

1 | P a g e
 COPYRIGHT FIMT 2020

NAAC ACCREDITED

‘A’ Grade Institute by DHE, Govt. of NCT Delhi and Approved by the Bar Council of India and NCTE

Reference Material for Three Years

Bachelor of Computer Application

Code : 020

Semester – III

DISCLAIMER :FIMT, ND has exercised due care and caution in collecting the data before publishing tis

Reference Material. In spite of this ,if any omission,inaccuracy or any other error occurs with regards to the data

contained in this reference material, FIMT, ND will not be held responsible or liable. FIMT , ND will be grateful if you

could point out any such error or your suggestions which will be of great help for other readers.

2 | P a g e
 COPYRIGHT FIMT 2020

INDEX

Three Years

Bachelor of Computer Application

Code : 020

Semester – III

S.NO. SUBJECTS CODE PG.NO.

1

MATHEMATICS-III

201 03-50

2

COMPUTER ARCHITECTURE

203 51-94

3
FRONT END DEIGN TOOL

205 95-372

4

PRINCIPLE OF ACCOUNTING

207 373-434

5

OBJECT ORIENTED PROG.

209 435-471

COPYRIGHT FIMT 2020 Page 3

MATHEMATICS-III (201)

Mathematics-III (BCA-201)

Unit-I (Measures of Central Tendency & Dispersion)

Definition

Collecting data can be easy and fun. But sometimes it can be hard to tell other people about what

you have found. That’s why we use statistics. Two kinds of statistics are frequently used to

describe data. They are measures of central tendency and dispersion. These are often called

descriptive statistics because they can help you describe your data.

Mean median and mode

These are all measures of central tendency. They help summarize a bunch of scores with a single

number. Suppose you want to describe a bunch of data that you collected to a friend for a particular

variable like height of students in your class. One way would be to read each height you recorded

to your friend. Your friend would listen to all of the heights and then come to a conclusion about

how tall students generally are in your class But this would take too much time. Especially if you

are in a class of 200 or 300 students! Another way to communicate with your friend would be to

use measures of central tendency like the mean, median and mode. They help you summarize

bunches of numbers with one or just a few numbers. They make telling people about your data

easy.

Range, variance and standard deviation

These are all measures of dispersion. These help you to know the spread of scores within a bunch

of scores. Are the scores really close together or are they really far apart? For example, if you were

describing the heights of students in your class to a friend, they might want to know how much the

heights vary. Are all the men about 5 feet 11 inches within a few centimeters or so? Or is there a lot

of variation where some men are 5 feet and others are 6 foot 5 inches? Measures of dispersion like

the range, variance and standard deviation tell you about the spread of scores in a data set. Like

central tendency, they help you summarize a bunch of numbers with one or just a few numbers.

COPYRIGHT FIMT 2020 Page 4

Importance & Limitation

In any research, enormous data is collected and, to describe it meaningfully, one needs to

summarise the same. The bulkiness of the data can be reduced by organizing it into a frequency

table or histogram. The following popper user interface control may not be accessible. Tab to the

next button to revert the control to an accessible version.

Destroy user interface control Frequency distribution organizes the heap of data into a few

meaningful categories. Collected data can also be summarized as a single index/value, which

represents the entire data. These measures may also help in the comparison of data.

CENTRAL TENDENCY

Central tendency is defined as “the statistical measure that identifies a single value as

representative of an entire distribution.” The following popper user interface control may not be

accessible. Tab to the next button to revert the control to an accessible version.

Destroy user interface control It aims to provide an accurate description of the entire data. It is the

single value that is most typical/ representative of the collected data. The term “number crunching”

is used to illustrate this aspect of data description. The mean, median and mode are the three

commonly used measures of central tendency.

MEAN

Mean is the most commonly used measure of central tendency. There are different types of mean,

viz. arithmetic mean, weighted mean, geometric mean (GM) and harmonic mean (HM). If

mentioned without an adjective (as mean), it generally refers to the arithmetic mean.

Arithmetic mean

Arithmetic mean (or, simply, “mean”) is nothing but the average. It is computed by adding all the

values in the data set divided by the number of observations in it. If we have the raw data, mean is

given by the formula

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127352/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127352/

COPYRIGHT FIMT 2020 Page 5

Where, ∑ (the uppercase Greek letter sigma), X refers to summation, refers to the individual value

and n is the number of observations in the sample (sample size). The research articles published in

journals do not provide raw data and, in such a situation, the readers can compute the mean by

calculating it from the frequency distribution (if provided).

Where, f is the frequency and X is the midpoint of the class interval and n is the number of

observations.[

The following popper user interface control may not be accessible. Tab to the next button to revert

the control to an accessible version.

Destroy user interface control The standard statistical notations (in relation to measures of central

tendency) are mentioned. Readers are cautioned that the mean calculated from the frequency

distribution is not exactly the same as that calculated from the raw data. It approaches the mean

calculated from the raw data as the number of intervals increase.[

The following popper user interface control may not be accessible. Tab to the next button to revert

the control to an accessible version.

Destroy user interface control

Standard statistical notation

ADVANTAGES

The mean uses every value in the data and hence is a good representative of the data. The irony in

this is that most of the times this value never appears in the raw data. Repeated samples drawn

from the same population tend to have similar means. The mean is therefore the measure of central

tendency that best resists the fluctuation between different samples. The following popper user

interface control may not be accessible. Tab to the next button to revert the control to an accessible

version.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127352/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127352/

COPYRIGHT FIMT 2020 Page 6

Destroy user interface control

It is closely related to standard deviation, the most common measure of dispersion.

DISADVANTAGES

The important disadvantage of mean is that it is sensitive to extreme values/outliers, especially

when the sample size is small. The following popper user interface control may not be accessible.

Tab to the next button to revert the control to an accessible version.

Destroy user interface control Therefore, it is not an appropriate measure of central tendency for

skewed distribution. The following popper user interface control may not be accessible. Tab to the

next button to revert the control to an accessible version.

Destroy user interface control

Mean cannot be calculated for nominal or non nominal ordinal data. Even though mean can be

calculated for numerical ordinal data, many times it does not give a meaningful value, e.g. stage of

cancer.

Weighted mean

Weighted mean is calculated when certain values in a data set are more important than the others.

The following popper user interface control may not be accessible. Tab to the next button to revert

the control to an accessible version.

Destroy user interface control A weight wi is attached to each of the values xi to reflect this

importance.

For example, When weighted mean is used to represent the average duration of stay by a patient in

a hospital, the total number of cases presenting to each ward is taken as the weight.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127352/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127352/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127352/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127352/

COPYRIGHT FIMT 2020 Page 7

Geometric Mean

It is defined as the arithmetic mean of the values taken on a log scale. It is also expressed as the nth

root of the product of an observation.

GM is an appropriate measure when values change exponentially and in case of skewed

distribution that can be made symmetrical by a log transformation. GM is more commonly used in

microbiological and serological research. One important disadvantage of GM is that it cannot be

used if any of the values are zero or negative.

Harmonic mean

It is the reciprocal of the arithmetic mean of the observations

Measures of dispersion

The measure of central tendency, as discussed in the previous chapter tells us only about the

characteristics of a particular series. They do not describe anything on the observations or data

entirely. In other words, measures of central tendency do not tell anything about the variations that

exist in the data of a particular series. To make the concept, let discuss an example. It was found by

using formula of mean that the average depth of a river is 6 feet. One cannot confidently enter into

the river because in some places the depth may be 12 feet or it may have 3 feet. Thus this type of

interpretation by using the measures of central tendency sometimes proves to be useless. Hence the

measure of central tendency alone to measure the characteristics of a series of observations is not

sufficient to draw a valid conclusion. With the central value one must know as to how the data is

distributed. Different sets of data may have the same measures of central tendency but differ

greatly in terms of variation. For this knowledge of central value is not enough to appreciate the

nature of distribution of values. Thus there is the requirement of some additional measures along

with the measures of central tendency which will describe the spread of the entire set of values

along with the central value. One such measure is popularly called as dispersion or variation. The

study of dispersion will enables us to know whether a series is homogeneous (where all the

observations remains around the central value) or the observations is heterogeneous

COPYRIGHT FIMT 2020 Page 8

 (there will be variations in the observations around the central value like 1, 50, 20, 28 etc., where

the central value is 33). Hence it can be said that a measure of dispersion describes the spread or

scattering of the individual values of a series around its central value.

Experts opine different opinion on why the variations in a distribution are so important to consider?

Following are some views on validity of the measure of dispersion:

1. Measures of variation provide the researchers some additional information about the

behavior of the series along with the measures of central tendency. With this information

one can judge the reliability of the value that is derived by using the measure of central

tendency. If the data of the series are widely dispersed, the central location is less

representatives of the data as a whole. On the other hand, when the data of a series is less

dispersed, the central location is more representative to the entire series. In other wards, a

high degree of variation would mean little uniformity whereas a low degree of variation

would mean greater uniformity.

2. When the data of a series are widely dispersed, it creates practical problems in executing

data. Measure of dispersion helps in understanding and tackling the widely dispersed data.

3. It facilitates to determine the nature and cause of variation in order to control the variation

itself.

4. Measures of variation enable comparison to be made of two or more series with regard to

their variability.

DEFINATION:

Following are some definitions defined by different experts on measures of dispersion. L.R.

Connor defines measures of dispersion as �dispersion is the measure extended to which individual

items vary�. Similarly, Brookes and Dick opines it as �dispersion or spread is the degree of the

scatter or the variation of the variables about a central value�. Robert H. Wessel defines it as

�measures which indicate the spread of the values are called measures of dispersion�. From all

these definition it is clear that dispersion measures more or less describes the spread or scattering

of the individual values of a series around its central value.

COPYRIGHT FIMT 2020 Page 9

METHODS OF MEASURING DISPERSION:

Dispersion of a series of data can be calculated by using following four widely used methods .

Dispersion when measured on basis of the difference between two extreme values selected from a

series of data. The two well known measures are

1. The Range

2. The Inter-quartile Range or Quartile Deviation

Dispersion when measured on basis of average deviation from some measure of central tendency.

The well known measures are

1. The Mean/average deviation

2. The Standard Deviation and

3. The Coefficient of variation and

4. The Gini coefficient and the Lorenz curve

Collection of data and formation of frequency distribution In statistics, a frequency distribution

is an arrangement of the values that one or more variables take in a sample. Each entry in the table

contains the frequency or count of the occurrences of values within a particular group or interval,

and in this way, the table summarizes the distribution of values in the sample.

Univariate frequency tables

Rank Degree of agreement Number

1 Strongly agree 20

2 Agree somewhat 30

3 Not sure 20

4 Disagree somewhat 15

5 Strongly disagree 15

A different tabulation scheme aggregates values into bins such that each bin encompasses a range

of values. For example, the heights of the students in a class could be organized into the following

frequency table.

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Sampling_(statistics)
http://en.wikipedia.org/wiki/Frequency_(statistics)
http://en.wikipedia.org/wiki/Statistical_distribution
http://en.wikipedia.org/wiki/Ranking

COPYRIGHT FIMT 2020 Page 10

Height range Number of students Cumulative number

25 25

5.0–5.5 feet 35 60

5.5–6 feet 20 80

6.0–6.5 feet 20 100

A frequency distribution shows us a summarized grouping of data divided into mutually exclusive

classes and the number of occurrences in a class. It is a way of showing unorganized data e.g. to

show results of an election, income of people for a certain region, sales of a product within a

certain period, student loan amounts of graduates, etc. Some of the graphs that can be used with

frequency distributions are histograms, line graphs, bar charts and pie charts. Frequency

distributions are used for both qualitative and quantitative data.

Joint frequency distributions

Bivariate joint frequency distributions are often presented as (two-way) contingency tables:

Two-way contingency table with marginal frequencies

Dance Sports TV Total

Men 2 10 8 20

Women 16 6 8 30

Total 18 16 16 50

The total row and total column report the marginal frequencies or marginal distribution, while the

body of the table reports the joint frequencies.

Applications

Managing and operating on frequency tabulated data is much simpler than operation on raw data.

There are simple algorithms to calculate median, mean, standard deviation etc. from these tables.

Statistical hypothesis testing is founded on the assessment of differences and similarities between

frequency distributions.

http://en.wikipedia.org/wiki/Contingency_tables
http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing

COPYRIGHT FIMT 2020 Page 11

This assessment involves measures of central tendency or averages, such as the mean and median,

and measures of variability or statistical dispersion, such as the standard deviation or variance. A

frequency distribution is said to be skewed when its mean and median are different.

The kurtosis of a frequency distribution is the concentration of scores at the mean, or how peaked

the distribution appears if depicted graphically—for example, in a histogram. If the distribution is

more peaked than the normal distribution it is said to be leptokurtic; if less peaked it is said to be

platykurtic. Letter frequency distributions are also used in frequency analysis to crack codes and

are referred to the relative frequency of letters in different languages.

Graphic presentation of frequency distribution—graphics, bars, histogram, Diagrammatic

Graphical representation is done of the data available this being a very important step of statistical

analysis. We will be discussing the organization of data. The word 'Data' is plural for 'datum';

datum means facts. Statistically the term is used for numerical facts such as measures of height,

weight and scores on achievement and intelligence tests.

Tests, experiments and surveys in education and psychology provide us valuable data, mostly in

the shape of numerical scores. For understanding data available and deriving meaning and useful

conclusion, the data have to be organized or arranged in some systematic way. This can be done by

following ways:

1. Statistical tables

2. Rank order

3. Frequency distribution

Statistical tables

The data are tabulated or arranged into rows and columns of different heading. Such tables can list

original raw scores as well as the percentages, means, standard deviations and so on. Example -

Table for group mean and S.D. of anxiety test of dancers and non dancers

Group Mean
Standard

deviation
N

Dancers 22.66 6.018 15

Non dancers 27.66 8.741 15

http://en.wikipedia.org/wiki/Measures_of_central_tendency
http://en.wikipedia.org/wiki/Average
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Histogram
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Letter_frequency
http://en.wikipedia.org/wiki/Frequency_analysis_(cryptanalysis)

COPYRIGHT FIMT 2020 Page 12

Rules for constructing tables:

1. Title of the table should be simple, concise and unambiguous. As a rule, it should appear on the

table.

2. The table should be suitably divided into columns and rows according to the nature of data and

purpose. These columns and rows should be arranged in a logical order to facilitate comparison.

3. The heading of each columns or row should be as brief as possible. Two or more columns or

rows with similar headings may be grouped under a common heading to avoid repetition and we

may have subheadings or captions.

4. Subtotal for each separate classification and a general total for all combined classes are to be

given. These totals should be given at the bottom or right of the concerned items.

5. The units in which the data are given must invariably be mentioned.

6. Necessary footnotes should be providing essential explanation of the points to ambiguous

representation of the tabulated data must be given at the bottom of the table.

7. The sources from where the data have been received should be given at the end of the table.

8. In tabulating long columns of figures, space should be left after every five or ten rows.

9. If the numbers tabulated have more than three significant figure, the digit should be grouped in

threes. For ex.- 4394756 as 4 394 756.

10. For all purposes and by all means, the table should be as simple as possible so that it may be

studied by the readers with minimum possible strain and create a clear picture and interpretations

of the data.

Frequency Distribution

The organization of the data according to rank order does not help us to summarize a series of raw

scores. It also does not tell us the frequency of the raw scores. In frequency distribution we group

the data into an arbitrarily chosen groups or classes. It is also seen that how many times a particular

score or group of scores occurs in the given data. This is known as the frequency distribution of

numerical data.

COPYRIGHT FIMT 2020 Page 13

Construction of Frequency distribution table

Finding the range:

First of all the range of the series to be grouped is found. it is done by subtracting the lowest score

from the highest. In the present problem the range of the distribution is 46-12, i.e. 34

Determining class interval:

After finding range we find class interval represented by 'i'. The formula for I is

i = Range/ no. of class interval desired

I = 34/8

I = 4.25

We decide to take class interval to be 5.

Writing the contents of the frequency distribution table:

Writing the classes of the distribution.

In the first column we write the classes of distribution. First of all the lowest class is settled and

afterwards other subsequent classes are written down. In this case we take 10-14 as the lowest

class, then we have higher classes as 15-19, 20-24, and so on up to 45-49.

Tallying the scores into proper classes.

The scores given are tallied into proper classes in the second column then the tallies are counted

against each class to obtain the frequency of the class. Example-

Class interval Tallies Frequency for Non-dancers

45-49 l 1

40-44 0 0

35-39 ll 2

30-34 lll 3

25-29 llll 4

20-24 ll 2

15-19 ll 2

10-14 l 1

Total frequency (N) = 15

COPYRIGHT FIMT 2020 Page 14

GRAPHICAL REPRESENTATION OF DATA

The statistical data may be presented in a more attractive form appealing to the eye with the help of

some graphic aids, i.e. Pictures and graphs. Such presentation carries a lot of communication

power. A mere glimpse of thee picture and graphs may enable the viewer to have an immediate and

meaningful grasp of the large amount of data.

Ungrouped data may be represented through a bar diagram, pie diagram, pictograph and line graph.

METHOD FOR CONSTRUCTING A HISTOGRAM

1. The scores in the form of actual class limits as 19.5-24.5, 24.5-29.5 and so on are taken as

examples in the construction of a histogram rather than written class limits as 20-24, 25-30.

