counts ten different states and then reset to its initial states. A simple

decade counter will count from 0 to 9 but we can also make the decade counters which can go

through any ten states between 0 to 15(for 4 bit counter).

Clock pulse Q3 Q2 Q1 Q0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

https://media.geeksforgeeks.org/wp-content/uploads/timing-diagram-synchronous-counter.png"
https://media.geeksforgeeks.org/wp-content/uploads/timing-diagram-synchronous-counter.png"

189 | P a g e
 COPYRIGHT FIMT 2020

9 1 0 0 1

10 0 0 0 0

 Truth table for simple decade counter

Decade counter circuit diagram

We see from circuit diagram that we have used nand gate for Q3 and Q1 and feeding this to

clear input line because binary representation of 10 is—

1010

And we see Q3 and Q1 are 1 here, if we give NAND of these two bits to clear input then

counter will be clear at 10 and again start from beginning.

Q2. Explain Johnson Ring Counter OR TWISTED RING COUNTER

Johnson Ring Counter OR TWISTED RING COUNTER

The Johnson Ring Counter consists of a number of counters connected together with the

output fed back to the input

https://media.geeksforgeeks.org/wp-content/uploads/decade-counter-circuit-diagram.png
https://media.geeksforgeeks.org/wp-content/uploads/decade-counter-circuit-diagram.png

190 | P a g e
 COPYRIGHT FIMT 2020

In the previous Shift Register tutorial we saw that if we apply a serial data signal to the input

of a Serial-in to Serial-out Shift Register, the same sequence of data will exit from the last

flip flip in the register chain.

ADVERTISING

This serial movement of data through the resister occurs after a preset number of clock cycles

thereby allowing the SISO register to act as a sort of time delay circuit to the original input

data signal.

But what if we were to connect the output of this shift register back to its input so that the

output from the last flip-flop, QD becomes the input of the first flip-flop, QA. We would then

have a closed loop circuit that ―recirculates‖ the same bit of DATA around a continuous loop

for every state of its sequence, and this is the principal operation of a Ring Counter.

Then by looping the output back to the input, (feedback) we can convert a standard shift

register circuit into a ring counter. Consider the circuit below.

4-bit Ring Counter

191 | P a g e
 COPYRIGHT FIMT 2020

The synchronous Ring Counter example above, is preset so that exactly one data bit in the

register is set to logic ―1‖ with all the other bits reset to ―0‖. To achieve this, a ―CLEAR‖

signal is firstly applied to all the flip-flops together in order to ―RESET‖ their outputs to a

logic ―0‖ level and then a ―PRESET‖ pulse is applied to the input of the first flip-flop (FFA)

before the clock pulses are applied. This then places a single logic ―1‖ value into the circuit

of the ring counter.

So on each successive clock pulse, the counter circulates the same data bit between the four

flip-flops over and over again around the ―ring‖ every fourth clock cycle. But in order to

cycle the data correctly around the counter we must first ―load‖ the counter with a suitable

data pattern as all logic ―0‘s‖ or all logic ―1‘s‖ outputted at each clock cycle would make the

ring counter invalid.

This type of data movement is called ―rotation‖, and like the previous shift register, the effect

of the movement of the data bit from left to right through a ring counter can be presented

graphically as follows along with its timing diagram:

Rotational Movement of a Ring Counter

192 | P a g e
 COPYRIGHT FIMT 2020

Since the ring counter example shown above has four distinct states, it is also known as a

―modulo-4‖ or ―mod-4‖ counter with each flip-flop output having a frequency value equal to

one-fourth or a quarter (1/4) that of the main clock frequency.

The ―MODULO‖ or ―MODULUS‖ of a counter is the number of states the counter counts or

sequences through before repeating itself and a ring counter can be made to output any

modulo number. A ―mod-n‖ ring counter will require ―n‖ number of flip-flops connected

together to circulate a single data bit providing ―n‖ different output states.

193 | P a g e
 COPYRIGHT FIMT 2020

For example, a mod-8 ring counter requires eight flip-flops and a mod-16 ring counter would

require sixteen flip-flops. However, as in our example above, only four of the possible

sixteen states are used, making ring counters very inefficient in terms of their output state

usage.

Johnson Ring Counter

The Johnson Ring Counter or ―Twisted Ring Counters‖, is another shift register with

feedback exactly the same as the standard Ring Counter above, except that this time the

inverted output Q of the last flip-flop is now connected back to the input D of the first flip-

flop as shown below.

The main advantage of this type of ring counter is that it only needs half the number of flip-

flops compared to the standard ring counter then its modulo number is halved. So a ―n-stage‖

Johnson counter will circulate a single data bit giving sequence of 2n different states and can

therefore be considered as a ―mod-2n counter‖.

4-bit Johnson Ring Counter

This inversion of Q before it is fed back to input D causes the counter to ―count‖ in a

different way. Instead of counting through a fixed set of patterns like the normal ring counter

such as for a 4-bit counter, ―0001‖(1), ―0010‖(2), ―0100‖(4), ―1000‖(8) and repeat, the

Johnson counter counts up and then down as the initial logic ―1‖ passes through it to the right

replacing the preceding logic ―0‖.

A 4-bit Johnson ring counter passes blocks of four logic ―0‖ and then four logic ―1‖ thereby

producing an 8-bit pattern. As the inverted output Q is connected to the input D this 8-bit

194 | P a g e
 COPYRIGHT FIMT 2020

pattern continually repeats. For example, ―1000‖, ―1100‖, ―1110‖, ―1111‖, ―0111‖, ―0011‖,

―0001‖, ―0000‖ and this is demonstrated in the following table below.

Truth Table for a 4-bit Johnson Ring Counter

Clock Pulse

No
FFA FFB FFC FFD

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

As well as counting or rotating data around a continuous loop, ring counters can also be used

to detect or recognise various patterns or number values within a set of data. By connecting

simple logic gates such as the AND or the OR gates to the outputs of the flip-flops the circuit

can be made to detect a set number or value.

Standard 2, 3 or 4-stage Johnson Ring Counters can also be used to divide the frequency of

the clock signal by varying their feedback connections and divide-by-3 or divide-by-5 outputs

are also available.