2. It is customary to take two extra intervals of classes one below and above the grouped intervals.

3. Now we take the actual lower limits of all the class intervals and try to plot them on the x axis.

The lower limit of the lowest class interval is taken at the intersecting point of x axis and y axis.

4. Frequencies of the distribution are plotted on the y axis.

5. Each class interval with its specific frequency is represented by separate rectangle. The base of

each rectangle is the width of the class interval. And the height is representative of the frequency of

that class or interval.

6. Care should be taken to select the appropriate units of representation along the x and y axis. Both

the axis and the y axis must not be too short or too long.

METHOD FOR CONSTRUTING A FREQUENCY POLYGON

1. As in histogram two extra class interval is taken, one above and other below the given class

interval.

2. The mid-points of the class interval is calculated.

3. The midpoint is calculated along the x axis and the corresponding frequencies are plotted along

the y axis.

4. The various points given by the plotting are joined by lines to give frequency polygon.

COPYRIGHT FIMT 2020 Page 15

DIFFERENCE BETWEEN HISTOGRAM AND FREQUENCY POLYGON

Histogram is a bar graph while frequency polygon is a line graph. Frequency polygon is more

useful and practical. In frequency polygon it is easy to know the trends of the distribution; we are

unable to do so in histogram. Histogram gives a very clear and accurate picture of the relative

proportion of the frequency from interval to interval.

METHOD FOR CONSTRUTING A CUMULATIVE FREQUENCY GRAPH

1. First of all we calculate the actual upper and lower limits of the class intervals i.e. if the class

interval is 20-24 then upper limit is 24.5 and the lower limit is 19.5.

2. We must know select a suitable scale as per the range of the class interval and plot the actual

upper limits on the x axis and the respective cumulative frequency on y axis.

3. All the plotted points are then joined by successive straight lines resulting a line graph.

4. To plot the origin of the x axis an extra class interval is taken with cumulative frequency zero is

taken.

Measures of central tendency- mean, median and mode

A measure of central tendency is a single value that attempts to describe a set of data by identifying

the central position within that set of data. As such, measures of central tendency are sometimes

called measures of central location. They are also classed as summary statistics. The mean (often

called the average) is most likely the measure of central tendency that you are most familiar with,

but there are others, such as the median and the mode. The mean, median and mode are all valid

measures of central tendency, but under different conditions, some measures of central tendency

become more appropriate to use than others. In the following sections, we will look at the mean,

mode and median, and learn how to calculate them and under what conditions they are most

appropriate to be used.

Mean (Arithmetic)

The mean (or average) is the most popular and well known measure of central tendency. It can be

used with both discrete and continuous data, although its use is most often with continuous data

(see our Types of Variable guide for data types).

https://statistics.laerd.com/statistical-guides/types-of-variable.php

COPYRIGHT FIMT 2020 Page 16

The mean is equal to the sum of all the values in the data set divided by the number of values in the

data set. So, if we have n values in a data set and they have values x1, x2, ..., xn, the sample mean,

usually denoted by (pronounced x bar), is:

This formula is usually written in a slightly different manner using the Greek capitol letter, ,

pronounced "sigma", which means "sum of...":

You may have noticed that the above formula refers to the sample mean. So, why have we called it

a sample mean? This is because, in statistics, samples and populations have very different

meanings and these differences are very important, even if, in the case of the mean, they are

calculated in the same way. To acknowledge that we are calculating the population mean and not

the sample mean, we use the Greek lower case letter "mu", denoted as µ:

The mean is essentially a model of your data set. It is the value that is most common. You will

notice, however, that the mean is not often one of the actual values that you have observed in your

data set. However, one of its important properties is that it minimizes error in the prediction of any

one value in your data set. That is, it is the value that produces the lowest amount of error from all

other values in the data set. An important property of the mean is that it includes every value in

your data set as part of the calculation. In addition, the mean is the only measure of central

tendency where the sum of the deviations of each value from the mean is always zero.

When not to use the mean

The mean has one main disadvantage: it is particularly susceptible to the influence of outliers.

These are values that are unusual compared to the rest of the data set by being especially small or

large in numerical value. For example, consider the wages of staff at a factory below:

COPYRIGHT FIMT 2020 Page 17

Staff 1 2 3 4 5 6 7 8 9 10

Salary 15k 18k 16k 14k 15k 15k 12k 17k 90k 95k

The mean salary for these ten staff is $30.7k. However, inspecting the raw data suggests that this

mean value might not be the best way to accurately reflect the typical salary of a worker, as most

workers have salaries in the $12k to 18k range. The mean is being skewed by the two large

salaries. Therefore, in this situation, we would like to have a better measure of central tendency. As

we will find out later, taking the median would be a better measure of central tendency in this

situation.

Another time when we usually prefer the median over the mean (or mode) is when our data is

skewed (i.e., the frequency distribution for our data is skewed). If we consider the normal

distribution - as this is the most frequently assessed in statistics - when the data is perfectly normal,

the mean, median and mode are identical. Moreover, they all represent the most typical value in the

data set. However, as the data becomes skewed the mean loses its ability to provide the best central

location for the data because the skewed data is dragging it away from the typical value. However,

the median best retains this position and is not as strongly influenced by the skewed values. This is

explained in more detail in the skewed distribution section later in this guide.

Median

The median is the middle score for a set of data that has been arranged in order of magnitude. The

median is less affected by outliers and skewed data. In order to calculate the median, suppose we

have the data below:

65 55 89 56 35 14 56 55 87 45 92

We first need to rearrange that data into order of magnitude (smallest first):

14 35 45 55 55 56 56 65 87 89 92

Our median mark is the middle mark - in this case, 56 (highlighted in bold). It is the middle mark

because there are 5 scores before it and 5 scores after it. This works fine when you have an odd

number of scores, but what happens when you have an even number of scores? What if you had

only 10 scores? Well, you simply have to take the middle two scores and average the result. So, if

we look at the example below:

COPYRIGHT FIMT 2020 Page 18

65 55 89 56 35 14 56 55 87 45

We again rearrange that data into order of magnitude (smallest first):

14 35 45 55 55 56 56 65 87 89 92

Only now we have to take the 5th and 6th score in our data set and average them to get a median of

55.5.

Mode

The mode is the most frequent score in our data set. On a histogram it represents the highest bar in

a bar chart or histogram. You can, therefore, sometimes consider the mode as being the most

popular option. An example of a mode is presented below:

Normally, the mode is used for categorical data where we wish to know which is the most common

category, as illustrated below:

COPYRIGHT FIMT 2020 Page 19

We can see above that the most common form of transport, in this particular data set, is the bus.

However, one of the problems with the mode is that it is not unique, so it leaves us with problems

when we have two or more values that share the highest frequency, such as below:

We are now stuck as to which mode best describes the central tendency of the data. This is

particularly problematic when we have continuous data because we are more likely not to have any

one value that is more frequent than the other. For example, consider measuring 30 peoples' weight

(to the nearest 0.1 kg). How likely is it that we will find two or more people with exactly the same

weight (e.g., 67.4 kg)? The answer, is probably very unlikely - many people might be close, but

with such a small sample (30 people) and a large range of possible weights, you are unlikely to find

two people with exactly the same weight; that is, to the nearest 0.1 kg. This is why the mode is very

rarely used with continuous data.

Another problem with the mode is that it will not provide us with a very good measure of central

tendency when the most common mark is far away from the rest of the data in the data set, as

depicted in the diagram below:

COPYRIGHT FIMT 2020 Page 20

In the above diagram the mode has a value of 2. We can clearly see, however, that the mode is not

representative of the data, which is mostly concentrated around the 20 to 30 value range. To use the

mode to describe the central tendency of this data set would be misleading.

Partition values-quartiles, deciles and percentiles & Measures of variation- range, IQR,

quartile, deciles and percentiles

The computation of these partition values is done exactly in the same manner as the computation of

the Median. In a series of individual observations and in a discrete series, the values of the lower

(Q1) and the upper (Q9) quartiles would be the value of (N+1) /4) th and (3(N+1) / 4 items

respectively.

The values of the deciles in such series would be as follows.

The values of the percentiles would be In continuous series in the calculation of quartiles, deciles

and percentiles (N+1)/4 , (N+1)/10 and (N+1)/100 would be replaced by N/4 ,N/10 and N/100

respectively. The values would have to be interpolated here as was done in case of the computation

of Median.

UNIT-II (Correlation & Regression)

Correlation Coefficient

Correlation coefficient may refer to:

 Pearson product-moment correlation coefficient, also known as r, R, or Pearson's r, a

measure of the strength and direction of the linear relationship between two variables that is

defined as the (sample) covariance of the variables divided by the product of their (sample)

standard deviations.

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://tutorskingdom.com/wp-content/uploads/2011/08/untitled50.jpg

COPYRIGHT FIMT 2020 Page 21

 Infraclass correlation, a descriptive statistic that can be used when quantitative

measurements are made on units that are organized into groups; describes how strongly

units in the same group resemble each other.

 Rank correlation, the study of relationships between rankings of different variables or

different rankings of the same variable

o Spearman's rank correlation coefficient, a measure of how well the relationship

between two variables can be described by a monotonic function

o Kendall tau rank correlation coefficient, a measure of the portion of ranks that

match between two data sets.

o Goodman and Kruskal's gamma, a measure of the strength of association of the

cross tabulated data when both variables are measured at the ordinal level.

Assumptions of correlation analysis

An inspection of a scatter plot can give an impression of whether two variables are related and the

direction of their relationship. But it alone is not sufficient to determine whether there is an

association between two variables. The relationship depicted in the scatter plot needs to be

described qualitatively. Descriptive statistics that express the degree of relation between two

variables are called correlation coefficients. A commonly employed correlation coefficient for

scores at the interval or ratio level of measurement is the Pearson product-moment correlation

coefficient, or Pearson’s r.

The Pearson's r is a descriptive statistic that describes the linear relationship between two or more

variables, each measured for the same collection of individuals. An "individual" is not necessarily a

person: it might be an automobile, a place, a family, a university, etc. For example, the two

variables might be the heights of a man and of his son; there, the "individual" is the pair (father,

son). Such pairs of measurements are called bivariate data. Observations of two or more variables

per individual in general are called multivariate data. As with any sample of scores, the sample is

drawn from a larger population of scores. The test for significance of Pearson's r assumes that a

particular variable, X and another variable, Y, form a bivariate normal distribution in the

population. A bivariate normal distribution possesses the following characteristics:

http://en.wikipedia.org/wiki/Intraclass_correlation
http://en.wikipedia.org/wiki/Rank_correlation
http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Goodman_and_Kruskal%27s_gamma

COPYRIGHT FIMT 2020 Page 22

 The distribution of the X scores is normally distributed in the population sampled.

 The distribution of the Y scores is normally distributed in the population sampled.

 For each X score, the distribution of Y scores in the population is normal.

 For each Y score, the distribution of Y scores in the population is normal.

Coefficients of determination & correlation

In statistics, the coefficient of determination denoted R2 and pronounced R squared, indicates how

well data points fit a line or curve. It is a statistic used in the context of statistical models whose

main purpose is either the prediction of future outcomes or the testing of hypotheses, on the basis

of other related information. It provides a measure of how well observed outcomes are replicated

by the model, as the proportion of total variation of outcomes explained by the model. There are

several different definitions of R2 which are only sometimes equivalent. One class of such cases

includes that of linear regression. In this case, if an intercept is included then R2 is simply the

square of the sample correlation coefficient between the outcomes and their predicted values; in the

case of simple linear regression, it is the squared correlation between the outcomes and the values

of the single repressor being used for prediction. If an intercept is included and the number of

explicators is more than one, R2 is the square of the coefficient of multiple correlation. In such

cases, the coefficient of determination ranges from 0 to 1. Important cases where the computational

definition of R2 can yield negative values, depending on the definition used, arise where the

predictions which are being compared to the corresponding outcomes have not been derived from a

model-fitting procedure using those data, and where linear regression is conducted without

including an intercept. Additionally, negative values of R2 may occur when fitting non-linear

functions to data. In cases where negative values arise, the mean of the data provides a better fit to

the outcomes than do the fitted function values, according to this particular criterion.

Measurement of correlation- Karl Pearson’s Methods

In statistics, the Pearson product-moment correlation coefficient (r) is a common measure of the

correlation between two variables X and Y. When measured in a population the Pearson Product

Moment correlation is designated by the Greek letter rho (?). When computed in a sample, it is

designated by the letter "r" and is sometimes called "Pearson's r." Pearson's correlation reflects the

degree of linear relationship between two variables. It ranges from +1 to -1. A correlation of +1

means that there is a perfect positive linear relationship between variables. A correlation of -1

means that there is a perfect negative linear relationship between variables.

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Prediction#statistics
http://en.wikipedia.org/wiki/Hypotheses
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Simple_linear_regression
http://en.wikipedia.org/wiki/Coefficient_of_multiple_correlation

COPYRIGHT FIMT 2020 Page 23

A correlation of 0 means there is no linear relationship between the two variables. Correlations are

rarely if ever 0, 1, or -1. If you get a certain outcome it could indicate whether correlations were

negative or positive.

Mathematical Formula:-- : The quantity r, called the linear correlation coefficient, measures the

strength and the direction of a linear relationship between two variables. The linear correlation

coefficient is sometimes referred to as the Pearson product moment correlation coefficient in

honor of its developer Karl Pearson.

The mathematical formula for computing r is:

Spearman’s rank correlation

There are two methods to calculate Spearman's rank-order correlation depending on whether: (1)

your data does not have tied ranks or (2) your data has tied ranks. The formula for when there are

no tied ranks is:

where di = difference in paired ranks and n = number of cases. The formula to use when there are

tied ranks is:

Where i = paired score.

Concurrent deviation the correlation coefficient

Sometimes it is desired to study the correlation between two series in a very casual manner and in

such cases no particular attention is needed so far as precision is concerned. In such cases it is

enough to calculate the coefficient of concurrent deviations. I n this method correlation is

calculated between the direction of deviations and not their magnitudes. As such only the direction

of deviations is taken into account in the calculation of this coefficient, and their magnitude is

ignored.

https://statistics.laerd.com/statistical-guides/img/spearman-2.jpg
https://statistics.laerd.com/statistical-guides/img/spearman-3.jpg

COPYRIGHT FIMT 2020 Page 24

To calculate the coefficient of concurrent deviations, the deviations are not calculated from any

average or by the method of moving averages but only their direction from the previous period, are

noted down. The formula for the calculation of coefficient of concurrent deviations is given

below:—

Coefficient of concurrent deviations or

 rc = ±√(± ((2c-n)/n)

Where rc = stands for the coefficient of concurrent deviations, for the number of pairs of

concurrent deviations and n for the number of pairs of deviations. The value of this coefficient of

correlation also varies between 1. The plus and minus signs given in the formula should be

Carefully noted. If the value of (2c-n)/n) is negative its square root±± 2c-nn

Where cannot be calculated and so a minus sign is placed before the sign of the root so that the

square root may be calculated and the minus sign may be kept before the value of the coefficient of

correlation.Thus the steps in the calculation of this coefficient are:

(1) Find out the direction of change of x—variable. It means find out whether the second figure

in the series is more than the first figure, if it is so the direction is. If the second figure is less than

the first the direction is —. If both the figures are equal the direction is 0. Similarly find the

direction of the third figure from the second, of the fourth figure from the third and so on. It is

denoted by (dx).

(2) Find out the direction of change of y-variable in the same manner as discussed above. It is

denoted by (dy).

(3) multiply dx and dy and determine the value of c , which would be the number of positive

products of dxdy (—x—) or (X+).

(4) Use the formula given above to obtain the value of the Coefficient or r.

Pitfalls and limitations associated with regression & correlation analysis: real world

application using IT tools

We are all familiar with the disparaging quotes about statistics (including "There are three kinds of

lies: lies, damned lies, and statistics", attributed to either Mark Twain or Disraeli, depending on

whom you ask), and it's no secret that many people harbor a vague distrust of statistics as

commonly used. Why should this be the case? It may be assumed that those of us at this conference

take our work seriously and value the fruits of our efforts. So, are all those people just paranoid

about statistics, or are we as statisticians really kidding ourselves as to our importance in the

cosmic scheme of things?

COPYRIGHT FIMT 2020 Page 25

It may be helpful to consider some aspects of statistical thought which might lead many people to

be distrustful of it. First of all, statistics requires the ability to consider things from a probabilistic

perspective, employing quantitative technical concepts such as "confidence", "reliability",

"significance". This is in contrast to the way non-mathematicians often cast problems: logical,

concrete, often dichotomous conceptualizations are the norm: right or wrong, large or small, this or

that.

Additionally, many non-mathematicians hold quantitative data in a sort of awe. They have been

lead to believe that numbers are, or at least should be, unquestionably correct. Consider the sort of

math problems people are exposed to in secondary school, and even in introductory college math

courses: there is a clearly defined method for finding the answer, and that answer is the only

acceptable one. It comes, then, as a shock that different research studies can produce very different,

often contradictory results. If the statistical methods used are really supposed to represent reality,

how can it be that different studies produce different results? In order to resolve this paradox, many

naive observers conclude that statistics must not really provide reliable (in the nontechnical sense)

indicators of reality after all. And, the logic goes, if statistics aren't "right", they must be "wrong".