For example, a 3-stage Johnson Ring Counter could be used as a 3-phase, 120 degree phase

shift square wave generator by connecting to the data outputs at A, B and NOT-B.

The standard 5-stage Johnson counter such as the commonly available CD4017 is generally

used as a synchronous decade counter/divider circuit.

195 | P a g e
 COPYRIGHT FIMT 2020

Q3. Explain Memory Devices

A memory is just like a human brain. It is used to store data and instruction. Computer

memory is the storage space in computer where data is to be processed and instructions

required for processing are stored.

The memory is divided into large number of small parts. Each part is called a cell. Each

location or cell has a unique address which varies from zero to memory size minus one.

For example if computer has 64k words, then this memory unit has 64 * 1024 = 65536

memory location. The address of these locations varies from 0 to 65535.

Memory is primarily of two types

 Internal Memory − cache memory and primary/main memory

 External Memory − magnetic disk / optical disk etc.

Characteristics of Memory Hierarchy are following when we go from top to bottom.

 Capacity in terms of storage increases.

 Cost per bit of storage decreases.

 Frequency of access of the memory by the CPU decreases.

 Access time by the CPU increases.

196 | P a g e
 COPYRIGHT FIMT 2020

RAM

A RAM constitutes the internal memory of the CPU for storing data, program and program

result. It is read/write memory. It is called random access memory (RAM).

Since access time in RAM is independent of the address to the word that is, each storage

location inside the memory is as easy to reach as other location & takes the same amount of

time. We can reach into the memory at random & extremely fast but can also be quite

expensive.

RAM is volatile, i.e. data stored in it is lost when we switch off the computer or if there is a

power failure. Hence, a backup uninterruptible power system (UPS) is often used with

computers. RAM is small, both in terms of its physical size and in the amount of data it can

hold.

RAM is of two types

 Static RAM (SRAM)

 Dynamic RAM (DRAM)

Static RAM (SRAM)

The word static indicates that the memory retains its contents as long as power remains

applied. However, data is lost when the power gets down due to volatile nature. SRAM

chips use a matrix of 6-transistors and no capacitors. Transistors do not require power to

prevent leakage, so SRAM need not have to be refreshed on a regular basis.

Because of the extra space in the matrix, SRAM uses more chips than DRAM for the same

amount of storage space, thus making the manufacturing costs higher.

Static RAM is used as cache memory needs to be very fast and small.

Dynamic RAM (DRAM)

DRAM, unlike SRAM, must be continually refreshed in order for it to maintain the data.

This is done by placing the memory on a refresh circuit that rewrites the data several

hundred times per second. DRAM is used for most system memory because it is cheap and

small. All DRAMs are made up of memory cells. These cells are composed of one capacitor

and one transistor.

197 | P a g e
 COPYRIGHT FIMT 2020

ROM

ROM stands for Read Only Memory. The memory from which we can only read but cannot

write on it. This type of memory is non-volatile. The information is stored permanently in

such memories during manufacture.

A ROM, stores such instruction as are required to start computer when electricity is first

turned on, this operation is referred to as bootstrap. ROM chip are not only used in the

computer but also in other electronic items like washing machine and microwave oven.

Following are the various types of ROM −

MROM (Masked ROM)

The very first ROMs were hard-wired devices that contained a pre-programmed set of data

or instructions. These kind of ROMs are known as masked ROMs. It is inexpensive ROM.

PROM (Programmable Read Only Memory)

PROM is read-only memory that can be modified only once by a user. The user buys a blank

PROM and enters the desired contents using a PROM programmer. Inside the PROM chip

there are small fuses which are burnt open during programming. It can be programmed only

once and is not erasable.

EPROM (Erasable and Programmable Read Only Memory)

The EPROM can be erased by exposing it to ultra-violet light for a duration of upto 40

minutes. Usually, an EPROM eraser achieves this function. During programming an

electrical charge is trapped in an insulated gate region. The charge is retained for more than

ten years because the charge has no leakage path. For erasing this charge, ultra-violet light is

passed through a quartz crystal window (lid). This exposure to ultra-violet light dissipates

the charge. During normal use the quartz lid is sealed with a sticker.

EEPROM (Electrically Erasable and Programmable Read Only Memory)

The EEPROM is programmed and erased electrically. It can be erased and reprogrammed

about ten thousand times. Both erasing and programming take about 4 to 10 ms

(millisecond). In EEPROM, any location can be selectively erased and programmed.

198 | P a g e
 COPYRIGHT FIMT 2020

EEPROMs can be erased one byte at a time, rather than erasing the entire chip. Hence, the

process of re-programming is flexible but slow.

Serial Access Memory

Sequential access means the system must search the storage device from the beginning of

the memory address until it finds the required piece of data. Memory device which supports

such access is called a Sequential Access Memory or Serial Access Memory. Magnetic tape

is an example of serial access memory.

Direct Access Memory

Direct access memory or Random Access Memory, refers to conditions in which a system

can go directly to the information that the user wants. Memory device which supports such

access is called a Direct Access Memory. Magnetic disks, optical disks are examples of

direct access memory.

Cache Memory

Cache memory is a very high speed semiconductor memory which can speed up CPU. It

acts as a buffer between the CPU and main memory. It is used to hold those parts of data

and program which are most frequently used by CPU. The parts of data and programs, are

transferred from disk to cache memory by operating system, from where CPU can access

them.

Advantages

 Cache memory is faster than main memory.

 It consumes less access time as compared to main memory.

 It stores the program that can be executed within a short period of time.

 It stores data for temporary use.

Disadvantages

 Cache memory has limited capacity.

 It is very expensive.

Virtual memory is a technique that allows the execution of processes which are not

completely available in memory. The main visible advantage of this scheme is that programs

199 | P a g e
 COPYRIGHT FIMT 2020

can be larger than physical memory. Virtual memory is the separation of user logical

memory from physical memory.

This separation allows an extremely large virtual memory to be provided for programmers

when only a smaller physical memory is available. Following are the situations, when entire

program is not required to be loaded fully in main memory.

 User written error handling routines are used only when an error occurred in the data

or computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only a small

amount of the table is actually used.

 The ability to execute a program that is only partially in memory would counter many

benefits.

 Less number of I/O would be needed to load or swap each user program into

memory.

 A program would no longer be constrained by the amount of physical memory that is

available.

 Each user program could take less physical memory, more programs could be run the

same time, with a corresponding increase in CPU utilization and throughput.

Auxiliary Memory

Auxiliary memory is much larger in size than main memory but is slower. It normally stores

system programs, instruction and data files. It is also known as secondary memory. It can

also be used as an overflow/virtual memory in case the main memory capacity has been

exceeded. Secondary memories cannot be accessed directly by a processor. First the

data/information of auxiliary memory is transferred to the main memory and then that

information can be accessed by the CPU. Characteristics of Auxiliary Memory are following

−

 Non-volatile memory − Data is not lost when power is cut off.

 Reusable − The data stays in the secondary storage on permanent basis until it is not

overwritten or deleted by the user.

200 | P a g e
 COPYRIGHT FIMT 2020

 Reliable − Data in secondary storage is safe because of high physical stability of

secondary storage device.

 Convenience − With the help of a computer software, authorised people can locate

and access the data quickly.

 Capacity − Secondary storage can store large volumes of data in sets of multiple

disks.

 Cost − It is much lesser expensive to store data on a tape or disk than primary

memory.

201 | P a g e
 COPYRIGHT FIMT 2020

Q4. Explain Programmable Array Logic

Programmable Array Logic

Both Programmable Array Logic and Programmable Logic Array are types of PLDs

(programmable logic devices), and these are mainly used for designing combination logic

mutually by sequential logic. The main difference among these two is that PAL can be

designed with a collection of AND gates and fixed collection of OR gates whereas PLA can

be designed with a programmable array of AND although a fixed collection of OR gate. A

programmable logic device offers a simple as well as flexible logic circuit designing.

Programmable Array Logic

 Design of Programmable Array Logic (PAL)

The definition of term PAL or Programmable Array Logic is one type of PLD which is

known as Programmable Logic Device circuit, and working of this PAL is the same as the

PLA. The designing of the programmable array logic can be done with fixed OR gates as

well as programmable AND gates. By using this we can implement two easy functions

wherever the associates AND gates with each OR gate denote the highest number of product

conditions that can be produced in the form of SOP (sum of product) of an exact function.

As the logic gates like AND is connected continually toward the OR gates, and that indicates

that the produced product term is not distributed with the output functions. The major notion

behind PLD development is to fabricate a compound Boolean logic onto a single chip by

removing the defective wiring, avoiding the logic design, as well as decreasing the

consumption of power.

Example of PAL

Implement the following Boolean expression with the help of programmable array logic

(PAL)

X =AB + AC’

Y= AB’ + BC’

https://www.elprocus.com/sum-of-products-and-product-of-sums/

202 | P a g e
 COPYRIGHT FIMT 2020

The above given two Boolean functions are in the form of SOP (sum of products). The

product terms present in the Boolean expressions are X & Y, and one product term that is

AC‘ is common in every equation. So, the total required logic gates for generating the above

two equations is AND gates-4 OR programmable gates-2. The equivalent PAL logic diagram

is shown below.

PAL Logic Circuit

The AND gates which are programmable have the right of entry for normal as well as

complemented variable inputs. In the above logic diagram, the available inputs for each AND

gate are A, A‘, B, B‘, C, C‘. So, in order to generate a single product term with every AND

gate, the program is required.

All the product terms are obtainable at the inputs of an each OR gate. Here, the

programmable connections on the logic gate can be denoted with the symbol ‗X‘.

Here, the OR gate inputs are fixed. Thus, the required product terms are associated with each

OR gate inputs. As a result, these gates will generate particular Boolean equations.

The ‘.’ The symbol represents permanent connections.

https://www.elprocus.com/boolean-algebra-calculator-with-working/

203 | P a g e
 COPYRIGHT FIMT 2020

Q5. Explain Programmable Logic Array (PLA)

Both Programmable Array Logic and Programmable Logic Array are types of PLDs

(programmable logic devices), and these are mainly used for designing combination logic

mutually by sequential logic. The main difference among these two is that PAL can be

designed with a collection of AND gates and fixed collection of OR gates whereas PLA can

be designed with a programmable array of AND although a fixed collection of OR gate. A

programmable logic device offers a simple as well as flexible logic circuit designing.

Previous to programmable logic devices, the combinational logic circuits can be designed

with multiplexers, and these circuits were rigid as well as compound, then PLDs are

developed. The initial programmable logic device was ROM, but it was not successful due to

the hardware wastage issues as well as exponential growth enhancement in the every

hardware application. To overcome this issue, PAL and PLA were used. These two are

programmable, and efficiently uses the hardware.

Programmable Logic Array

Design of Programmable Logic Array (PLA)

The definition of term PLA presents the Boolean function in the form of a sum of product

(SOP). The designing of this programmable logic array can be done using the logic gates like

AND, OR, and NOT by fabricating on the chip, that makes every input as well as its

compliment obtainable toward every AND gate.

https://www.elprocus.com/introduction-to-combinational-logic-circuits/

204 | P a g e
 COPYRIGHT FIMT 2020

An every AND gate‘s output is connected to the every OR gate. Finally, the output of the OR

gate generates the output of the chip. Thus, this is how an appropriate association is finished

to use the expressions of the sum of the product. In the programmable logic array, the

connections of logic gates like AND & OR are programmable. PLA is expensive and difficult

to compare with PAL. The PAL uses two dissimilar developed methods can be used for a

programmable logic array for enhancing the effortlessness of programming. In this kind of

method, every connection can be done using a fuse on each intersection point wherever the

unnecessary connections can be detached by the fuse blowing. The final technique engages

the making of connection while the process of the fabrication using the suitable cover offered

for the precise interconnection model.