It is easy to see how even intelligent, well-educated people can become cynical if they don't

understand the subtleties of statistical reasoning and analysis. Now, I'm not going to say much

about this "public relations crisis" directly, but it does provide a motivation for examining the way

we practice our trade. The best thing we can do, in the long run, is make sure we're using our tools

properly, and that our conclusions are warranted. I will present some of the most frequent misuses

and abuses of statistical methods, and how to avoid or remedy them. Of course, these issues will be

familiar to most statisticians; however, they are the sorts of things that can get easily overlooked

when the pressure is on to produce results and meet deadlines. If this workshop helps you to apply

the basics of statistical reasoning to improve the quality of your product, it will have served its

purpose. We can consider three broad classes of statistical pitfalls. The first involves sources of

bias. These are conditions or circumstances which affect the external validity of statistical results.

The second category is errors in methodology, which can lead to inaccurate or invalid results. The

third class of problems concerns interpretation of results, or how statistical results are applied (or

misapplied) to real world issues.

COPYRIGHT FIMT 2020 Page 26

Sources of Bias

The core value of statistical methodology is its ability to assist one in making inferences about a

large group (a population) based on observations of a smaller subset of that group (a sample). In

order for this to work correctly, a couple of things have to be true: the sample must be similar to the

target population in all relevant aspects; and certain aspects of the measured variables must

conform to assumptions which underlie the statistical procedures to be applied.

Representative sampling

This is one of the most fundamental tenets of inferential statistics: the observed sample must be

representative of the target population in order for inferences to be valid. Of course, the problem

comes in applying this principle to real situations. The ideal scenario would be where the sample is

chosen by selecting members of the population at random, with each member having an equal

probability of being selected for the sample. Barring this, one usually tries to be sure that the

sample "parallels" the population with respect to certain key characteristics which are thought to be

important to the investigation at hand, as with a stratified sampling procedure.

While this may be feasible for certain manufacturing processes, it is much more problematic for

studying people. For instance, consider the construction of a job applicant screening instrument: the

population about which you want to know something is the pool of all possible job applicants. You

surely won't have access to the entire population--you only have access to a certain number of

applicants who apply within a certain period of time. So you must hope that the group you happen

to pick isn't somehow different from the target population. An example of a problematic sample

would be if the instrument were developed during an economic recession; it is reasonable to

assume that people applying for jobs during a recession might be different as a group from those

applying during a period of economic growth (even if one can't specify exactly what those

differences might be). In this case, you'd want to exercise caution when using the instrument during

better economic times. There are also ways to account for, or "control", differences between groups

statistically, as with the inclusion of covariates in a linear model. Unfortunately, as Levin (1985)

points out, there are problems with this approach, too. One can never be sure one has accounted for

all the important variables, and inclusion of such controls depends on certain assumptions which

may or may not be satisfied in a given situation (see below for more on assumptions).

COPYRIGHT FIMT 2020 Page 27

Statistical assumptions

The validity of a statistical procedure depends on certain assumptions it makes about various

aspects of the problem. For instance, a well-known linear method such as analysis of variance

(ANOVA) depends on the assumption of normality and independence. The first of these is

probably the lesser concern, since there is evidence that the most common ANOVA designs are

relatively insensitive to moderate violations of the normality assumption (see Kirk, 1982).

Unfortunately, this offers an almost irresistible temptation to ignore any non-normality, no matter

how bad the situation is. The robustness of statistical techniques only goes so far--"robustness" is

not a license to ignore the assumption. If the distributions are non-normal, try to figure out why; if

it's due to a measurement artifact (e.g. a floor or ceiling effect), try to develop a better measurement

device (if possible). Another possible method for dealing with unusual distributions is to apply a

transformation. However, this has dangers as well; an ill-considered transformation can do more

harm than good in terms of interpretability of results.

The assumption regarding independence of observations is more troublesome, both because it

underlies nearly all of the most commonly used statistical procedures, and because it is so

frequently violated in practice. Observations which are linked in some way--parts manufactured on

the same machine, students in the same classroom, consumers at the same mall--all may show

some dependencies. Therefore, if you apply some statistical test across students in different

classrooms, say to assess the relationship between different textbook types and test scores, you're

introducing bias into your results. This occurs because, in our example, the kids in the class

presumably interact with each other, chat, talk about the new books they're using, and so influence

each other's responses to the test. This will cause the results of your statistical test (e.g. correlations

or p-values) to be inaccurate.

One way to try to get around this is to aggregate cases to the higher level, e.g. use classrooms as the

unit of analysis, rather than students. Unfortunately this requires sacrificing a lot of statistical

power, making a Type II error more likely. Happily, methods have been developed recently which

allow simultaneous modeling of data which is hierarchically organized (as in our example with

students nested within classrooms). One of the papers presented at this conference (Christiansen &

Morris) introduces these methods. Additionally, interested readers are referred for good overviews

of these hierarchical models.

COPYRIGHT FIMT 2020 Page 28

Errors in methodology

There are a number of ways that statistical techniques can be misapplied to problems in the real

world. Three of the most common hazards are designing experiments with insufficient power,

ignoring measurement error, and performing multiple comparisons.

Statistical Power

This topic has become quite in vogue lately, at least in the academic community; indeed, some

federal funding agencies seem to consider any research proposal incomplete unless it contains a

comprehensive power analysis. This graph will help illustrate the concept of power in an

experiment. In the figure, the vertical dotted line represents the point-null hypothesis, and the solid

vertical line represents a criterion of significance, i.e. the point at which you claim a difference is

significant.

Unit-III (Linear Programming & Queuing)

Concept a assumptions usage in business decision making linear programming problem

If you've only got limited resources at your disposal, then it's helpful to calculate how best to

maximize those resources - whether that's time, money, or space. Let's say, for example, that you

have 50 square feet of office space to use for storage. Your budget is $200, and there are a variety

of cabinet types and sizes from which to choose. How do you optimize the space you have

available, and stay within the allotted budget? Or suppose you have three delivery trucks, and 10

drop-off points. How do you plan the most efficient route and schedule for these trucks?

Or consider that you manufacture three products using the same basic raw materials. However, as

each product uses different amounts of material, some are more expensive to produce than others.

A few of the materials are perishable, and need to be used quickly. How much of each product

should you manufacture to minimize your cost? And which combination produces the least waste?

Questions like these may seem very complex. With so many variables and constraints to take into

consideration, how do you decide what to do? The answer is to use linear programming.

Linear programming is a mathematical technique that determines the best way to use available

resources. Managers use the process to help make decisions about the most efficient use of limited

resources - like money, time, materials, and machinery.

COPYRIGHT FIMT 2020 Page 29

Methods of solving graphical & simplex

Graphical and Simplex Methods of Linear Programming, The graphical method is the more

popular method to use because they are easy to use and understand. Working with only a few

variables at a time they allow operations managers to compare projected demand to existing

capacity. The graphical method is a trial and error approach that can be easily done by a manager

or even a clerical staff. Since it is trial and error though, it does not necessarily generate the

optimal plan. One downside of this method though is that it can only be used with two variables at

the maximum. The graphical method is broken down into the following five steps:

 1) Determine the demand in each period.

 2) Determine the capacity for regular time, over time, and subcontracting each period.

 3) Find labor costs, hiring and labor costs, and inventory holding costs.

 4) Consider company policy that may apply to the workers or to stock levels

 5) Develop alternative plans and examine their total costs.

When a company has a LP problem with more than two variables it turns to the simplex method.

This method can handle any number of variables as well as for certain give the optimal solution. In

the simplex method we examine corner points in a methodical fashion until we arrive at the best

solution which is either the highest profit or lowest cost.

LP is used in a wide variety of companies in numerous applications. Airline companies use it to

schedule their flights to maximize profit. Another use is for firms to figure out how much of a

certain product to manufacture in order to maximize total profits. It also is used by hospitals in

order to figure out the most economic diet for patients. It is also a useful tool to figure out labor

scheduling for a specific time period. Other applications include product mix planning, distribution

networks, truck routing, financial portfolios, and corporate restructuring.

All LP problems have four properties in common.

Duality: concept, significance, usage & application in business decision making

The term structure referred generally to "rules and resources" and more specifically to "the

structuring properties allowing the 'binding' of time-space in social systems". These properties

make it possible for similar social practices to exist across time and space and that lend them

"systemic" form. Agents—groups or individuals—draw upon these structures to perform social

actions through embedded memory, called memory traces.

COPYRIGHT FIMT 2020 Page 30

Memory traces are thus the vehicle through which social actions are carried out. Structure is also,

however, the result of these social practices. Thus, Giddens conceives of the duality of structure as

being:

The essential recursiveness of social life, as constituted in social practices: structure is both

medium and outcome of reproduction of practices. Structure enters simultaneously into the

constitution of the agent and social practices, and 'exists' in the generating moments of this

constitution.

Giddens uses "the duality of structure" to emphasize structure's nature as both medium and

outcome. Structures exist both internally within agents as memory traces that are the product of

phenomenological and hermeneutic inheritance and externally as the manifestation of social

actions. Similarly, social structures contain agents and/or are the product of past actions of agents.

Giddens holds this duality, alongside "structure" and "system," as the core of structuration theory.

His theory has been adopted by those with structuralism inclinations, but who wish to situate such

structures in human practice rather than to reify them as an ideal type or material property. (This is

different, for example, from actor–network theory which appears to grant a certain autonomy to

technical artifacts.) Social systems have patterns of social relation that change over time; the

changing nature of space and time determines the interaction of social relations and therefore

structure. Hitherto, social structures or models were either taken to be beyond the realm of human

control—the positivistic approach—or posit that action creates them—the interpretive approach.

The duality of structure emphasizes that they are different sides to the same central question of how

social order is created. Gregory McLennan suggested renaming this process "the duality of

structure and agency", since both aspects are involved in using and producing social actions

Change

Sewell provided a useful summary that included one of the theory's less specified aspects: the

question "Why are structural transformations possible?" He claimed that Giddens' overruled on

rules and modified Giddens' argument by re-defining "resources" as the embodiment of cultural

schemas. He argued that change arises from the multiplicity of structures, the transposable nature

of schemas, the unpredictability of resource accumulation, the polysemy of resources and the

intersection of structures.

https://en.wikipedia.org/wiki/Structuralism_(sociology)
https://en.wikipedia.org/wiki/Reification_(knowledge_representation)
https://en.wikipedia.org/wiki/Ideal_type
https://en.wikipedia.org/wiki/Actor%E2%80%93network_theory
https://en.wikipedia.org/wiki/Positivistic
https://en.wikipedia.org/wiki/Interpretivism_(social_science)
https://en.wikipedia.org/wiki/Schema_(Kant)
https://en.wikipedia.org/wiki/Polysemy

COPYRIGHT FIMT 2020 Page 31

The existence of multiple structures implies that the knowledgeable agents whose actions produce

systems are capable of applying different schemas to contexts with differing resources, contrary to

the conception of a universal habitués (learned dispositions, skills and ways of acting). He wrote

that "Societies are based on practices that derived from many distinct structures, which exist at

different levels, operate in different modalities, and are themselves based on widely varying types

and quantities of resources. ...It is never true that all of them are homologous." Originally from

Bourdieu, transposable schemas can be "applied to a wide and not fully predictable range of cases

outside the context in which they were initially learned." That capacity "is inherent in the

knowledge of cultural schemas that characterizes all minimally competent members of society."

Agents may modify schemas even though their use does not predictably accumulate resources. For

example, the effect of a joke is never quite certain, but a comedian may alter it based on the amount

of laughter it garners regardless of this variability. Agents may interpret a particular resource

according to different schemas. E.g., a commander could attribute his wealth to military prowess,

while others could see it as a blessing from the gods or a coincidental initial advantage. Structures

often overlap, confusing interpretation (e.g., the structure of capitalist society includes production

from both private property and worker solidarity).

Technology

This theory was adapted and augmented by researchers interested in the relationship between

technology and social structures (see Theories of technology), such as information technology in

organizations. DeSanctis and Poole proposed an "adaptive structuration theory" with respect to the

emergence and use of group decision support systems. In particular, they chose Giddens' notion of

modalities to consider how technology is used with respect to its "spirit". "Appropriations" are the

immediate, visible actions that reveal deeper structuration processes and are enacted with "moves".

Appropriations may be fait Wanda Orlikowski applied her critique of the duality of structure to

hful or unfaithful, be instrumental and be used with various attitudes. technology: "The duality of

technology identifies prior views of technology as either objective force or as socially constructed

product–as a false dichotomy." She compared this to previous models (the technological

imperative, strategic choice, and technology as a trigger) and considered the importance of

meaning, power, norms, and interpretive flexibility. Orlikowski later replaced the notion of

embedded properties for enactment (use). The "practice lens" shows how people enact structures

which shape their use of technology that they employ in their practices.

While Orlikowski's work focused on corporations, it is equally applicable to the technology

cultures that have emerged in smaller community-based organizations, and can be adapted through

https://en.wikipedia.org/wiki/Habitus_(sociology)
https://en.wikipedia.org/wiki/Bourdieu
https://en.wikipedia.org/wiki/Social_solidarity
https://en.wikipedia.org/wiki/Technology
https://en.wikipedia.org/wiki/Theories_of_technology
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Appropriation_(sociology)
https://en.wikipedia.org/wiki/Wanda_Orlikowski

COPYRIGHT FIMT 2020 Page 32

the gender sensitivity lens in approaches to technology governance. Workman, Ford and Allen

rearticulated structuration theory as structuration agency theory for modeling socio-biologically

inspired structuration in security software. Software agents join humans to engage in social actions

of information exchange, giving and receiving instructions, responding to other agents, and

pursuing goals individually or jointly.

Business

Pavlou and Majchrzak argued that research on business-to-business e-commerce portrayed

technology as overly deterministic. The authors employed structuration theory to re-examine

outcomes such as economic/business success as well as trust, coordination, innovation, and shared

knowledge. They looked beyond technology into organizational structure and practices, and

examined the effects on the structure of adapting to new technologies. The authors held that

technology needs to be aligned and compatible with the existing "trustworthy" practices and

organizational and market structure. The authors recommended measuring long-term adaptations

using ethnography, monitoring and other methods to observe causal relationships and generate

better predictions.

Group communication

Poole, Seibold, and McPhee wrote that "group structuration theory, provides "a theory of group

interaction commensurate with the complexities of the phenomenon. The theory attempts to

integrate macrosocial theories and individuals or small groups, as well as how to avoid the binary

categorization of either "stable" or "emergent" groups. Waldeck et al. concluded that the theory

needs to better predict outcomes, rather than merely explaining them. Decision rules support

decision-making, which produces a communication pattern that can be directly observable.

Research has not yet examined the "rational" function of group communication and decision-

making (i.e., how well it achieves goals), nor structural production or constraints. Researchers must

empirically demonstrate the recursivity of action and structure, examine how structures stabilize

and change over time due to group communication, and may want to integrate argumentation

research.

https://en.wikipedia.org/wiki/Security_software
https://en.wikipedia.org/wiki/E-commerce
https://en.wikipedia.org/wiki/Determinism
https://en.wikipedia.org/wiki/Emergent_properties

COPYRIGHT FIMT 2020 Page 33

Public relations

Falkheimer claimed that integrating structuration theory into public relations (PR) strategies could

result in a less agency-driven business, return theoretical focus to the role of power structures in

PR, and reject massive PR campaigns in favor of a more "holistic understanding of how PR may be

used in local contexts both as a reproductive and [transformational] social instrument." Falkheimer

portrayed PR as a method of communication and action whereby social systems emerge and

reproduce. Structuration theory reinvigorates the study of space and time in PR theory. Applied

structuration theory may emphasize community-based approaches, storytelling, rituals, and

informal communication systems. Moreover, structuration theory integrates all organizational

members in PR actions, integrating PR into all organizational levels rather than a separate office.

Queuing Models: Basic structure of queuing models

Everyone has experienced waiting in line, whether at a fast-food restaurant, on the phone for

technical help, at the doctor’s office or in the drive-through lane of a bank. Sometimes, it is a

pleasant experience, but many times it can be extremely frustrating for both the customer and the

store manager. Given the intensity of competition today, a customer waiting too long in line is

potentially a lost customer. Understanding the nature of lines or “queues” and learning how to

manage them is one of the most important areas in operations management.

Queues are basic to both external (customer-facing) and internal business processes, which include

staffing, scheduling and inventory levels. For this reason, businesses often utilize queuing theory as

a competitive advantage. Fortunately, Six Sigma professionals – through their knowledge of

probability distributions, process mapping and basic process improvement techniques – can help

organizations design and implement robust queuing models to create this competitive advantage.

The Cost of Waiting in Line

The problem in virtually every queuing situation is a trade-off decision. The manager must weigh

the added cost of providing more rapid service (i.e., more checkout counters, more production

staff) against the inherent cost of waiting. For example, if employees are spending their time

manually entering data, a business manager or process improvement expert could compare the cost

of investing in bar-code scanners against the benefits of increased productivity. Likewise, if

customers are walking away disgusted because of insufficient customer support personnel, the

business could compare the cost of hiring more staff to the value of increased revenues and

maintaining customer loyalty.

https://en.wikipedia.org/wiki/Public_relations

COPYRIGHT FIMT 2020 Page 34

The relationship between service capacity and queuing cost can be expressed graphically (Figure

1). Initially, the cost of waiting in line is at a maximum when the organization is at minimal service

capacity. As service capacity increases, there is a reduction in the number of customers in the line

and in their wait times, which decreases queuing cost. The optimal total cost is found at the

intersection between the service capacity and waiting line curves.

Figure 1: Service Capacity vs. Cost

Queuing Theory

Queuing theory, the mathematical study of waiting in lines, is a branch of operations research

because the results often are used when making business decisions about the resources needed to

provide service. At its most basic level, queuing theory involves arrivals at a facility (i.e., computer

store, pharmacy, bank) and service requirements of that facility (i.e., technicians, pharmacists,

tellers). The number of arrivals generally fluctuates over the course of the hours that the facility is

available for business (Figure 2).

Figure 2: Number of Arrivals at Facility

COPYRIGHT FIMT 2020 Page 35

Customers demand varying degrees of service, some of which can exceed normal capacity (Figure

3). The store manager or business owner can exercise some control over arrivals. For example, the

simplest arrival-control mechanism is the posting of business hours. Other common techniques

include lowering prices on typically slow days to balance customer traffic throughout the week and

establishing appointments with specific times for customers. The point is that queues are within the

control of the system management and design.

Figure 3: Service Requirements

Queuing management consists of three major components:

1. How customers arrive

2. How customers are serviced

3. The condition of the customer exiting the system

Birth-Death queuing models and its steady state solution

The birth–death process is a special case of continuous-time Markov process where the state

transitions are of only two types: "births" which increase the state variable by one and "deaths"

which decrease the state by one. The model's name comes from a common application, the use of

such models to represent the current size of a population where the transitions are literal births and

deaths. Birth–death processes have many applications in demography, queueing theory,

performance engineering, epidemiology or in biology. They may be used, for example to study the

evolution of bacteria, the number of people with a disease within a population, or the number of

customers in line at the supermarket.

http://en.wikipedia.org/wiki/Continuous-time_Markov_process
http://en.wikipedia.org/wiki/Demography
http://en.wikipedia.org/wiki/Queueing_theory
http://en.wikipedia.org/wiki/Performance_engineering
http://en.wikipedia.org/wiki/Epidemiology
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Bacteria

COPYRIGHT FIMT 2020 Page 36

When a birth occurs, the process goes from state n to n + 1. When a death occurs, the process goes

from state n to state n − 1. The process is specified by birth rates and death rates

.

M/M/1 and M/M/C models with infinite/finite waiting space

In queuing theory the birth–death process is the most fundamental example of a queuing model, the

M/M/C/K/ /FIFO (in complete Kendall's notation) queue. This is a queue with Poisson arrivals,

drawn from an infinite population, and C servers with exponentially distributed service time with K

places in the queue. Despite the assumption of an infinite population this model is a good model for

various telecommunication systems.

M/M/1 queue

The M/M/1 is a single server queue with an infinite buffer size. In a non-random environment the

birth–death process in queuing models tend to be long-term averages, so the average rate of arrival

is given as and the average service time as . The birth and death process is a M/M/1 queue

when,

The difference equations for the probability that the system is

in state k at time t are,

M/M/c queue

http://en.wikipedia.org/wiki/Queueing_model
http://en.wikipedia.org/wiki/Kendall%27s_notation
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Difference_equations
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/File:BD-proces.png

COPYRIGHT FIMT 2020 Page 37

The M/M/c is a multi-server queue with C servers and an infinite buffer. This differs from the

M/M/1 queue only in the service time which now becomes

and

with

M/M/1/K queue

The M/M/1/K queue is a single server queue with a buffer of size K. This queue has applications in

telecommunications, as well as in biology when a population has a capacity limit. In

telecommunication we again use the parameters from the M/M/1 queue with,

In biology, particularly the growth of bacteria, when the population is zero there is no ability to

grow so,

Additionally if the capacity represents a limit where the population dies from over population,

The differential equations for the probability that the system is in state k at time t are,

PERT & CPM

INTRODUCTION

COPYRIGHT FIMT 2020 Page 38

Basically, CPM (Critical Path Method) and PERT (Programme Evaluation Review Technique) are

project management techniques, which have been created out of the need of Western industrial and

military establishments to plan, schedule and control complex projects.

 Brief History of CPM/PERT

CPM/PERT or Network Analysis as the technique is sometimes called, developed along two

parallel streams, one industrial and the other military. CPM was the discovery of M.R.Walker of

E.I.Du Pont de Nemours & Co. and J.E.Kelly of Remington Rand, circa 1957. The computation

was designed for the UNIVAC-I computer. The first test was made in 1958, when CPM was

applied to the construction of a new chemical plant. In March 1959, the method was applied to a

maintenance shut-down at the Du Pont works in Louisville, Kentucky. Unproductive time was

reduced from 125 to 93 hours. PERT was devised in 1958 for the POLARIS missile program by

the Program Evaluation Branch of the Special Projects office of the U.S.Navy, helped by the

Lockheed Missile Systems division and the Consultant firm of Booz-Allen & Hamilton. The

calculations were so arranged so that they could be carried out on the IBM Naval Ordinance

Research Computer (NORC) at Dahlgren, Virginia.

 Planning, Scheduling & Control

Planning, Scheduling (or organising) and Control are considered to be basic Managerial functions,

and CPM/PERT has been rightfully accorded due importance in the literature on Operations

Research and Quantitative Analysis. Far more than the technical benefits, it was found that

PERT/CPM provided a focus around which managers could brain-storm and put their ideas

together. It proved to be a great communication medium by which thinkers and planners at one

level could communicate their ideas, their doubts and fears to another level. Most important, it

became a useful tool for evaluating the performance of individuals and teams.

There are many variations of CPM/PERT which have been useful in planning costs, scheduling

manpower and machine time. CPM/PERT can answer the following important questions: How long

will the entire project take to be completed? What are the risks involved? Which are the critical

activities or tasks in the project which could delay the entire project if they were not completed on

time?

COPYRIGHT FIMT 2020 Page 39

Is the project on schedule, behind schedule or ahead of schedule?

If the project has to be finished earlier than planned, what is the best way to do this at the least

cost?

 The Framework for PERT and CPM

Essentially, there are six steps which are common to both the techniques. The procedure is listed

below:

1. Define the Project and all of it’s significant activities or tasks. The Project (made up of

several tasks) should have only a single start activity and a single finish activity.

2. Develop the relationships among the activities. Decide which activities must precede and

which must follow others.

3. Draw the "Network" connecting all the activities. Each Activity should have unique event

numbers. Dummy arrows are used where required to avoid giving the same numbering to

two activities.

4. Assign time and/or cost estimates to each activity

5. Compute the longest time path through the network. This is called the critical path.

6. Use the Network to help plan, schedule, monitor and control the project.

The Key Concept used by CPM/PERT is that a small set of activities, which make up the longest

path through the activity network control the entire project. If these "critical" activities could be

identified and assigned to responsible persons, management resources could be optimally used by

concentrating on the few activities which determine the fate of the entire project.

Non-critical activities can be replanned, rescheduled and resources for them can be reallocated

flexibly, without affecting the whole project.

UNIT-IV (Transportation & Assignment Problem)

General structure of transportation problem, solution procedure for transportation problem,

methods for finding initial solution, test for optimality, maximization of transportation

problem, transportation problem

COPYRIGHT FIMT 2020 Page 40

There is a type of linear programming problem that may be solved using a simplified version of the

simplex technique called transportation method. Because of its major application in solving

problems involving several product sources and several destinations of products, this type of

problem is frequently called the transportation problem. It gets its name from its application to

problems involving transporting products from several sources to several destinations. Although

the formation can be used to represent more general assignment and scheduling problems as well as

transportation and distribution problems. The two common objectives of such problems are either

(1) minimize the cost of shipping m units to n destinations or (2) maximize the profit of shipping m

units to n destinations.

Let us assume there are m sources supplying n destinations. Source capacities, destinations

requirements and costs of material shipping from each source to each destination are given

constantly. The transportation problem can be described using following linear programming

mathematical model and usually it appears in a transportation tableau.

There are three general steps in solving transportation problems.

We will now discuss each one in the context of a simple example. Suppose one company has four

factories supplying four warehouses and its management wants to determine the minimum-cost

shipping schedule for its weekly output of chests. Factory supply, warehouse demands, and

shipping costs per one chest (unit) are shown.

”Data for Transportation Problem”

At first, it is necessary to prepare an initial feasible solution, which may be done in several

different ways; the only requirement is that the destination needs be met within the constraints of

source supply.

http://orms.pef.czu.cz/text/MatModelTransProb.html
http://orms.pef.czu.cz/text/TranspTableau.html

COPYRIGHT FIMT 2020 Page 41

 The Transportation Matrix

The transportation matrix for this example appears in Table 7.2, where supply availability at each

factory is shown in the far right column and the warehouse demands are shown in the bottom row.

The unit shipping costs are shown in the small boxes within the cells at the initiation of solving all

cells are empty). It is important at this step to make sure that the total supply availabilities and total

demand requirements are equal. Often there is an excess supply or demand. In such situations, for

the transportation method to work, a dummy warehouse or factory must be added. Procedurally,

this involves inserting an extra row (for an additional factory) or an extra column (for an ad

warehouse). The amount of supply or demand required by the”dummy” equals the difference

between the row and column totals.

In this case there is:

Total factory supply … 51

Total warehouse requirements … 52

This involves inserting an extra row - an additional factory. The amount of supply by the dummy

equals the difference between the row and column totals. In this case there is 52 – 51 = 1. The cost

figures in each cell of the dummy row would be set at zero so any units sent there would not incur a

transportation cost. Theoretically, this adjustment is equivalent to the simplex procedure of

inserting a slack variable in a constraint inequality to convert it to an equation, and, as in the

simplex, the cost of the dummy would be zero in the objective function.

COPYRIGHT FIMT 2020 Page 42

 Initial Feasible Solution

Initial allocation entails assigning numbers to cells to satisfy supply and demand constraints. Next

we will discuss several methods for doing this: the Northwest-Corner method, Least-Cost method,

and Vogel's approximation method (VAM).

Table shows a northwest-corner assignment. (Cell A-E was assigned first, A-F second, B-F third,

and so forth.) Total cost : 10*10 + 30*4 + 15*10 + 30*1 + 20*12 + 20*2 + 45*12 + 0*1 = 1220($).

Inspection of Table indicates some high-cost cells were assigned and some low-cost cells bypassed

by using the northwest-comer method. Indeed, this is to be expected since this method ignores

costs in favor of following an easily programmable allocation algorithm. Table shows a least-cost

assignment. (Cell Dummy-E was assigned first, C-E second, B-H third, A-H fourth, and so on.)

Total cost : 30*3 + 25*6 + 15*5 +10*10 + 10*9 + 20*6 + 40*12 + 0*1= 1105 ($).

Table shows the VAM assignments. (Cell Dummy-G was assigned first, B-F second, C-E third, A-

H fourth, and so on.) Note that this starting solution is very close to the optimal solution obtained

after making all possible improvements (see next chapter) to the starting solution obtained using

the northwest-comer method. (See Table 7.3.) Total cost: 15*14 + 15*10 + 10*10 + 20*4 + 20*1 +

40*5 + 35*7 + 0*1 = 1005 ($).

”Northwest – Corner Assignment”

"Least - Cost Assignment"

http://orms.pef.czu.cz/text/NordWestCorner.html
http://orms.pef.czu.cz/text/LeastCostMethod.html
http://orms.pef.czu.cz/text/VogelAproxim.html

COPYRIGHT FIMT 2020 Page 43

"VAM Assignment"

 Develop Optimal Solution

To develop an optimal solution in a transportation problem involves evaluating each unused cell to

determine whether a shift into it is advantageous from a total-cost stand point. If it is, the shift is

made, and the process is repeated. When all cells have been evaluated and appropriate shifts made,

the problem is solved. One approach to making this evaluation is the Stepping stone method. The

term stepping stone appeared in early descriptions of the method, in which unused cells were

referred to as "water" and used cells as "stones"— from the analogy of walking on a path of stones

half-submerged in water. The stepping stone method was applied to the VAM initial solution, as

shown

Table shows the optimal solutions reached by the Stepping stone method. Such solution is very

close to the solution found using VAM method.

 "Optimal Matrix, With Minimum Transportation Cost of $1,000."

 Alternate Optimal Solutions

When the evaluation of any empty cell yields the same cost as the existing allocation, an alternate

optimal solution exists (see Stepping Stone Method – alternate solutions). Assume that all other

cells are optimally assigned. In such cases, management has additional flexibility and can invoke

non transportation cost factors in deciding on a final shipping schedule.

http://orms.pef.czu.cz/text/SteppingStone.html
http://orms.pef.czu.cz/text/SteppingStonealtSol.html

COPYRIGHT FIMT 2020 Page 44

 "Alternate Optimal Matrix for the Chest Transportation Problem, With Minimum Transportation

Cost of $1,000.

Degeneracy

Degeneracy exists in a transportation problem when the number of filled cells is less than the

number of rows plus the number of columns minus one (m + n - 1). Degeneracy may be observed

either during the initial allocation when the first entry in a row or column satisfies both the row and

column requirements or during the Stepping stone method application, when the added and

subtracted values are equal. Degeneracy requires some adjustment in the matrix to evaluate the

solution achieved. The form of this adjustment involves inserting some value in an empty cell so a

closed path can be developed to evaluate other empty cells. This value may be thought of as an

infinitely small amount, having no direct bearing on the cost of the solution. Procedurally, the

value (often denoted by the Greek letter epsilon, -) is used in exactly the same manner as a real

number except that it may initially be placed in any empty cell, even though row and column

requirements have been met by real numbers. A degenerate transportation problem showing a

Northwest Corner initial allocation is presented in Table 7.8, where we can see that if were not

assigned to the matrix, it would be impossible to evaluate several cells. Once a has been inserted

into the solution, it remains there until it is removed by subtraction or until a final solution is

reached. While the choice of where to put an is arbitrary, it saves time if it is placed where it

may be used to evaluate as many cells as possible without being shifted.

Transportation Problem with a Maximization as a Criterion

A fictive corporation A has a contract to supply motors for all tractors produced by a fictive

corporation B. Corporation B manufactures the tractors at four locations around Central Europe:

Prague, Warsaw, Budapest and Vienna.

COPYRIGHT FIMT 2020 Page 45

Plans call for the following numbers of tractors to be produced at each location:

Prague 9 000

Warsaw 12 000

Budapest 9 000

Corporation A has three plants that can produce the motors. The plants and production capacities

are

Hamburg 8 000

Munich 7 000

Leipzig 10 000

Dresden 5 000

Due to varying production and transportation costs, the profit earns on each motor depends on

where they were produced and where they were shipped. The following transportation table gives

the accounting department estimates of the euro profit per unit (motor).

"The Euro Profit Per One Shipped Motor"

Table shows a highest - profit assignment (Least Cost method modification). In contrast to the

Least – Cost method it allocates as much as possible to the highest-cost cell. (Cell Hamburg -

Budapest was assigned first, Munich - Warsaw second, Leipzig - Warsaw third, Leipzig – Budapest

fourth, Dresden – Prague fifth and Leipzig – Prague sixth.) Total profit : 3 335 000 euro.

http://orms.pef.czu.cz/text/LeastCostMethod.html

COPYRIGHT FIMT 2020 Page 46

"Highest - Profit Assignment"

Applying the Stepping Stone method (modified for maximization purposes) to the initial solution

we can see that no other transportation schedule can increase the profit and so the Highest – Profit

initial allocation is also an optimal solution of this transportation problem.

The Transshipment Problem

The transshipment problem is similar to the transportation problem except that in the transshipment

problem it is possible to both ship into and out of the same node (point). For the transportation

problem, you can ship only from supply points to demand points. For the transshipment problem,

you can ship from one supply point to another or from one demand point to another. Actually,

designating nodes as supply points or demand points becomes confusing when you can ship both

into and out of a node. You can make the designations clearer if you classify nodes by their net

stock position-excess (+), shortage (-), or 0. One reason to consider transshipping is that units can

sometimes be shipped into one city at a very low cost and then transshipped to other cities. In some

situations, this can be less expensive than direct shipment. Let's consider the balanced

transportation problem as an example. Picture shows the net stock positions for the three

warehouses and four customers. Say that it is possible to transship through Pilsen to both Innsbruck

and Linz. The transportation cost from Pilsen to Innsbruck is 300 euro per unit, so it costs less to

ship from Warsaw to Innsbruck by going through Pilsen. The direct cost is 950 euro, and the

transshipping cost is 600 + 300 = 900 euro. Because the transportation cost is 300 euro from Pilsen

to Innsbruck, the cost of transshipping from Prague through Pilsen to Innsbruck is 400 euro per

unit. It is cheaper to transship from Prague through Pilsen than to ship directly from Prague to

Innsbruck.

http://orms.pef.czu.cz/text/SteppingStoneApply.html

COPYRIGHT FIMT 2020 Page 47

 "Transshipment Example in the Form of a Network Model"

There are two possible conversions to a transportation model. In the first conversion, make each

excess node a supply point and each shortage node a demand point. Then, find the cheapest method

of shipping from surplus nodes to shortage nodes considering all transshipment possibilities. Let's

perform the first conversion for the Picture 7.1 example. Because a transportation table Prague,

Warsaw, and Vienna have excesses, they are the supply points. Because Krakow, Pilsen,

Innsbruck, and Linz have shortages, they are the demand points. The cheapest cost from Warsaw to

Innsbruck is 900 euro, transshipping through Pilsen. The cheapest cost from Prague to Innsbruck is

400 euro, transshipping through Pilsen too. The cheapest cost from all other supply points to

demand points is obtained through direct shipment. Table 7.11 shows the balanced transportation

table for this transshipment problem. For a simple transportation network, finding all of the

cheapest routes from excess nodes to shortage nodes is easy. You can list all of the possible routes

and select the cheapest. However, for a network with many nodes and arcs, listing all of the

possible routes is difficult.