Example of PLA

Implement the following Boolean expression with the help of programmable logic array

(PLA)

X = AB + AC’

Y = AB’ +BC + AC’

The above given two Boolean functions are in the form of SOP (sum of products). The

product terms present in the Boolean expressions are X & Y, and one product term that is

AC‘ is common in every equation. So, the total required logic gates for generating the above

two equations is AND gates-4, OR programmable OR gates-2. The equivalent PLA logic

diagram is shown below.

205 | P a g e
 COPYRIGHT FIMT 2020

PLA Logic Circuit

The AND gates which are programmable have the right of entry for normal as well as

complemented variable inputs. In the above logic diagram, the available inputs for each AND

gate are A, A‘, B, B‘, C, C‘. So, in order to generate a single product term with every AND

gate, the program is required.

All the product terms are obtainable at the inputs of each OR gate. Here, the programmable

connections on the logic gate can be denoted with the symbol ‗X‘

206 | P a g e
 COPYRIGHT FIMT 2020

DATA STRUCTURE

BCA 108

Unit-1

Question1. Write the routine for insertion operation of singly linked list.

Answer: Void insert (Element Type X, List L, Position P)

{Position T mpCell;

T mpCell=malloc(sizeof(struct Node));

If(TmpCell=NULL)

FatalError(―Out Of space!!!‖);

 TmpCell->Element=X;TmpCell->Next=P->Next;

P->Next=TmpCell;

}

};

Question2 How the queue is implemented by linked list?

• It is based on the dynamic memory management techniques which allow allocation

and

De-allocation of memory space at runtime.

Insert operation

It involves the following subtasks:

1. Reserving memory space of the size of a queue element in memory

2. Storing the added value at the new location

3. Linking the new element with existing queue

4. Updating the rear pointer

Delete operation

It involves the following subtasks:

1. Checking whether queue is empty

207 | P a g e
 COPYRIGHT FIMT 2020

2. Retrieving the front most element of the queue

3. Updating the front pointer

Returning the retrieved value

Question3. Differentiate linear and non- linear data structure.

Answer:

Linear data structure Non- linear data structure

Data are arranged in linear or sequential

manner

Data are not arranged in linear manner.

Every item is related to its previous and next

item.

Every item is attached with many other

items.

Data items can be trans versed in a single

run.

Data items cannot be trans versed in a single

run.

Implementation is easy. Implementation is difficult.

Example: array, stack, queue, linked list. Example: tree, graph.

Question4. When singly linked list can be represented as circular linked list?

Answer: In a singly linked list, all the nodes are connected with forward links to the next

nodes in the list. The last node has a next field, NULL. In order to implement the circularly

linked list from singly linked lists, the last node‘s next field to the first node.

Question5. What are enqueue and dequeue operations?

• Answer: Enqueue - adding an element to the queue at the rear end

If the queue is not full, this function adds an element to the back of the queue,

else it prints ―Overflow‖.

3 5 9

208 | P a g e
 COPYRIGHT FIMT 2020

void enqueue(int queue[], int element, int& rear, int arraySize) { if(rear == arraySize) //

Queue is full

printf(―Overflow\n‖); else{

queue[rear] = element; // Add the element to the back rear++;

}

}

• Dequeue – removing or deleting an element from the queue at the front end

If the queue is not empty, this function removes the element from the front of the

queue, else it prints ―Underflow‖. void dequeue(int queue[], int& front, int rear) {

if(front == rear) // Queue is empty printf(―Underflow\n‖);

else {

queue[front] = 0; // Delete the front element front++;

}

}

Unit-2

Question1- What are the two methods of binary tree implementation?

Answer Two methods to implement a binary tree are

 Linear representation.

 Linked representation

209 | P a g e
 COPYRIGHT FIMT 2020

Question2. Write the advantages of threaded binary tree.

Answer: The difference between a binary tree and the threaded binary tree is that in the

binary trees the nodes are null if there is no child associated with it and so there is no way

to traverse back.

But in a threaded binary tree we have threads associated with the nodes i.e. they either are

linked to the predecessor or successor in the in order traversal of the nodes. This helps us to

traverse further or backward in the in order traversal fashion.

There can be two types of threaded binary tree:-

1) Single Threaded: - i.e. nodes are threaded either towards its in order predecessor or

successor.

2) Double threaded: - i.e. nodes are threaded towards both the in order predecessor and

successor.

Question3. List out the steps involved in deleting a node from a binary search tree.

 Answer: (1.) t has no right hand child node t->r == z

 (2.) t has a right hand child but its right hand child node has no left sub tree

 t->r->l == z

(3.) t has a right hand child node and the right hand child node has a left

hand child node t->r->l != z

Question4.Give the pre & postfix form of the expression (a + ((b*(c-e))/f).

Answer:

Question5. Define a heap. How can it be used to represent a priority queue?

Answer: A priority queue is a different kind of queue, in which the next element to be

210 | P a g e
 COPYRIGHT FIMT 2020

removed is defined by (possibly) some other criterion. The most common way to

implement a priority queue is to use a different kind of binary tree, called a heap. A heap

avoids the long paths that can arise with binary search trees.

Unit-4

Question1. What is binary search?

Answer: For binary search, the array should be arranged in ascending or descending

order.In each step, the algorithm compares the search key value with the middle element of

the array. If the key match, then a matching element has been found and its index, or

Position, is returned.

Otherwise, if the search key is less than the middle element, then the algorithm repeats its

action on the sub-array to the left of the middle element or, if the search key is greater, on

the sub-array to the right.

Question2. Write the function in c for shell sort?

Answer: Void Shellsort(Elementtype A[],int N)

211 | P a g e
 COPYRIGHT FIMT 2020

{

int i , j , increment ; elementtype tmp ;

for(elementtype=N / 2;increment > 0;increment / = 2) For(i= increment ; i

<N ; i ++)

{

tmp=A[];

for(j=I; j>=increment; j - =increment) if(tmp< A[]=A[j –

increment];

A[j]=A[j – increment]; Else

Break;

A[j]=tmp;

}}

Question3. How the insertion sort is done with the array?

Answer: It sorts a list of elements by inserting each successive element in the previously

Sorted sub listed.

Consider an array to be sorted A[1],A[2],….A[n]

(a). Pass 1: A[2] is compared with A[1] and placed them in sorted order.