"The Transshipment Problem After Conversion to a Transportation Model"

The second conversion of a transshipment problem to a transportation model doesn't require

finding all of the cheapest routes from excess nodes table to shortage nodes. The second conversion

requires more supply and demand nodes than the first conversion, because the points where you

can ship into and out of occur in the converted transportation problem twice – first as a supply

point and second as a demand point.

http://orms.pef.czu.cz/text/TheConversTransProblemTM.html

COPYRIGHT FIMT 2020 Page 48

Assignment problem approach of the assignment model, solution methods of assignment

problem, maximization in an assignment, unbalanced assignment problem, restriction on

assignment.

Another transportation problem is the assignment problem. You can use this problem to assign

tasks to people or jobs to machines. You can also use it to award contracts to bidders. Let's describe

the assignment problem as assigning n tasks to n people. Each person must do one and only one

task, and each task must be done by only one person. You represent each person and each task by a

node. Number the people 1 to n, and number the tasks 1 to n. The assignment problem can be

described simply using a verbal model or using a linear programming mathematical model . For

example, say that five groups of computer users must be trained for five new types of software.

Because the users have different computer skill levels, the total cost of trainings depends on the

assignments.

”Cost of Trainings According to the Groups of Users”

"Network Model for Assignment Problem"

Table shows the cost of training for each assignment of a user group (A through E) to a software

type (S1 through S5). Picture is a network model of this problem. A balanced assignment problem

has the same number of people and tasks. For a balanced assignment problem, the relationships are

all equal. Each person must do a task.

http://orms.pef.czu.cz/text/VerbalModelAssigProblem.html
http://orms.pef.czu.cz/text/MatModelofAssigProblemBalanc.html

COPYRIGHT FIMT 2020 Page 49

 For an unbalanced assignment problem with more people than tasks, some people don't have to do

a task and the first class of constraints is of the type. In general, the simplex method does not

guarantee that the optimal values of the decision variables are integers. Fortunately, for the

assignment model, all of the corner point solutions have integer values for all of the variables.

Therefore, when the simplex method determines the optimal corner point, all of the variable values

are integers and the constraints require that the integers be either 1 or 0 (Boolean).

 Conversion to a Balanced Transportation Table

It's not surprising that the variable values for corner point solutions to the assignment model are

integers. The assignment model is a special case of the transportation problem, and the

transportation problem has integer variable values for every corner point. For the assignment

model, the number of supply and demand points are both n. The supply points correspond to each

person, and the demand points correspond to each task. Furthermore, every supply amount is 1 and

every demand amount is 1. There is one of each person and one of each task.

”The Computer Users Assignment Problem in the Transportation Table Format”

Table represents the computer users assignment problem in the balanced transportation table

format. For the computer users assignment problem, you minimize the total cost of training.

Because number of users = 5 and software types = 5, the transportation problem is balanced. You

can use standard method for initial solution finding (Northwest-Corner method, Least-Cost method,

or Vogel's approximation method (VAM) and a Stepping–Stone method for developing an optimal

solution. Thinking of the transportation problem as shipping items between cities is helpful, but it's

the mathematical structure that is important.

http://orms.pef.czu.cz/text/NordWestCorner2.html
http://orms.pef.czu.cz/text/LeastCostMethod2.html
http://orms.pef.czu.cz/text/VogelAproxim2.html
http://orms.pef.czu.cz/text/SteppingStone3.html
http://orms.pef.czu.cz/text/SteppingStone3.html

COPYRIGHT FIMT 2020 Page 50

 The assignment problem has the same mathematical structure as the transportation problem, even

though it has nothing to do with shipping units. Note, that each feasible solution of assignment

problem will always be strongly degenerated (number of nonzero variables will always be n)

COPYRIGHT FIMT 2020 Page 51

COMPUTER ARCHITECTURE (203)

UNIT 1

REGISTER TRANSFER LANGUAGE

Digital systems are composed of modules that are constructed from digital components, such as

registers, decoders, arithmetic elements, and control logic. The modules are interconnected with

common data and control paths to form a digital computer system. The operations executed on data

stored in registers are called microoperations. A micro operation is an elementary operation

performed on the information stored in one or more registers Examples are shift, count, clear, and

load Some of the digital components from before are registers that implement microoperations.

The internal hardware organization of a digital computer is best defined by specifying. The set of

registers it contains and their functions. The sequence of microoperations performed on the binary

information stored The control that initiates the sequence of microoperations Use symbols, rather

than words, to specify the sequence of microoperations The symbolic notation used is called a

register transfer language A programming language is a procedure for writing symbols to specify

a given computational process. Define symbols for various types of microoperations and describe

associated hardware that can implement the microoperations.

REGISTER TRANSFER

Designate computer registers by capital letters to denote its function The register that holds an

address for the memory unit is called MAR The program counter register is called PC IR is the

instruction register and R1 is a processor register The individual flip-flops in an n-bit register are

numbered in sequence from 0 to n-1 Refer to Figure 4.1 for the different representations of a

register Designate information transfer from one register to another by

R2 ← R1 This statement implies that the hardware is available The outputs of the source must

have a path to the inputs of the destination The destination register has a parallel load capability If

the transfer is to occur only under a predetermined control condition, designate it by

If (P = 1) then (R2 ← R1)

or,

P:R2← R1,

where P is a control function that can be either 0 or 1

Every statement written in register transfer notation implies the presence of the required hardware

construction. It is assumed that all transfers occur during a clock edge transition

All microoperations written on a single line are to be executed at the same time

T: R2 ← R1, R1 ← R2

COPYRIGHT FIMT 2020 Page 52

BUS AND MEMORY TRANSFERS

Rather than connecting wires between all registers, a common bus is used A bus structure consists

of a set of common lines, one for each bit of a register Control signals determine which register is

selected by the bus during each transfer Multiplexers can be used to construct a common bus

Multiplexers select the source register whose binary information is then placed on the bus The

select lines are connected to the selection inputs of the multiplexers and choose the bits of one

register

In general, a bus system will multiplex k registers of n bits each to produce an n-line common bus

This requires n multiplexers – one for each bit

The size of each multiplexer must be k x 1

The number of select lines required is log k

To transfer information from the bus to a register, the bus lines are connected to the inputs of all

destination registers and the corresponding load control line must be activated Rather than listing

each step as

BUS ← C, R1 ← BUS,

use R1 ← C, since the bus is implied

Instead of using multiplexers, three-state gates can be used to construct the bus system A three-

state gate is a digital circuit that exhibits three states Two of the states are signals equivalent to

logic 1 and 0 The third state is a high-impedance state – this behaves like an open circuit, which

means the output is disconnected and does not have a logic significance

The three-state buffer gate has a normal input and a control input which determines the output state

With control 1, the output equals the normal input

With control 0, the gate goes to a high-impedance state This enables a large number of three-state

gate outputs to be connected with wires to form a common bus line without endangering loading

effects. Decoders are used to ensure that no more than one control input is active at any given time

This circuit can replace the multiplexer in Figure 4.3

To construct a common bus for four registers of n bits each using three-state buffers, we need n

circuits with four buffers in each Only one decoder is necessary to select between the four registers

Designate a memory word by the letter M It is necessary to specify the address of M when writing

memory transfer operations Designate the address register by AR and the data register by DR The

read operation can be stated as:

Read: DR ← M[AR]

COPYRIGHT FIMT 2020 Page 53

The write operation can be stated as:

Write: M[AR] ← R1

ARITHMETIC MICROOPERATIONS

There are four categories of the most common microoperations: Register transfer: transfer binary

information from one register to another Arithmetic: perform arithmetic operations on numeric

data stored in registers Logic: perform bit manipulation operations on non-numeric data stored in

registers Shift: perform shift operations on data stored in registers The basic arithmetic

microoperations are addition, subtraction, increment, decrement, and shift

Example of addition: R3 ← R1 +R2

Subtraction is most often implemented through complementation and addition

Example of subtraction: R3 ← R1 + R2 + 1 (strikethrough denotes bar on top – 1’s complement of

R2)

Adding 1 to the 1’s complement produces the 2’s complement

Adding the contents of R1 to the 2’s complement of R2 is equivalent to subtracting

Multiply and divide are not included as microoperations

A microoperation is one that can be executed by one clock pulse

Multiply (divide) is implemented by a sequence of add and shift microoperations (subtract and

shift)

To implement the add microoperation with hardware, we need the registers that hold the data and

the digital component that performs the addition

A full-adder adds two bits and a previous carry

A binary adder is a digital circuit that generates the arithmetic sum of two binary numbers of any

length

A binary added is constructed with full-adder circuits connected in cascade

An n-bit binary adder requires n full-adders

The subtraction A-B can be carried out by the following steps

Take the 1’s complement of B (invert each bit)

Get the 2’s complement by adding 1

Add the result to A

The addition and subtraction operations can be combined into one common circuit by including an

XOR gate with each full-adder

The increment microoperation adds one to a number in a register

This can be implemented by using a binary counter – every time the count enable is active, the

count is incremented by one

COPYRIGHT FIMT 2020 Page 54

If the increment is to be performed independent of a particular register, then use half-adders

connected in cascade

An n-bit binary incrementer requires n half-adders

Each of the arithmetic microoperations can be implemented in one composite arithmetic circuit

The basic component is the parallel adder

Multiplexers are used to choose between the different operations

The output of the binary adder is calculated from the following sum:

D = A + Y + C
in

LOGIC MICROOPERATIONS

Logic operations specify binary operations for strings of bits stored in registers and treat each bit

separately

Example: the XOR of R1 and R2 is symbolized by

P: R1 ← R1 ⊕ R2

Example: R1 = 1010 and R2 = 1100

1010 Content of R1

1100 Content of R2

0110 Content of R1 after P = 1

Symbols used for logical microoperations:

OR: ∨

AND: ∧

XOR: ⊕

The + sign has two different meanings: logical OR and summation

When + is in a microoperation, then summation

When + is in a control function, then OR

Example:

P + Q: R1 ← R2 + R3, R4 ← R5 ∨ R6

There are 16 different logic operations that can be performed with two binary variables

The hardware implementation of logic microoperations requires that logic gates be inserted for

each bit or pair of bits in the registers. All 16 microoperations can be derived from using four logic

gates

COPYRIGHT FIMT 2020 Page 55

Logic microoperations can be used to change bit values, delete a group of bits, or insert new bit

values into a register

The selective-set operation sets to 1 the bits in A where there are corresponding 1’s in B

1010 A before

1100 B (logic operand)

1110 A after

A ← A ∨ B

The selective-complement operation complements bits in A where there are corresponding 1’s in B

1010 A before

1100 B (logic operand)

0110 A after

A ← A ⊕ B

The selective-clear operation clears to 0 the bits in A only where there are corresponding 1’s in B

1010 A before

1100 B (logic operand)

0010 A after A ← A ∧ B

The mask operation is similar to the selective-clear operation, except that the bits of A are cleared

only where there are corresponding 0’s in B

1010 A before

1100 B (logic operand)

1000 A after

A ← A ∧ B

The insert operation inserts a new value into a group of bits

This is done by first masking the bits to be replaced and then Oring them with the bits to be

inserted

0110 1010 A before

0000 1111 B (mask)

0000 1010 A after masking

0000 1010 A before

1001 0000 B (insert)

1001 1010 A after insertion

The clear operation compares the bits in A and B and produces an all 0’s result if the two number

are equal

COPYRIGHT FIMT 2020 Page 56

1010 A

1010 B

0000 A ← A ⊕ B

SHIFT MICROOPERATIONS

Shift microoperations are used for serial transfer of data. They are also used in conjunction with

arithmetic, logic, and other data-processing operations. There are three types of shifts: logical,

circular, and arithmetic

A logical shift is one that transfers 0 through the serial input

The symbols shl and shr are for logical shift-left and shift-right by one position

R1 ← shl R1

The circular shift (aka rotate) circulates the bits of the register around the two ends without loss of

information

The symbols cil and cir are for circular shift left and right

The arithmetic shift shifts a signed binary number to the left or right

To the left is multiplying by 2, to the right is dividing by 2

Arithmetic shifts must leave the sign bit unchanged

A sign reversal occurs if the bit in R
n-1

changes in value after the shift

This happens if the multiplication causes an overflow

An overflow flip-flop V
s
can be used to detect the overflow

V
s
= R

n-1
⊕ R

n-2

A bi-directional shift unit with parallel load could be used to implement this

Two clock pulses are necessary with this configuration: one to load the value and another to shift.

In a processor unit with many registers it is more efficient to implement the shift operation with a

combinational circuit. The content of a register to be shifted is first placed onto a common bus and

the output is connected to the combinational shifter, the shifted number is then loaded back into the

register. This can be constructed with multiplexers

ARITHMETIC LOGIC SHIFT UNIT

The arithmetic logic unit (ALU) is a common operational unit connected to a number of storage

registers. To perform a microoperation, the contents of specified registers are placed in the inputs

of the ALU. The ALU performs an operation and the result is then transferred to a destination

register. The ALU is a combinational circuit so that the entire register transfer operation from the

source registers through the ALU and into the destination register can be performed during one

clock pulse period

COPYRIGHT FIMT 2020 Page 57

BASIC COMPUTER ORGANIZATION AND DESIGN

COMPUTER REGISTER

Computer has different types of registers:

TYPES OF REGISTERS ARE AS FOLLOWINGS

MAR stand for Memory Address Register

This register holds the memory addresses of data and instructions. This register is used to access

data and instructions from memory during the execution phase of an instruction. Suppose CPU

wants to store some data in the memory or to read the data from the memory. It places the

address of the-required memory location in the MAR.

Program Counter

The program counter (PC), commonly called the instruction pointer (IP) in Intel x86

microprocessors, and sometimes called the instruction address register, or just part of the

instruction sequencer in some computers, is a processor register.

It is a 16 bit special function register in the 8085 microprocessor. It keeps track of the the next

memory address of the instruction that is to be executed once the execution of the current

instruction is completed. In other words, it holds the address of the memory location of the

next instruction when the current instruction is executed by the microprocessor.

Accumulator Register

This Register is used for storing the Results those are produced by the System. When the CPU will

generate Some Results after the Processing then all the Results will be Stored into the AC

Register.

Memory Data Register (MDR)

MDR is the register of a computer's control unit that contains the data to be stored in the

computer storage (e.g. RAM), or the data after a fetch from the computer storage. It acts like a

buffer and holds anything that is copied from the memory ready for the processor to use it. MDR

hold the information before it goes to the decoder.

MDR which contains the data to be written into or readout of the addressed location. For example,

to retrieve the contents of cell 123, we would load the value 123 (in binary, of course) into the

MAR and perform a fetch operation. When the operation is done, a copy of the contents of cell 123

would be in the MDR. To store the value 98 into cell 4, we load a 4 into the MAR and a 98 into the

MDR and perform a store. When the operation is completed the contents of cell 4 will have been

set to 98, by discarding whatever was there previously. The MDR is a two-way register. When data

is fetched from memory and placed into the MDR, it is written to in one direction.

http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail

COPYRIGHT FIMT 2020 Page 58

When there is a write instruction, the data to be written is placed into the MDR from another CPU

register, which then puts the data into memory. The Memory Data Register is half of a minimal

interface between a micro program and computer storage, the other half is a memory address

register.

Index Register

A hardware element which holds a number that can be added to (or, in some cases, subtracted

from) the address portion of a computer instruction to form an effective address. Also known as

base register. An index register in a computer's CPU is a processor register used for modifying

operand addresses during the run of a program.

Memory Buffer Register

MBR stand for Memory Buffer Register. This register holds the contents of data or instruction read

from, or written in memory. It means that this register is used to store data/instruction coming from

the memory or going to the memory.

Data Register

A register used in microcomputers to temporarily store data being transmitted to or from a

peripheral device.

INSTRUCTION CODE AND COMPUTER INSTRUCTIONS

Computer instructions are the basic components of a machine language program. They are also

known as macrooperations, since each one is comprised of a sequences of microoperations. Each

instruction initiates a sequence of microoperations that fetch operands from registers or memory,

possibly perform arithmetic, logic, or shift operations, and store results in registers or memory.

Instructions are encoded as binary instruction codes. Each instruction code contains of a operation

code, or opcode, which designates the overall purpose of the instruction (e.g. add, subtract, move,

input, etc.). The number of bits allocated for the opcode determined how many different

instructions the architecture supports. In addition to the opcode, many instructions also contain one

or more operands, which indicate where in registers or memory the data required for the operation

is located. For example, and add instruction requires two operands, and a not instruction requires

one.

15 12 11 6 5 0

+-----------------------------------+

| Opcode | Operand | Operand |

+-----------------------------------+

The opcode and operands are most often encoded as unsigned binary numbers in order to minimize

the number of bits used to store them. For example, a 4-bit opcode encoded as a binary number

could represent up to 16 different operations.

COPYRIGHT FIMT 2020 Page 59

The control unit is responsible for decoding the opcode and operand bits in the instruction register,

and then generating the control signals necessary to drive all other hardware in the CPU to perform

the sequence of microoperations that comprise the instruction.

TIMING AND CONTROL

All sequential circuits in the Basic Computer CPU are driven by a master clock, with the exception

of the INPR register. At each clock pulse, the control unit sends control signals to control inputs of

the bus, the registers, and the ALU. Control unit design and implementation can be done by two

general methods:

A hardwired control unit is designed from scratch using traditional digital logic design techniques

to produce a minimal, optimized circuit. In other words, the control unit is like an ASIC

(application-specific integrated circuit).

A microprogrammed control unit is built from some sort of ROM. The desired control signals are

simply stored in the ROM, and retrieved in sequence to drive the microoperations needed by a

particular instruction.

INSTRUCTION CYCLE: Memory reference, register reference and input out put

instruction

The CPU performs a sequence of microoperations for each instruction. The sequence for each

instruction of the Basic Computer can be refined into 4 abstract phases:

Fetch instruction

Decode

Fetch operand

Execute

Program execution can be represented as a top-down design:

Program execution

Instruction 1

COPYRIGHT FIMT 2020 Page 60

Fetch instruction

Decode

Fetch operand

Execute

Instruction 2

Fetch instruction

Decode

Fetch operand

Execute

Instruction 3 ...

Program execution begins with:

PC ← address of first instruction, SC ← 0

After this, the SC is incremented at each clock cycle until an instruction is completed, and then it is

cleared to begin the next instruction. This process repeats until a HLT instruction is executed, or

until the power is shut off.

Instruction Fetch and Decode

The instruction fetch and decode phases are the same for all instructions, so the control functions

and microoperations will be independent of the instruction code.

Everything that happens in this phase is driven entirely by timing variables T0, T1 and T2. Hence,

all control inputs in the CPU during fetch and decode are functions of these three variables alone.

T0: AR ← PC

T1: IR ← M[AR], PC ← PC + 1

T2: D0-7 ← decoded IR(12-14), AR ← IR(0-11), I ← IR(15)

For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0.

The operation D0-7 ← decoded IR(12-14) is not a register transfer like most of our microoperations,

but is actually an inevitable consequence of loading a value into the IR register. Since the IR

outputs 12-14 are directly connected to a decoder, the outputs of that decoder will change as soon

as the new values of IR(12-14) propagate through the decoder.

Note that incrementing the PC at time T1 assumes that the next instruction is at the next address.

This may not be the case if the current instruction is a branch instruction. However, performing the

increment here will save time if the next instruction immediately follows, and will do no harm if it

doesn't. The incremented PC value is simply overwritten by branch instructions.

COPYRIGHT FIMT 2020 Page 61

In hardware development, unlike serial software development, it is often advantageous to perform

work that may not be necessary. Since we can perform multiple microoperations at the same time,

we might was well do everything that might be useful at the earliest possible time. Likewise,

loading AR with the address field from IR at T2 is only useful if the instruction is a memory-

reference instruction. We won't know this until T3, but there is no reason to wait since there is no

harm in loading AR immediately.

By time T2, the opcode has been decoded by the decoder attached to IR(12-14), and the control

signals D0-7 are available. At pulse T2, IR(15) is loaded into the I flip-flop. Hence, all of these

signals are available for use at pulse T3.

D7 indicates that the opcode field is 111, and this is either a register or I/O instruction. (i.e. it is not

a memory-reference instruction.)

The I bit allows us to distinguish between register and I/O instructions.

D7' indicates a memory-reference instruction. In this case, the I bit determines the addressing mode.

What happens at time T3 therefore depends on the two variables D7 and I.

Register-reference:

D7I'T3: Execute register-reference instruction.

I/O:

D7IT3: Execute I/O instruction.

Memory-reference with indirect addressing:

D7'IT3: AR ← M[AR]

Memory-reference with direct addressing:

D7'I'T3: Nothing. Effective address is already in AR. This wastes a clock cycle when direct

addressing is used, but it simplifies the memory-reference execute phase by ensuring that the CPU

is in a known state at time T4.

REGISTER-REFERENCE INSTRUCTION

The control function D7I' indicates a register-reference instruction, but which one?

Regardless of which instruction it is, T3 will be the last timing cycle for this instruction, and we

will want the next clock pulse to start the timing cycle over at T0 and fetch the next instruction.

Since D7I'T3 is common to all register-reference instructions, we will abbreviate it as simple 'r'.

D7I'T3: SC ← 0

r: SC ← 0

The CLA instruction is indicated by instruction code 780016 (0 111 1000000000002).

COPYRIGHT FIMT 2020 Page 62

The leftmost 4 bits indicate only that this is a register-reference instruction. The rightmost 12 bits

indicate that it is the CLA instruction.

How many register-reference instructions are possible with 12 bits to represent the opcode?

The Basic Computer does not encode the bits for register-reference instructions as a binary number,

but instead uses them directly. Hence, only one of these bits can be 1 for a given instruction, and

we are limited to 12 register-reference instructions.

For the register-reference execute phase, all control inputs in the CPU are functions of T3, r and one

of the variables B0 through B11, which come directly from IR(0-11).

CLA 10000000

CLE 01000000

CMA 00100000

HLT 00000001

Can we create register-reference instructions that combine two or more operations, e.g. CLACLE,

CLACMA, CLASZA?

Since B11 indicates a CLA instruction the execute cycle for CLA is driven by the function rB11.

rB11: AC ← 0

MEMORY-REFERENCE INSTRUCTION

Note that the register transfers listed in Table 5-4 are not microoperations, but symbolic

representations of the execute phase. For example, the following operation cannot be implemented

directly on the Basic Computer:

AC ← AC + M[AR]

Each memory ref instruction is indicated by a unique Di signal.

For the memory-reference execute phase, all control inputs in the CPU are functions of timing

signals T4 or later, I, and one of the variables D0 through D6.

The execute phase for memory-reference instructions begins at time T4. The effective address was

loaded into AR at time T2 or T3.

Several memory-reference instructions operate on AC and an operand from memory.

INPUT OUTPUT INSTRUCTIONS

An instruction in a computer program that causes transfer of data between peripheral devices and

main memory, and enables the central processing unit to control the peripheral devices connected

to it.

COPYRIGHT FIMT 2020 Page 63

The I/O instructions of the 80386 provide access to the processor's I/O ports for the transfer of data

to and from peripheral devices. These instructions have as one operand the address of a port in the

I/O address space. There are two classes of I/O instruction: Those that transfer a single item (byte,

word, or doubleword) located in a register.

Those that transfer strings of items (strings of bytes, words, or doublewords) located in memory.

These are known as "string I/O instructions" or "block I/O instructions".

DESIGN OF ACCUMULATOR LOGIC: BASIC COMPUTER INSTRUCTION FORMAT

The Basic Computer has a 16-bit instruction code similar to the examples described above. It

supports direct and indirect addressing modes.

How many bits are required to specify the addressing mode?

15 14 12 11 0

+------------------+

| I | OP | ADDRESS |

+------------------+

I = 0: direct

I = 1: indirect

UNIT2

CPU

GENERAL REGISTER ORGANIZATION

Memory access is very time-consuming, especially on today's computers, which typically have

many wait-states. Compounding the technological limitations on memory speed is the fact than

RAM memory banks are getting bigger. Bigger memory units means longer propagation delays in

decoding the address.

Memory access is also expensive in terms of the instruction code size necessary to accommodate

32 or 64-bit addresses.

If many CPU registers are available for heavily used variables and intermediate results, we can

avoid memory references much of the time, thus vastly increasing program execution speed, and

reducing program size.

COPYRIGHT FIMT 2020 Page 64

Figure 8-2 and the diagram below show the internal bus connections for a general

register organized CPU. This CPU has up to 8 general-purpose registers, which we can call R0

through R7, and an ALU with up to 16 functions.

STACK ORGANIZATION

The Stack Data Structure

A stack is a LIFO (last-in, first-out) list. There are exactly two operations that can be performed on

a stack.

Diagram of a stack

A push operation adds a new item to the top of the stack.

A pop operation removes an item from the top of the stack.

// sp points to next available element on the stack

// sp is initialized to 0

int push(int stack[], int sp, int value)

{

if (sp == STACK_SIZE)

return STACK_FULL;

else

stack[sp++] = value;

return SUCCESS;

}

int pop(int stack[], int sp)

{

if (sp == 0)

return STACK_EMPTY;

else

return stack[--sp];

}

Stack Implementation

Register stack (Mano section is confusing)

Memory stack

Uses for Stacks

Subprogram Calls

Stacks are used heavily in subprogram calls for saving the return address, passing arguments, and

as space for local variables.

COPYRIGHT FIMT 2020 Page 65

Reverse Polish Notation

Infix notation: a * b + c * d

Infix is hard to evaluate programmatically. Polish mathematician Lukasiewicz invented prefix

notation.

Infix: a + b

Prefix (Polish): + a b

Postfix (Reverse Polish): a b +

When converting to postfix, operands should remain in the same order.

Postfix can be evaluated by scanning right to left and using a stack.

a b * c d * +

Convert to RPN and evaluate: (a + b) * c / d * a - c * f

INSTRUCTION FORMATS

Opcode, address, addressing mode

Mano uses "address", I use "operand".

3-operand (memory-to-memory, register-memory, or load-store)

2-operand (memory-to-memory or register-memory)

1-address (accumulator-based)

0-operand (stack-organized)

Evaluate x = (a + b) * (c + d) in several assembly languages.

VAX (3-operand, memory-to-memory)

x86 (2-operand, register-memory)

MIPS (3-operand, load-store)

Mano (1-operand, accumulator-based)

ADDRESSING MODES

Effective address is the memory address where the operand is located.

Implied (accumulator)

Immediate: operand is part of instruction code

Register direct: operand is in a register

Register indirect: effective address is in a register

Auto-increment/auto-decrement: register indirect + update pointer

COPYRIGHT FIMT 2020 Page 66

Direct address: Effective address is part of instruction code

Indirect address: Address containing effective address in instruction code

Indexed (a.k.a. offset): Effective address = content of a general register + offset.

PC-relative: Offset from PC is in instruction code. Very common. Allows for relocatable code.

Special case of indexed using PC.

Base register: Another way of looking at indexed.

Data Transfer and Manipulation

As discussed in chapter 5, computers require certain minimum capabilities in order to be able to

run any arbitrary program.

Data transfer: I/O, load-store, move

Data manipulation: add, subtract, multiply, divide, and, or, not, shift (logical, arithmetic, rotate)

Program control: branch, jump, skip, call, return, compare, test (and)

Program Control

Status Bit Conditions

Most CPU architectures maintain a number of status bits that indicate the results from the most

recent ALU operation. These bits are usually stored in a status register, which is not directly

accessible as an argument in machine instructions. The bits are set automatically by many

instructions, and used by conditional branch instructions that follow.

DIFFERENCE BETWEEN RISC AND CISC

Bear in mind that these are just categories. Words are just labels and essentially empty.

CISC

Large instruction set

Usually memory-to-memory or register-memory

Sophisticated instructions

Instruction cycle takes many clock cycles

Many addressing modes

Examples

x86 Register-memory, 2-operand, 80 instructions on 8086/8088, many more added to 80186,

80286, 80386, 80486, Pentium (80586)

68k series Register-memory, 2-operand, 56 instructions on 68000, more added to 68010, etc.

VAX Memory-to-memory, 3-operand, 240 instructions, 16 addressing modes, 16 general registers.

The polyf instruction evaluates a polynomial given a pointer to an array of coefficients, the order of

the polynomial, and a value for x.

http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/68k
http://en.wikipedia.org/wiki/Vax

COPYRIGHT FIMT 2020 Page 67

RISC

Reduced Instruction Set Computer

Small instruction set

Few addressing modes

Only load and store instructions can access memory

Simple, fixed-length instruction code format

Most instructions execute in 1 clock cycle (common exceptions are load, store, mul, div)

Hardwired control unit

Many registers

Examples:

Alpha

ARM

MIPS 60 instructions, load-store architecture, 3 addressing modes (register-direct, immediate, and

offset). Most instructions limited to register direct, while a few use immediate for one operand.

Load and store instructions have one register direct and one offset operand.

PowerPC

Sun Sparc

PIPELINE AND VECTOR PROCESSING

Parallel Processing

A parallel processing system is able to perform concurrent data processing to achieve faster

execution time. The system may have two or more ALUs and be able to execute two or more

instructions at the same time. Also, the system may have two or more processors operating

concurrently. Goal is to increase the throughput – the amount of processing that can be

accomplished during a given interval of time. Parallel processing increases the amount of hardware

required

Example: the ALU can be separated into three units and the operands diverted to each unit under

the supervision of a control unit

All units are independent of each other

A multifunctional organization is usually associated with a complex control unit to coordinate all

the activities among the various components

http://en.wikipedia.org/wiki/DEC_Alpha
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/MIPS_architecture
http://en.wikipedia.org/wiki/Power_Architecture
http://en.wikipedia.org/wiki/Sun_Sparc

COPYRIGHT FIMT 2020 Page 68

Parallel processing can be classified from:

The internal organization of the processors

The interconnection structure between processors

The flow of information through the system

The number of instructions and data items that are manipulated

simultaneously

The sequence of instructions read from memory is the instruction stream

The operations performed on the data in the processor is the data stream

Parallel processing may occur in the instruction stream, the data stream, or both

Computer classification:

Single instruction stream, single data stream – SISD

Single instruction stream, multiple data stream – SIMD

Multiple instruction stream, single data stream – MISD

Multiple instruction stream, multiple data stream – MIMD

SISD – Instructions are executed sequentially. Parallel processing may be achieved by means of

multiple functional units or by pipeline processing

SIMD – Includes multiple processing units with a single control unit. All processors receive the

same instruction, but operate on different data.

MIMD – A computer system capable of processing several programs at the same time.

We will consider parallel processing under the following main topics:

Pipeline processing

Vector processing

Array processors

COPYRIGHT FIMT 2020 Page 69

Pipelining

Pipelining is a technique of decomposing a sequential process into suboperations, with each

subprocess being executed in a special dedicated segment that operates concurrently with all other

segments. Each segment performs partial processing dictated by the way the task is partitioned.

The result obtained from the computation in each segment is transferred to the next segment in the

pipeline. The final result is obtained after the data have passed through all segments. Can imagine

that each segment consists of an input register followed by an combinational circuit. A clock is

applied to all registers after enough time has elapsed to perform all segment activity

The information flows through the pipeline one step at a time

• Example: Ai * Bi + Ci for i = 1, 2, 3, …, 7

The suboperations performed in each segment are:

R1 ← Ai , R2 ← Bi

R3 ← R1 * R2, R4 ← Ci

R5 ← R3 + R4

COPYRIGHT FIMT 2020 Page 70

Any operation that can be decomposed into a sequence of suboperations of about the same

complexity can be implemented by a pipeline processor. The technique is efficient for those

applications that need to repeat the same task much time with different sets of data. A task is the

total operation performed going through all segments of a pipeline. The behavior of a pipeline can

be illustrated with a space-time diagram. This shows the segment utilization as a function of time.

Once the pipeline is full, it takes only one clock period to obtain an output

Consider a k-segment pipeline with a clock cycle time tp to execute n tasks

The first task T1 requires time ktp to complete

The remaining n – 1 tasks finish at the rate of one task per clock cycle and will be completed after

time (n – 1)tp

The total time to complete the n tasks is [k + n – 1]tp

The example of Figure 9-4 requires [4 + 6 – 1] clock cycles to finish

Consider a nonpipeline unit that performs the same operation and takes tn time to complete each

task

The total time to complete n tasks would be ntn

The speedup of a pipeline processing over an equivalent nonpipeline processing is defined by the

ratio

S = ntn .