(b). Pass 2: A[3] is compared with both A[1] and A[2] and inserted at an appropriate place.

This makes A[1], A[2],A[3] as a sorted sub array.

(c). Pass n-1 : A[n] is compared with each element in the sub array A [1], A [2] …A [n-1]

and inserted at an appropriate position.

Question4. What is open addressing?

Answer: Open addressing is also called closed hashing, which is an alternative to resolve

the Collisions with linked lists. In this hashing system, if a collision occurs, alternative cells

are tired until an empty cell is found.

There are three strategies in open addressing:

● Linear probing

● Quadratic probing

● Double hashing

Question5. Define searching?

212 | P a g e
 COPYRIGHT FIMT 2020

Answer: Searching refers to determining whether an element is present in a given list of

elements or not. If the element is present, the search is considered as successful, otherwise

it is considered as an unsuccessful search. The choice of a searching technique is based on

the following factors

a. Order of elements in the list i.e., random or sorted

b. Size of the list

 Unit-3

Question1. Give an algorithm to check whether the given binary tree is a BST or not.

Answer: Consider the following simple program. For each node, check if left node of it is

smaller than the node and right node of it is greater than the node. This approach is wrong as

this will return true for below binary tree. Checking only at current node is not enough.

Int IsBST(struct BinaryTreeNode*root){

 If(root=NULL) return 1:

 /*false if left is > than root */

 If(root=left !-NULL && root –left –data> root – data)

 Return0;

2

1

8

9

6

213 | P a g e
 COPYRIGHT FIMT 2020

 /*false if right is < than root*/

If (root-right! =NULL && root-right-data<root-data)

 Return0;

 /*false if, recursively, the left or right is not a BST*/

 If(!IsBST(root-left)||!IsBST(root-right))

 Return0;

 /* passing all that, it‘s a BST*/

 Return 1;

Question2. Give an algorithm for finding the size of binary tree.

Answer: calculate the size of left and right subtree recursively, add 1 (currently node) and

return to its parent,// compute the number of nodes in a tree.

Int sizeOfBinary treeNode*root){

 If(root=NULL)

 Return0;

 Else return(sizeOfBinaryTree(root-left) + 1+SizeOfBinaryTree(root-right));

 }

Time complexity: O(n). Space Complexity:O(n).

Question3- What are the steps to convert a general tree into binary tree?

Answer- The steps to convert a general tree into binary tree are ;

i. use the root of the general tree as the root of the binary tree

ii. Determine the first child of the root. This is the leftmost node in the general tree at

the next level

214 | P a g e
 COPYRIGHT FIMT 2020

iii. Insert this node. The child reference of the parent node refers to this node.

iv. Continue finding the first child of each parent node and insert it below the parent

node with the child reference of the parent to this node.

v. When no more first children exist in the path just used, move back to the parent of

the last node entered and repeat the above process. In other words,

determine the first sibling of the last node entered.

vi. Complete the tree for all nodes. In order to locate where the node fits you must

search for the first child at that level and then follow the sibling references to a nil

where the next sibling can be inserted. The children of any sibling node can be

inserted by locating the parent and then inserting the first child. Then the above

process is repeated.

Question4. Define AVL tree. What is a balance factor in AVL trees?

 Answer

AVL -AVL tree is a binary search tree except that for every node in the tree, the height of

the left and right sub trees can differ by at most 1.

Balancing factor in AVL trees- Balance factor of a node is defined to be the difference

between the height of the node's left subtree and the height of the node's right subtree.

Question5. What is meant by pivot node?

Answer: The node to be inserted travel down the appropriate branch track along the way of

the deepest level node on the branch that has a balance factor of +1 or -1 is called pivot

node.

215 | P a g e
 COPYRIGHT FIMT 2020

 Database Management System

Subject Code:BCA-110

1. What is SQL (Structured Query Language)?

Ans. Structured Query Language, is a database computer language designed for

managing data in relational database management systems (RDBMS), and originally based

upon relational algebra and calculus. Its scope includes data insert, query, update and

delete, schema creation and modification, and data access control. SQL was one of the first

commercial languages for Edgar F. Codd‗s relational model.

SQL is a DSL (Data Sub Language), which is really a combination of two languages. These

are the Data Definition Language (DDL) and the Data Manipulation Language (DML).

Schema changes are part of the DDL, while data changes are part of the DML.

2. Explain Role and Resposibilities of DBA?

Ans: The success of a database environment depends on central control of database design,

implementation, and use. This central control and coordination is the role of the database

administrator (DBA). The DBA is a single person; however, large organizations may divide

DBA responsibilities among a team of personnel, each with specific skills and areas of

responsibility such as database design, tuning, or problem resolution.

 A database administrator (DBA) is a person responsible for the design, implementation,

maintenance and repair of an organization‘s database. They are also known by the

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Relational_database_management_systems
http://en.wikipedia.org/wiki/Relational_algebra
http://en.wikipedia.org/wiki/Relational_calculus
http://en.wikipedia.org/wiki/Database_schema
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Database

216 | P a g e
 COPYRIGHT FIMT 2020

titles Database Coordinator or Database Programmer, and is closely related to the Database

Analyst, Database Modeler, Programmer Analyst, and Systems Manager. The role includes

the development and design of database strategies, monitoring and improving database

performance and capacity, and planning for future expansion requirements. They may also

plan, co-ordinate and implement security measures to safeguard the database. Employing

organizations may require that a database administrator have a certification or degree for

database systems (for example, the Microsoft Certified Database Administrator). Some

organizations have a hierarchical level of database administrators, generally:

 Data Analysts/Query designers

 Junior DBAs

 Midlevel DBAs

 DBA consultants

Personal Characteristics/Skills

1. Strong organizational skills

2. Strong logical and analytical thinker

3. Ability to concentrate and pay close attention to detail

4. Strong written and verbal communication skills

5. Willing to pursue education throughout your career.

Role of DBA:

Schema Definition:

The Database Administrator creates the database schema by executing DDL

statements. Schema includes the logical structure of database table(Relation) like data types

of attributes,length of attributes,integrity constraints etc.

 Storage structure and access method definition

Database tables or indexes are stored in the following ways: Flat files,Heaps,B+ Tree

etc..

Schema and physical organization modification

The DBA carries out changes to the existing schema and physical organization.

Granting authorization for data access

The DBA provides different access rights to the users according to their level. Ordinary users

might have highly restricted access to data, while you go up in the hierarchy to the

administrator ,you will get more access rights.

 Routine Maintenance:

Some of the routine maintenance activities of a DBA is given below.

http://en.wikipedia.org/wiki/Certification
http://en.wikipedia.org/wiki/Microsoft_Certified_Professional#Microsoft_Certified_Database_Administrator_.28MCDBA.29

217 | P a g e
 COPYRIGHT FIMT 2020

 Taking backup of database periodically

 Ensuring enough disk space is available all the time.

 Monitoring jobs running on the database.

 Ensure that performance is not degraded by some expensive task submitted by some

users.

 Performance Tuning.

3. What is DBMS (Database Management System) ?

Ans: A Database Management System (DBMS) is a set of computer programs that controls

the creation, maintenance, and the use of a database. It allows organizations to place control

of database development in the hands of database administrators (DBAs) and other

specialists. A DBMS is a system software package that helps the use of integrated collection

of data records and files known as databases. It allows different user application programs to

easily access the same database. DBMSs may use any of a variety of database models, such

as the network model or relational model. In large systems, a DBMS allows users and other

software to store and retrieve data in a structured way. Instead of having to write computer

programs to extract information, user can ask simple questions in a query language. Thus,

many DBMS packages provide Fourth-generation programming language (4GLs) and other

application development features. It helps to specify the logical organization for a database

and access and use the information within a database. It provides facilities for

controlling data access, enforcing data integrity, managing concurrency, and restoring the

database from backups. A DBMS also provides the ability to logically present database

information to users.

4. What is the need of DBMS ?

Ans: A database management system (DBMS) can help address the employee count scenario

and a range of even more complex situations related to cost, order status or inventory

management by presenting the same data to everyone in the business at the same time. A

DBMS also eliminates the frustrating hunt for the right version of the right spreadsheet on a

vast and disorganized network drive.

•
As businesses grow, the volume of data they accumulate grows exponentially. Managing

this data deluge becomes increasingly difficult just at the moment when superior data

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Database_administrator
http://en.wikipedia.org/wiki/Database_model
http://en.wikipedia.org/wiki/Network_model
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/Data_access
http://en.wikipedia.org/wiki/Data_integrity

218 | P a g e
 COPYRIGHT FIMT 2020

management becomes more important to business success.

•

As businesses expand, more sophisticated tools are needed to manage data. Tools that

serve start-ups well are overwhelmed by the demands faced by larger businesses.

•

A database management system (DBMS) is a powerful tool used to store data, secure it,

protect it and make it quickly available to people who need it..

•

A DBMS enables a business to squeeze more value from the data it collects for improved

decision-making.

5. What are Advantages and Disadvantages of DBMS?

Ans: The advantages and disadvantages of DBMS are as follows:

Advantages:

 Reduced data redundancy

 Reduced updating errors and increased consistency

 Greater data integrity and independence from applications programs

 Improved data acces s to users through use of host and query languages

 Improved data security

 Reduced data entry, storage, and retrieval costs

 Facilitated development of new applications program

Disadvantages:

Database systems are complex, difficult, and time-consuming to design

 Substantial hardware and software start-up costs

 Damage to database affects virtually all applications programs

 Extensive conversion costs in moving form a file-based system to a database system

 Initial training required for all programmers and users.

6. What is an Attribute?

219 | P a g e
 COPYRIGHT FIMT 2020

Ans: An attribute in a table is a named column or they are the set of important properties

which describes the particular entity. An attribute may consist of name, roll number, age

etc. Relations are used to hold information about the object. The attributes in a relation can

appear in any order and the relation is the same relation and hence conveys the same

meaning. Attributes are set of qualities of qualities which are used to identify a particular

entity.

7. What are Derived Attributes?

Ans: Derived attributes are those attributes which are based on and are derived from the

attributes of another table or a relation. The derived attributes may contain new values or the

values from the base table from which it was derived. Derived attributes are effectively read-

only since there is no place to write them back to. Also, because derived attributes don‘t

directly point to anything in the database, they cannot be used as primary keys. For example:

a derived attribute person‘s full name may be derived from attribute person‘s first name and

the last name.

8. Explain the various keys in DBMS.

Ans: Primary Key: The primary key of a relational table uniquely identifies each record in

the table. It can either be a normal attribute that is guaranteed to be unique (such as Social

Security Number in a table with no more than one record per person) or it can be generated

by the DBMS . Primary keys may consist of a single attribute or multiple attributes in

combination.

Examples: Imagine we have a STUDENTS table that contains a record for each student at a

university. The student‘s unique student ID number would be a good choice for a primary key

in the STUDENTS table. The student‘s first and last name would not be a good choice, as

there is always the chance that more than one student might have the same name.

Super Key: A superkey is a combination of attributes that can be uniquely used to identify a

database record. A table might have many superkeys. Candidate keys are a special subset of

superkeys that do not have any extraneous information in them.

Examples: Imagine a table with the fields <Name>, <Age>, <SSN> and <Phone Extension>.

This table has many possible superkeys. Three of these are <SSN>, <Phone Extension,

220 | P a g e
 COPYRIGHT FIMT 2020

Name> and <SSN, Name>. Of those listed, only <SSN> is a candidate key, as the others

contain information not necessary to uniquely identify records.

Candidate Key: A candidate key is a combination of attributes that can be uniquely used to

identify a database record without any extraneous data. Each table may have one or more

candidate keys. One of these candidate keys is selected as the table primary key.

In the relational model of databases, a candidate key of a relation is a minimal superkey for

that relation; that is, a set of attributes such that

1. the relation does not have two distinct tuples with the same values for these attributes

(which means that the set of attributes is a superkey)

2. there is no proper subset of these attributes for which (1) holds (which means that the

set is minimal).