(k + n – 1)tp

As the number of tasks increase, the speedup becomes

S = tn

tp

If we assume that the time to process a task is the same in both circuits, tn =k tp

S = ktn = k

tp

Therefore, the theoretical maximum speedup that a pipeline can provide is k

COPYRIGHT FIMT 2020 Page 71

Example:

Cycle time = tp = 20 ns

of segments = k = 4

of tasks = n = 100

The pipeline system will take (k + n – 1)tp = (4 + 100 –1)20ns = 2060 ns

Assuming that tn = ktp = 4 * 20 = 80 ns,

A nonpipeline system requires nktp = 100 * 80 = 8000 ns

The speedup ratio = 8000/2060 = 3.88

The pipeline cannot operate at its maximum theoretical rate

One reason is that the clock cycle must be chosen to equal the time delay of the segment with the

maximum propagation time

Pipeline organization is applicable for arithmetic operations and fetching instructions

ARITHMETIC PIPELINE

Pipeline arithmetic units are usually found in very high speed computers. They are used to

implement floating-point operations, multiplication of fixed- point numbers, and similar

computations encountered in scientific problems

Example for floating-point addition and subtraction

Inputs are two normalized floating-point binary numbers

X = A x 2a

Y = B x 2b

A and B are two fractions that represent the mantissas

a and b are the exponents

Four segments are used to perform the following:

Compare the exponents

Align the mantissas

Add or subtract the mantissas

Normalize the result

COPYRIGHT FIMT 2020 Page 72

X = 0.9504 x 103 and Y = 0.8200 x 102

The two exponents are subtracted in the first segment to obtain 3-2=1

The larger exponent 3 is chosen as the exponent of the result

Segment 2 shifts the mantissa of Y to the right to obtain Y = 0.0820 x 103

The mantissas are now aligned

Segment 3 produces the sum Z = 1.0324 x 103

Segment 4 normalizes the result by shifting the mantissa once to the right and incrementing the

exponent by one to obtain Z = 0.10324 x 104

INSTRUCTION PIPELINE

An instruction pipeline reads consecutive instructions from memory while previous instructions are

being executed in other segments. This causes the instruction fetch and execute phases to overlap

and perform simultaneous operations. If a branch out of sequence occurs, the pipeline must be

emptied and all the instructions that have been read from memory after the branch instruction must

be discarded. Consider a computer with an instruction fetch unit and an instruction execution unit

forming a two segment pipeline

A FIFO buffer can be used for the fetch segment

Thus, an instruction stream can be placed in a queue, waiting for decoding and processing by the

execution segment. This reduces the average access time to memory for reading instructions.

Whenever there is space in the buffer, the control unit initiates the next instruction fetch phase

COPYRIGHT FIMT 2020 Page 73

The following steps are needed to process each instruction:

Fetch the instruction from memory

Decode the instruction

Calculate the effective address

Fetch the operands from memory

Execute the instruction

Store the result in the proper place

The pipeline may not perform at its maximum rate due to:

 Different segments taking different times to operate

 Some segment being skipped for certain operations

 Memory access conflicts

Example: Four-segment instruction pipeline

Assume that the decoding can be combined with calculating the EA in one segment

Assume that most of the instructions store the result in a register so that the execution and storing

of the result can be combined in one segment

Up to four suboperations in the instruction cycle can overlap and up to four different instructions

can be in progress of being processed at the same time It is assumed that the processor has separate

instruction and data memories.

COPYRIGHT FIMT 2020 Page 74

Reasons for the pipeline to deviate from its normal operation are:

Resource conflicts caused by access to memory by two segments at the same time. Data

dependency conflicts arise when an instruction depends on the result of a previous instruction, but

his result is not yet available. Branch difficulties arise from program control instructions that may

change the value of PC

Methods to handle data dependency:

Hardware interlocks are circuits that detect instructions whose source operands are destinations of

prior instructions. Detection causes the hardware to insert the required delays without altering the

program sequence. Operand forwarding uses special hardware to detect a conflict and then avoid it

by routing the data through special paths between pipeline segments. This requires additional

hardware paths through multiplexers as well as the circuit to detect the conflict. Delayed load is a

procedure that gives the responsibility for solving data conflicts to the compiler. The compiler is

designed to detect a data conflict and reorder the instructions as necessary to delay the loading of

the conflicting data by inserting no-operation instructions.

Methods to handle branch instructions:

Perfecting the target instruction in addition to the next instruction allows either instruction to be

available. A branch target buffer is an associative memory included in the fetch segment of the

branch instruction that stores the target instruction for a previously executed branch. It also stores

the next few instructions after the branch target instruction. This way, the branch instructions that

have occurred previously are readily available in the pipeline without interruption. The loop buffer

is a variation of the BTB. It is a small very high speed register file maintained by the instruction

fetch segment of the pipeline. Stores all branches within a loop segment. Branch prediction uses

some additional logic to guess the outcome of a conditional branch instruction before it is executed.

The pipeline then begins perfecting instructions from the predicted path. Delayed branch is used in

most RISC processors so that the compiler rearranges the instructions to delay the branch.

A vector processor, or array processor, is a central processing unit (CPU) that implements an

instruction set containing instructions that operate on one-dimensional arrays of data called vectors.

This is in contrast to a scalar processor, whose instructions operate on single data items. Vector

processors can greatly improve performance on certain workloads, notably numerical simulation

and similar tasks.

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Scalar_processor

COPYRIGHT FIMT 2020 Page 75

Vector machines appeared in the early 1970s and dominated supercomputer design through the

1970s into the 90s, notably the various Cray platforms. The rapid rise in the price-to-performance

ratio of conventional microprocessor designs led to the vector supercomputer's demise in the later

1990s.

VECTOR OPERATIONS

Most commodity CPUs implement architectures that feature instructions for a form vector

processing on multiple (vectorized) data sets, typically known as SIMD (Single Instruction,

Multiple Data). Common examples include VIS, MMX, SSE, AltiVec and AVX. Vector

processing techniques are also found in video game console hardware and graphics accelerators. In

2000, IBM, Toshiba and Sony collaborated to create the Cell processor, consisting of one scalar

processor and eight vector processors, which found use in the Sony PlayStation 3 among other

applications. Other CPU designs may include some multiple instructions for vector processing on

multiple (vectorised) data sets, typically known as MIMD (Multiple Instruction, Multiple Data)

and realized with VLIW. Such designs are usually dedicated to a particular application and not

commonly marketed for general purpose computing. In the Fujitsu FR-V VLIW/vector processor

both technologies are combined.

MATRIX MULTIPLICATION

The functions submitted to the SPUs are block matrix multiplications. As can be seen, a simple

annotation before the declaration of the function is enough to allow this behavior with Cell

Superscalar. Following the link below you can download the whole file for this example. A simple

vectorized version of the matmul can be downloaded at the bottom of the page.

The example shows a hyper matrix multiplication calculated by blocks. The functions submitted to

the SPUs are block matrix multiplications. An example of coding for Cell Superscalar is shown

below.

http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Cray
http://en.wikipedia.org/wiki/Price-to-performance_ratio
http://en.wikipedia.org/wiki/Price-to-performance_ratio
http://en.wikipedia.org/wiki/Microprocessor

COPYRIGHT FIMT 2020 Page 76

MEMORY INTERLEAVING

In computing, interleaved memory is a design made to compensate for the relatively slow speed

of core memory or DRAM. With interleaved memory, memory addresses are allocated to each

memory bank in turn such that in an interleaved system with 2 memory banks (assuming word-

addressable memory) if address 32 belongs to bank 0, 33 would belong to bank 1, 34 would belong

to bank 0 and so on. This means that contiguous reads (which are common both in multimedia and

execution of programs) and contiguous writes (which are used frequently when filling storage or

communication buffers) would actually use each memory bank in turn instead of using the same

repeatedly. This results in significantly higher memory throughput as each bank has a minimum

waiting time between reads and writes. An interleaved memory with "n" banks is said to be n-way

interleaved. If there are "n" banks, memory location "i" would reside in bank number .

UNIT 3

COMPUTER ARITHMETIC:

INTRODUCTION: Anyone who has fiddled with a calculator long enough knows that it’s

relatively easy to trick it into producing ridiculous answers. Indeed, in spite of the possibility of

producing answers with a huge number of decimal places, it is important to understand right from

the start that (non-trivial) numerical calculations are always wrong. And so unless one knows how

wrong a numerical calculation might be, it t is hard to say how accurate the corresponding result

might be. In order to determine the size of the error in a numerical calculation, it is crucial to first

understand how computers calculate, ho w calculation errors are introduced, and how errors

propagate.

COPYRIGHT FIMT 2020 Page 77

INPUT OUTPUT ORGANIZATION

PERIPHERAL DEVICES

A computer device, such as a CD-ROM drive or printer that is not part of the essential computer,

i.e., the memory and microprocessor. Peripheral devices can be external -- such as a mouse,

keyboard, printer, monitor, external Zip drive or scanner -- or internal, such as a CD-ROM drive,

CD-R drive or internal modem. Internal peripheral devices are often referred to as integrated

peripherals.

INPUT-OUTPUT INTERFACE

It would not be practical for every I/O device to be wired to the computer in a different way, so we

must have a scheme where the hardware connections are fixed, and yet the communication with the

device is flexible, so that the widely varying needs of devices can all be met.

COPYRIGHT FIMT 2020 Page 78

An I/O device, from the viewpoint of the CPU, is a set of registers. The CPU communicates with

and controls the I/O device by reading and writing these registers. For example, SPIM, the MIPS

simulator, uses two registers to communicate with the keyboard.

The keyboard data register contains the ASCII code of the last key pressed.

The keyboard control register indicates when a new key has been pressed. If bit 0 is one, a key has

been pressed since the last character was read. The keyboard controller sets this bit when a key is

pressed. It clears this bit when the keyboard data register is read.

The CPU can find out whether a new character is available by reading the keyboard control register

and testing bit 0. If bit 0 is 1, it then reads the keyboard data register to get the new key.

For another simple example, see the 10-bit analog to digital converter in the PIC 18f8520 spec

sheet.

Accessing I/O devices at the hardware level is a lot like accessing memory. The registers in the I/O

devices are connected to the CPU using buses. We need an address bus to specify which I/O device

register is to be accessed. We need control lines to specify what kind of access is desired (read,

write, reset, etc.) Finally, we need a data bus to transfer the data between the CPU and the device.

Each device has one or more control, status, and data registers at various I/O addresses. A

hypothetical example:

Address Register

ff00 keyboard status

ff01 keyboard data

ff02 display status

ff03 display data

ff04 disk status

ff05 disk block address

ff06 disk block size

ff07 disk data address

...

I/O read and write operations can be more complex than memory read and write operations, but the

basic idea is the same. I/O control generally involves more than just read and write control lines. In

a sense, memory can be viewed as a very simple, fast I/O device. Whereas memory is just a large

pool of slow, inexpensive registers for storing data, each I/O device register has a unique purpose

in controlling a specific I/O device.

http://www.cs.uwm.edu/classes/cs458/Lecture/39609b.pdf
http://www.cs.uwm.edu/classes/cs458/Lecture/39609b.pdf

COPYRIGHT FIMT 2020 Page 79

This does not affect how the CPU accesses them at the hardware level, but it does affect how they

are used by software. Simple device control, such as stating whether an I/O register is to be read or

written, can be done over the control lines. More complex devices are often controlled by sending

special data blocks called Peripheral Control Blocks (PCBs) over the data lines. This is the primary

method for communicating with disk drives, for example. Since I/O devices are of a very different

nature than CPU circuits, there must be interface hardware to connect each device to the CPU.

ASYNCHRONOUS DATA TRANSFER

The internal operations of a CPU are synchronized by a common clock.

Generally, it is not possible, or at least not practical to synchronize I/O devices with the CPU's

internal clock. I/O devices operate at different speeds than the CPU (note that the same I/O device

may be connected to computers with vastly different CPU speeds). Data transfer links such as

USB, Firewire, and Ethernet, operate on a clock that is separate from the CPU's internal clock, but

common to devices at both ends of the link. The operations of an I/O interface must somehow be

synchronized with the CPU's activities. This is often done using handshaking signals. The I/O

device and CPU set wires or flip-flops to 0 or one to indicate their current state. (Recall the Mano

FGI and FGO flags.)

The sender on an RS-232 serial interface sets a wire known as RTS (ready to send) to indicate that

it has data to send. The receiver responds by by setting the CTS (clear to send) wire to indicate that

it's OK to begin sending the next byte.

Newer interfaces such as USB, Ethernet, etc. use more complex setups, but basic 2-wire

handshaking is still present in many modern interfaces.

MODE OF TRANSFER

Addressing modes are an aspect of the instruction set architecture in most central processing unit

(CPU) designs. The various addressing modes that are defined in a given instruction set

architecture define how machine language instructions in that architecture identify the operand (or

operands) of each instruction. An addressing mode specifies how to calculate the effective memory

address of an operand by using information held in registers and/or constants contained within a

machine instruction or elsewhere. In computer programming, addressing modes are primarily of

interest to compiler writers and to those who write code directly in assembly language.

COPYRIGHT FIMT 2020 Page 80

 Other modes of transfer for code or data

7.1 Absolute/Direct

7.2 Indexed absolute

7.3 Base plus index

7.4 Base plus index plus offset

7.5 Scaled

7.6 Register indirect

7.7 Register auto increment indirect

7.8 Auto decrement register indirect

7.9 Memory indirect

COPYRIGHT FIMT 2020 Page 81

COPYRIGHT FIMT 2020 Page 82

COPYRIGHT FIMT 2020 Page 83

UNIT 4

MEMORY ORGANIZATION:

MEMORY HIERARCHY

Primary Memory

RAM

ROM

Secondary Memory

Punching Devices

Magnetic Tape

Floppy Disk

Optical Discs (CD/DVD)

Hard Disk Drives

Flash Drives

Through a random web browsing session, when you right click on an image and select 'save image

as', have you ever wondered where exactly is it getting saved? How is it getting saved? And why

does it not disappear when you turn off your computer? Computer memory is responsible for

storing data and applications on a temporary or a permanent basis. It enables a person to retain the

information stored on the computer. Without a memory device/arrangement in place, the processor

would not be able to find a place which is needed to store the calculations and processes. There are

various types of computer memory that can be installed, depending upon the actual need for

functioning and specifications of the system.

COPYRIGHT FIMT 2020 Page 84

Computer memory can be primarily classified into two types: Primary Memory and Secondary

Memory.

PRIMARY MEMORY/ MAIN MEMORY Primary Memory (also called main memory), is used

for immediate access of data by the processor. While primary memory storage demonstrates faster

processing ability, it is costly and hence is not largely used for data storage. Most computer

systems around the world use primary memory only for bootstrapping and related purposes, and

use secondary memory devices for personal data storage purpose. Primary Memory can be divided

into two types - Random Access Memory (RAM) and Read Only Memory (ROM). RAM retains its

contents as long as the power supply is on. A RAM chip is used as primary memory in most

computers today. However, older computers (in the '80s) used ROM devices (floppy disks,

magnetic tapes, paper clips or punches; but more prominently floppy disks) as primary memory

mechanism.

Random Access Memory (RAM) RAM is a memory scheme within the computer system

responsible for storing data on a temporary basis, so that it can be promptly accessed by the

processor as and when needed. It is volatile in nature, which means that data will be erased once

supply to the storage device is turned off. RAM stores data randomly and the processor accesses

these data randomly from the RAM storage. The information stored in the RAM is typically loaded

from the computer's hard disk, and includes data related to the operating system and certain

applications. When the system is switched off, the RAM loses all stored information. The data

remains stored on secondary storage though, and can be retained when the system is running again.

Some of the earliest computers used delay-line format of computer storage. Most modern

computers use an embedded RAM circuitry on the motherboard which reads data in bursts. So,

modern RAM devices are not random memory devices as such; they are burst memory access

devices, but the term RAM has stuck in everyday usage.

There are primarily two forms of RAM: Static RAM (SRAM) and Dynamic RAM (DRAM).

Static RAM: The most expensive of the lot, SRAM uses bistable latching circuitry to store one bit

each, and hence is faster than its counterpart. Its high price prevents it from being widely used in

everyday computing machines, but many modern machines use SRAM as the processor's cache

register.

COPYRIGHT FIMT 2020 Page 85

Dynamic RAM: Widely used in modern computers as primary memory, DRAM is slower than

SRAM, but is inexpensive due to its one transistor-one capacitor paired assembly of memory

storage.

Back to Index

Read Only Memory (ROM)

Unlike RAM, ROM is a permanent form of storage. ROM stays active regardless of whether

powersupply to it is turned on or off. In spite of this, ROM was used (in rare cases is still used)

as the primary device for most computers back in the '80s. This was because ROM devices do not

allow data stored on them to be modified. As the name itself suggests, data can only be accessed

and read by the user, not overwritten, upgraded, or modified. This made it an ideal choice as

bootable devices for old computers, programmable interpreters, and portable OS files carrier. The

system programs stored on a ROM device could never be altered and hence, stayed secure for use.

The ROM memory used in modern computers is pre-programmed by the circuit manufacturer and

cannot be altered by the user. The main reason why ROMs are not widely used in modern

computer systems is because of the masking and error-retrieval costs. These processes are very

expensive, and virtually negate the inexpensive manufacturing involved.

Back to Index Cache is a type of RAM which was originally implemented as a temporary storage

mechanism to assist redirection to previously manipulated data by the user or the machine.

Eventually, the concept of cache has evolved to become a temporary as well as permanent form of

storage for the computer, as well as for individual applications. Most individual applications these

days maintain their own cache which can be accessed by the processor, as well as the user, and can

be maintained for as long as required without any risk of losing the data.

SECONDARY MEMORY/ AUXILIARY MEMORY

Secondary memory is available on mass storage devices for permanent data storage. Data stored on

a secondary device is retained even when it is not supplied any power. This data can be transported

in most cases, and looks and appears the same on any machine, irrespective of where the data was

first copied onto the secondary storage device. Unlike primary memory, secondary memory is not

directly accessible by the computer. When a computer needs to run or execute an application stored

in secondary memory, it first brings it to primary memory storage for a while, to control and carry

out its execution. Once execution of the application is done, the processor releases the application

and restores its control and memory data with the secondary memory device. Popular secondary

memory devices include hard disk drives, flash drives (pen drives, memory cards etc.), and zip

drives.