Since a relation contains no duplicate tuples, the set of all its attributes is a superkey if NULL

values are not used. It follows that every relation will have at least one candidate key.

The candidate keys of a relation tell us all the possible ways we can identify its tuples. As

such they are an important concept for the design database schema.

Foreign Key: A foreign key is a field (or fields) that points to the primary key of another

table. The purpose of the foreign key is to ensure referential integrity of the data. In other

words, only values that are supposed to appear in the database are permitted.

For example, say we have two tables, a CUSTOMER table that includes all customer data,

and an ORDERS table that includes all customer orders. The constraint here is that all orders

must be associated with a customer that is already in the CUSTOMER table. In this case, we

will place a foreign key on the ORDERS table and have it relate to the primary key of the

CUSTOMER table. This way, we can ensure that all orders in the ORDERS table are related

to a customer in the CUSTOMER table. In other words, the ORDERS table cannot contain

information on a customer that is not in the CUSTOMER table.

The structure of these two tables will be as follows:

Table CUSTOMER

column name characteristic

SID Primary Key

Last_Name

http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Relvar
http://en.wikipedia.org/wiki/Superkey
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Proper_subset
http://en.wikipedia.org/wiki/Logical_schema

221 | P a g e
 COPYRIGHT FIMT 2020

First_Name

Table ORDERS

column name Characteristic

Order_ID Primary Key

Order_Date

Customer_SID Foreign Key

Amount

In the above example, the Customer_SID column in the ORDERS table is a foreign key

pointing to the SID column in the CUSTOMER table.

Composite Key : A composite key is a key that uses more than one column to identify the

data as opposed to a single column. This can sometimes be more useful than assigning each

row an arbitrary value to use as a key such as an auto number field.

9. What is the domain of an Attribute?

Ans: Attribute domains are rules that describe the legal values of a field type, providing a

method for enforcing data integrity. Attribute domains are used to constrain the values

allowed in any particular attribute for a table or feature class. If the features in a feature class

or nonspatial objects in a table have been grouped into subtypes, different attribute domains

can be assigned to each of the subtypes. A domain is a declaration of acceptable attribute

values. Whenever a domain is associated with an attribute field, only the values within that

domain are valid for the field. In other words, the field will not accept a value that is not in

that domain. Using domains helps ensure data integrity by limiting the choice of values for a

particular field.

For example: Rooms in hotel (1-300)

Age (1-99)

Married (yes or no)

Nationality (Sri Lankan, Indian, American, or British)

10. What do you mean by Entity and Entity set?

222 | P a g e
 COPYRIGHT FIMT 2020

Ans: An entity is a thing in the real world with an independent existance. and entity set is

collection or set all entities of a particular entity type at any point of time.

* An entity is an object that exists and is distinguishable from other objects. For instance,

John Harris with S.I.N. 890-12-3456 is an entity, as he can be uniquely identified as one

particular person in the universe.

* An entity may be concrete (a person or a book, for example) or abstract (like a holiday or a

concept).

* An entity set is a set of entities of the same type (e.g., all persons having an account at a

bank).

* Entity sets need not be disjoint. For example, the entity set employee (all employees of a

bank) and the entity set customer (all customers of the bank) may have members in common.

* An entity is represented by a set of attributes.

o E.g. name, S.I.N., street, city for ―customer‖ entity.

11. What is a Log File?

Ans: A log file is a recording of everything that goes in and out of a particular server. It is a

concept much like the black box of an airplane that records everything going on with the

plane in the event of a problem. The information is frequently recorded chronologically, and

is located in the root directory, or occasionally in a secondary folder, depending on how it is

set up with the server. The only person who has regular access to the log files of a server is

the server administrator, and a log file is generally password protected, so that the server

administrator has a record of everyone and everything that wants to look at the log files for a

specific server.

The point of a log file is to keep track of what is happening with the server. If something

should malfunction within a complex system, there may be no other way of identifying the

problem. Log files are also used to keep track of complex systems, so that when a problem

does occur, it is easy to pinpoint and fix. Log files are also important to keeping track of

applications that have little to no human interaction, such as server applications. There are

times when log files are too difficult to read or make sense of, and it is then that log file

analysis is necessary. Log file analysis is generally performed by some kind of computer

program that makes the log file information more concise and readable format. Log files can

also be used to correlate data between servers, and find common problems between different

systems that might need one major solution to repair them all.

12. What is Normalization?

223 | P a g e
 COPYRIGHT FIMT 2020

Ans: Normalization is the process of efficiently organizing data in a database. There are two

goals of the normalization process: eliminating redundant data (for example, storing the same

data in more than one table) and ensuring data dependencies make sense (only storing related

data in a table). Both of these are worthy goals as they reduce the amount of space a database

consumes and ensure that data is logically stored.

Why it is requried?

Normalization reduces redundancy. Redundancy is the unnecessary repetition of data. It can

cause problems with storage, reterival and updation of data. Redundancy can lead to:

 Inconsistencies:-errors are more likely to occur when facts are repeated.

 Update anomalies:-inserting, modifying and deleting data may cause inconsistencies.

Inconsistency occurs when we perform updation or deletion of data in one relation,

while forgetting to make corresponding changes in other relations.

During the process of normalization, you can identify dependencies, which can cause

problems when deleting or updating. Normalization also helps to simplify the structure of the

tables. A fully normalized record consist of:

 A primary key that identifies that entity.

 A set of attributes that describe that entity.

13. What is the Difference between primary key and unique key?

Ans: The column holding the primary key constraint cannot accept null values.whereas

colum holding the unique constraint can accept null values assume that t3 is a table with two

columns t1 having primary key constraint and t2 having unique constraint if u try to insert

null into t2 it will accept that values whereas column t1 will not accept null. Each table

having only one PRIMARY KEY.And my contain many UNIQUE KEYS.

14. What is Data Redundancy?

Ans: Data redundancy occurs in database systems which have a field that is repeated in two

or more tables. For instance, in case when customer data is duplicated and attached with each

product bought then redundancy of data is a known source of inconsistency, since customer

might appear with different values for given attribute.Data redundancy leads to data

anomalies and corruption and generally should be avoided by design.Database

normalization prevents redundancy and makes the best possible usage of storage.Proper use

of foreign keys can minimize data redundancy and chance of destructive anomalies. However

http://databases.about.com/library/glossary/bldef-table.htm
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Data_corruption
http://en.wikipedia.org/wiki/Data_corruption
http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Foreign_key

224 | P a g e
 COPYRIGHT FIMT 2020

sometimes concerns of efficiency and convenience can result redundant data design despite

the risk of corrupting the data.

15. What is the Difference between Single valued and multi valued attributes ?

Ans: A single valued attribute can have only a single value. For example a person can have

only one ‗date of birth‘, ‗age‘ etc. That is a single valued attributes can have only single

value. But it can be simple or composite attribute.That is ‗date of birth‘ is a composite

attribute , ‗age‘ is a simple attribute. But both are single valued attributes.

Multivalued attributes can have multiple values. For instance a person may have multiple

phone numbers,multiple degrees etc.Multivalued attributes are shown by a double line

connecting to the entity in the ER diagram.

Single Valued Attribute: Attribute that hold a single value

Example1: Age

Exampe2: City

Example3:Customer id

Multi Valued Attribute: Attribute that hold multiple values.

Example1: A customer can have multiple phone numbers, email id‘s etc

Example2: A person may have several college degrees.

16 What is the difference between Strong and weak entity?

Ans: An entity set that does not have sufficient attributes to form a primary key is termed as

a weak entity set. An entity set that has a primary key is termed as strong entity set.

A weak entity is existence dependent. That is the existence of a weak entity depends on the

existence of a identifying entity set. The discriminator (or partial key) is used to identify

other attributes of a weak entity set.The primary key of a weak entity set is formed by

primary key of identifying entity set and the discriminator of weak entity set. The existence

of a weak entity is indicated by a double rectangle in the ER diagram. We underline the

discriminator of a weak entity set with a dashed line in the ER diagram.

17. What do you mean by Integrity Constraints?

Ans: Integrity constraints are used to ensure accuracy and consistency of data in a relational

database. Data integrity is handled in a relational database through the concept of referential

integrity. There are many types of integrity constraints that play a role in referential integrity

Entity integrity:-The entity integrity constraint states that no primary key value can be null.

This is because the primary key value is used to identify individual tuples in a relation .

Having null value for the primary key implies that we cannot identify some tuples.This also

specifies that there may not be any duplicate entries in primary key column.

http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Database_Consistency_%28computer_science%29
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Referential_integrity
http://en.wikipedia.org/wiki/Referential_integrity

225 | P a g e
 COPYRIGHT FIMT 2020

Referential Integrity:-The referential integrity constraint is specified between two relations

and is used to maintain the consistency among tuples in the two relations. Informally, the

referential integrity constraint states that a tuple in one relation that refers to another relation

must refer to an existing tuple in that relation.

Domain Integrity:-The domain integrity states that every element from a relation should

respect the type and restrictions of its corresponding attribute. A type can have a variable

length which needs to be respected. Restrictions could be the range of values that the element

can have, the default value if none is provided, and if the element can be NULL.

18. What is a Data Warehouse?

Ans: A data warehouse (DW) is a database used for reporting . The data is offloaded from

the operational systems for reporting. The data may pass through an operational data store for

additional operations before it is used in the DW for reporting.

 A data warehouse maintains its functions in three layers: staging, integration, and

access. Staging is used to store raw data for use by developers (analysis and support).

The integration layer is used to integrate data and to have a level of abstraction from users.

The access layer is for getting data out for users.

 This definition of the data warehouse focuses on data storage. The main source of the data is

cleaned, transformed, catalogued and made available for use by managers and other business

professionals for data mining, online analytical processing, market research and decision

support (Marakas & OBrien 2009). However, the means to retrieve and analyze data,

to extract, transform and load data, and to manage the data dictionary are also considered

essential components of a data warehousing system. Many references to data warehousing

use this broader context. Thus, an expanded definition for data warehousing includes business

intelligence tools, tools to extract, transform and load data into the repository, and tools to

manage and retrieve metadata.

19. Explain Referential Integrity?

Ans: Referential integrity is a database concept that ensures that relationships between tables

remain consistent. When one table has a foreign key to another table, the concept of

referential integrity states that you may not add a record to the table that contains the foreign

key unless there is a corresponding record in the linked table. It also includes the techniques

known as cascading update and cascading delete, which ensure that changes made to the

linked table are reflected in the primary table.

Consider the situation where we have two tables: Employees and Managers. The Employees

table has a foreign key attribute entitled ManagedBy which points to the record for that

http://en.wikipedia.org/wiki/Operational_data_store
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/OLAP
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Data_dictionary
http://en.wikipedia.org/wiki/Business_intelligence_tools
http://en.wikipedia.org/wiki/Business_intelligence_tools
http://en.wikipedia.org/wiki/Metadata

226 | P a g e
 COPYRIGHT FIMT 2020

employee‘s manager in the Managers table. Referential integrity enforces the following three

rules:

1. We may not add a record to the Employees table unless the Managed By attribute

points to a valid record in the Managers table.

2. If the primary key for a record in the Managers table changes, all corresponding

records in the Employees table must be modified using a cascading update.

3. If a record in the Managers table is deleted, all corresponding records in the Employees

table must be deleted using a cascading delete.

20. What is the use of DROP command and what are the differences between DROP,

TRUNCATE and DELETE commands?

Answer: DROP command is a DDL command which is used to drop/delete the existing

table, database, index or view from the database.

The major difference between DROP, TRUNCATE and DELETE commands are:

DROP and TRUNCATE commands are the DDL commands which are used to delete

tables from the database and once the table gets deleted, all the privileges and indexes

that are related to the table also get deleted. These 2 operations cannot be rolled back

and so should be used only when necessary.

DELETE command, on the other hand, is a DML Command which is also used to

delete rows from the table and this can be rolled back.

Note: It is recommended to use the ‗WHERE‘ clause along with the DELETE

command else the complete table will get deleted from the database.