COPYRIGHT FIMT 2020 Page 86

 A couple of decades ago, as the 'personal computer' (PC) revolution was gathering storm,

especially in America, floppy disks had acquired almost a cult status amongst PC users. Eventually,

floppy disks were phased out by a better technology - a contemporary form of the optical drive

called the Compact Disc or CD. CDs came with better speed and larger storage alternatives as

compared to floppies. DVDs eventually took over the mantle from CDs, courtesy their ability to

store almost 4 times more data. Although DVDs are still widely used, the preferred devices of

secondary storage nowadays are portable hard disk drives or flash drives.

Back to Index

Punch Devices

The essential data storage techniques of the '50s and '60s, punch tapes and punch cards have

become passé since the advent of newer data storage formats.

Punch Tapes: A 0.1 mm thick paper strip was used to store data in the form of punched holes. A

keyboard was used to punch the desired alphabet onto the tape. This alphabet was represented on

the tape by a certain number and a select pattern of holes. A separate tape machine was used to

send and receive these tapes for distance communication purposes. For computing purposes, stored

data on the tapes would be read by the processing unit's inbuilt decoding machine.

Punch Cards: Primarily used in textile and handloom industries, punch cards stored instructions of

operation for machines. Early digital computers made punch cards popular as data storage

assemblies. Their working is pretty much similar to that of punch tapes, except for the fact that

instead of paper strips, this technique uses cards about 3¼ inches × 7⅜ inches in size. Around the

1920s and 1930s, IBM hit upon a series of card innovations which enabled pre-punched data

verification cards and cards with the ability to read alphabets, numbers, and signs (symbols) on a

single multipurpose card.

Magnetic Tape

Magnetic tape as a recording technique was invented in 1928. This formed the basis for magnetic

digital information storage. This form of data storage gained immense popularity in the '70s, when

magnetic tapes were wound around 10.6-inch reels. The device used for the read-write operations

on these tapes is called a tape drive. Until the early 1980s, magnetic tape drives were huge external

devices. With the introduction of IBM's 3480 family of magnetic tape cartridges, most magnetic

tape storage assembly went inside the central processing unit.

COPYRIGHT FIMT 2020 Page 87

Transferring data at around 7,200 characters/second, magnetic tapes store data in sequential order,

which also can be accessed only in a sequential order. The magnetic tape's storage density and

feasibility offered it a ready-made advantage against punched storage techniques. Even through the

'90s, as floppy disks and compact discs were taking over the market, magnetic tapes held a fan-like

following among large corporations for large-scale data storage. By the turn of the century, as solid

state data storage took over, magnetic tapes lost hold with them too.

Floppy Disk

The floppy disk memory technique uses a thin plastic-coated film covered with magnetic material.

It is covered with a protective plastic cover. Initially developed by IBM as inexpensive microcode

feeders in 1967, floppy disks were made commercially available in 1971 to the public.

Floppy disks began as giant 8-inch diskettes, and eventually evolved into 5¼-inch diskettes, and

later 3½-inch diskettes. Floppy disks can easily be termed the most popular data storage forms

ever, considering they were launched in 1971 and were broadly used right up to the late 2000s. The

fact that their availability coincided with the rise of popularity of personal computers among the

general public can be attributed as one of the main reasons behind its immense popularity, the

others being portability, feasibility, cost-effectiveness, and the lack of better options.

As of today, no modern machines are integrated with a floppy disk drive, though their popularity

amongst low cost data management companies remains intact.

Optical Drives (CD/DVD)

Philips and Sony collaborated in the '70s on a project to create a new digital audio disc. This

collaboration brought together the optical disc drive technologies both the companies were earlier

separately working on. Launched in 1982-83, the Compact Disc (CD) eventually went on from

being an audio disc to a data storage device. The DVD, (originally Digital Video Disc, but later

amended to Digital Versatile Disc) format was based on the CD format, and was developed

together by Philips, Sony, Toshiba, and Panasonic around the early '90s. It was launched in 1995

and became an instant success by the virtue of being same size as a CD yet offering almost 4 times

its memory space. While data storage isn't forfended, DVDs are mostly used for audio and video

recording/storage/playback purposes. In the late '90s, the popularity of CDs took a major three-way

hit. While the launch of DVD had already put it out of favor with video enthusiasts, its audio and

data storage purposes also waned in lieu of advancing technology. Affordable portable hard disk

drives and flash drives drove CDs out as a preferred form of data storage.

COPYRIGHT FIMT 2020 Page 88

 On the other hand, the easy availability of MP3 players and the legendary rise of Apple's iPod,

practically drove audio CDs out of the market. The DVD too has found successors in the form of

HD DVD and Blu-ray discs, and is in the gradual process of being phased out from regular use.

Hard Disk Drives

The dominant technique for storing data in current times, a hard disk consists of rapidly rotating

discs with a magnetic head to read and write data. Data can be accessed randomly. HDDs were

introduced by IBM (Yes, again IBM!) around the late 1950s for real-time transaction processing

machines. A few years later, IBM commercially launched the IBM 1311 model, which was almost

as big as a dishwasher, and had the capacity to store about 2 million characters.

Eventually, hard disk drives began to shrink in size and increase in storage capacity. Hard disk

drives were sold to PC and Mac users in the '80s as an external device with a SCSI port on the back

of the machines. A series of innovation on part of industry leaders through the '80s and early '90s

led to the hard disk being integrated inside the CPU. A typical desktop hard disk is 3.5 inches in

size, while for laptops it is 2.5 inches. As portability and convenience became keywords in modern

times, hard disks have again become portable. External hard disks typically use the USB plug-and-

play mechanism and are very cost-effective. Modern external hard disks can hold up to 2 terabytes

of data. Hard disks seem to be in for the long haul. No better option is in sight for now, and one

can easily predict that hard disks should continue to rule as the preferred form of data storage in the

years to come.

Flash Drives

A flash drive is a data storage device that uses flash memory for storage purposes. Typical in

design, flash drives are light-weight and small in design; and are hence easily portable. Flash drives

operate from the power supplied by a computer's USB port (the port in which they are plugged in).

The data on it can be erased and re-programmed as per the user's requirements. It only has a

specific number of erase and write cycles that it can withstand, after which it creates a tendency to

lose out on the stored information. Memory cards and USB flash drives are some

modes of this type of memory storage. Low cost, minimal power consumption, and portable

features make flash drives extremely desirable and popular in modern times. The concept of

computer memory has evolved since the first electronic computer (ENIAC) was set up in 1946 with

a primitive read only pre-stored programming mechanism. ENIAC used function tables for storing

instructions. Its maximum storage capacity was 600 two-hundred digit decimal instructions.

COPYRIGHT FIMT 2020 Page 89

The way data is stored today and the volumes in which it can be stored today is like a million miles

ahead of that. Memory management has become an important concept in every computer

programmer's textbook. Corporations and computer scientists keep researching for newer, simpler,

easier, and cost-effective methods of memory storage that can hold larger and larger capacity of

data than what is currently possible. Computer memory and its evolution is a constant process,

much like the rest of technology. It has changed multifold over the last few decades; expect it to

change multifold in the decades to come.

CACHE MEMORY

Cache is a small high-speed memory. Stores data from some frequently used addresses (of main

memory). Cache hit Data found in cache. Results in data transfer at maximum speed. Cache miss

Data not found in cache. Processor loads data from M and copies into cache. This results in extra

delay, called miss penalty. Hit ratio = percentage of memory accesses satisfied by the cache. Miss

ratio = 1-hit ratio

Cache is partitioned into lines (also called blocks). Each line has 4-64 bytes in it. During data

transfer, a whole line is read or written. Each line has a tag that indicates the address in M from

which the line has been copied. Cache hit is detected through an associative search of all the tags.

Associative search provides a fast response to the query: “Does this key match with any of the

tags?” Data is read only if a match is found.

Types of Cache

Fully Associative

Direct Mapped

Set Associative

Fully Associative Cache tag data M-address

Associative search of tags is expensive. Feasible for very small size caches only.

The secret of success Program locality.

Cache line replacement

To fetch a new line after a miss, an existing line must be replaced. Two common policies for

identifying the victim block are

LRU (Least Recently Used)

Random

COPYRIGHT FIMT 2020 Page 90

Estimating Average Memory Access Time

Average memory access time = Hit time + Miss rate x Miss penalty

Assume that

Hit time = 5 ns

Miss rate = 10%

Miss penalty = 100 ns.

The average memory access time = 15 ns.

Better performance at a cheaper price.

Direct-Mapped Cache

A given memory block can be mapped into one and only cache line.

Advantage

No need of expensive associative search!

Disadvantage

Miss rate may go up due to possible increase of mapping conflicts.

ASSCIATIVE MEMORY

The replacement policy decides where in the cache a copy of a particular entry of main memory

will go. If the replacement policy is free to choose any entry in the cache to hold the copy, the

cache is called fully associative. At the other extreme, if each entry in main memory can go in just

one place in the cache, the cache is direct mapped. Many caches implement a compromise in

which each entry in main memory can go to any one of N places in the cache, and are described as

N-way set associative. For example, the level-1 data cache in an AMD Athlon is 2-way set

associative, which means that any particular location in main memory can be cached in either of 2

locations in the level-1 data cache.

Associativity is a trade-off. If there are ten places to which the replacement policy could have

mapped a memory location, then to check if that location is in the cache, ten cache entries must be

searched. Checking more places takes more power, chip area, and potentially time. On the other

hand, caches with more associativity suffer fewer misses (see conflict misses, below), so that the

CPU wastes less time reading from the slow main memory. The rule of thumb is that doubling the

associativity, from direct mapped to 2-way, or from 2-way to 4-way, has about the same effect on

hit rate as doubling the cache size. Associativity increases beyond 4-way have much less effect on

the hit rate and are generally done for other reasons (see virtual aliasing, below).

COPYRIGHT FIMT 2020 Page 91

In order of worse but simple to better but complex:

direct mapped cache — The best (fastest) hit times, and so the best tradeoff for "large" caches

2-way set associative cache

2-way skewed associative cache – In 1993, this was the best tradeoff for caches whose sizes were

in the range 4K-8K bytes.

4-way set associative cache

fully associative cache – the best (lowest) miss rates, and so the best tradeoff when the miss penalty

is very high

Direct-mapped cache

Here each location in main memory can only go in one entry in the cache. It doesn't have a

replacement policy as such, since there is no choice of which cache entry's contents to evict. This

means that if two locations map to the same entry, they may continually knock each other out.

Although simpler, a direct-mapped cache needs to be much larger than an associative one to give

comparable performance, and is more unpredictable. Let 'x' be block number in cache, 'y' be block

number of memory, and 'n' be number of blocks in cache, then mapping is done with the help of the

equation x=y mod n.

2-way set associative cache

If each location in main memory can be cached in either of two locations in the cache, one logical

question is: which one of the two? The simplest and most commonly used scheme, shown in the

right-hand diagram above, is to use the least significant bits of the memory location's index as the

index for the cache memory, and to have two entries for each index. One benefit of this scheme is

that the tags stored in the cache do not have to include that part of the main memory address which

is implied by the cache memory's index. Since the cache tags have fewer bits, they take less area on

the microprocessor chip and can be read and compared faster. Also LRU is especially simple since

only one bit needs to be stored for each pair.

Speculative execution

One of the advantages of a direct mapped cache is that it allows simple and fast speculation. Once

the address has been computed, the one cache index which might have a copy of that location in

memory is known. That cache entry can be read, and the processor can continue to work with that

data before it finishes checking that the tag actually matches the requested address. The idea of

having the processor use the cached data before the tag match completes can be applied to

associative caches as well. A subset of the tag, called a hint, can be used to pick just one of the

possible cache entries mapping to the requested address.

COPYRIGHT FIMT 2020 Page 92

 The entry selected by the hint can then be used in parallel with checking the full tag. The hint

technique works best when used in the context of address translation, as explained below.

2-way skewed associative cache

Other schemes have been suggested, such as the skewed cache, where the index for way 0 is direct,

as above, but the index for way 1 is formed with a hash function. A good hash function has the

property that addresses which conflict with the direct mapping tend not to conflict when mapped

with the hash function, and so it is less likely that a program will suffer from an unexpectedly large

number of conflict misses due to a pathological access pattern. The downside is extra latency from

computing the hash function. Additionally, when it comes time to load a new line and evict an old

line, it may be difficult to determine which existing line was least recently used, because the new

line conflicts with data at different indexes in each way; LRU tracking for non-skewed caches is

usually done on a per-set basis. Nevertheless, skewed-associative caches have major advantages

over conventional set-associative ones.

VIRTUAL MEMORY AND VIRTUAL MEMORY MANAGEMENT

Because main memory (i.e., transistor memory) is much more expensive, per bit than disk memory

(presently, approximately 10 to 50 times more expensive), it is usually economical to provide most

of the memory requirements of a computer system as disk memory. Disk memory is also

``permanent'' and not (very) susceptible to such things as power failure. Data, and executable

programs, are brought into memory, or swapped as they are needed by the CPU in much the same

way as instructions and data are brought into the cache. Most large systems today implement this

``memory management'' using a hardware memory controller in combination with the operating

system software. One of the most primitive forms of ``memory management'' is often implemented

on systems with a small amount of main memory. This method leaves the responsibility of memory

management entirely to the programmer; if a program requires more memory than is available, the

program must be broken up into separate, independent sections and one ``overlaid'' on top of

another when that particular section is to be executed. This type of memory management, which is

completely under the control of the programmer, is sometimes the only type of memory

management available for small microcomputer systems. Modern memory management schemes,

usually implemented in mini - to mainframe computers, employ an automatic, user transparent

scheme, usually called ``virtual memory''. In a computer system which supports virtual memory

management, the computer appears to the programmer to have its address space limited only by the

addressing range of the computer, not by the amount of memory which is physically connected to

the computer as main memory.

COPYRIGHT FIMT 2020 Page 93

 In fact, each process appears to have available the full memory resources of the system. Processes

can occupy the same virtual memory but be mapped into completely different physical memory

locations. Of course, the parts of a program and data which are actually being executed must lie in

main memory and there must be some way in which the ``virtual address'' is translated into the

actual physical address in which the instructions and data are placed in main memory. The process

of translating, or mapping, a virtual address into a physical address is called virtual address

translation. Figure shows the relationship between a named variable and its physical location in

the system.

This mapping can be accomplished in ways similar to those discussed for mapping main memory

into the cache memory. In the case of virtual address mapping, however, the relative speed of main

memory to disk memory (a factor of approximately 10,000 to 100,000) means that the cost of a

``miss'' in main memory is very high compared to a cache miss, so more elaborate replacement

algorithms may be worthwhile.) In fact, in most processors, a direct mapping scheme is supported

by the system hardware, in which a page map is maintained in physical memory. This means that

each physical memory reference requires both an access to the page table and and an operand fetch.

In effect, all memory references are indirect. Figure shows a typical virtual-to-physical address

mapping.

Figure: A direct mapped virtual to physical address translation

http://web.cs.mun.ca/~paul/cs3725/material/web/notes/node11.html#figvm

COPYRIGHT FIMT 2020 Page 94

This requirement would be a considerable performance penalty, so most systems which support

virtual addressing have a small associative memory (called atranslation lookaside buffer, or TLB)

which contains the last few virtual addresses and their corresponding physical addresses, so in most

cases the virtual to physical mapping does not require an additional memory access. Figure

 shows a typical virtual-to-physical address mapping in a system containing a TLB.

Figure: A virtual to physical address translation mechanism with a TLB

For many current architectures, including the VAX, INTEL 80486, and MIPS, addresses are 32

bits, so the virtual address space is bytes, or 4 G bytes. A physical memory of about 16-64 M

bytes is typical for these machines, so the virtual address translation must map the 32 bits of the

virtual memory address into a corresponding area of physical memory. Sections of programs and

data not currently being executed normally are stored in disk, and are brought into main memory as

necessary. If a virtual memory reference occurs to a location not currently in physical memory, the

execution of that instruction is aborted, and can be restored again when the required information is

placed in main memory from the disk by the memory controller. (Note that, when the instruction is

aborted, the processor must be left in the same state it would have been had the instruction not been

executed at all). While the memory controller is fetching the required information from disk, the

processor can be executing another program, so the actual time required to find the information on

the disk (the disk seek time) is not wasted by the processor. In this sense, the disk seek time usually

imposes little (time) overhead on the computation, but the time required to actually place the

information in memory may impact the time the user must wait for a result. If many disk seeks are

required in a short time, however, the processor may have to wait for information from the disk.

Normally, blocks of information are taken from the disk and placed in the memory of the

processor. The two most common ways of determining the sizes of the blocks to be moved into and

out of memory are called segmentation and paging, and the term segmented memory

management or paged memory managementrefer to memory management systems in which the

blocks in memory are segments or pages.

http://web.cs.mun.ca/~paul/cs3725/material/web/notes/node11.html#figvmtlb

COPYRIGHT FIMT 2020 Page 95

FRONT END DESIGN TOOL (205)

Overview of the .NET Framework

The .NET Framework is a technology that supports building and running the next generation of

applications and XML Web services. The .NET Framework is designed to fulfill the following

objectives:

 To provide a consistent object-oriented programming environment whether object code is

stored and executed locally, executed locally but Internet-distributed, or executed remotely.

 To provide a code-execution environment that minimizes software deployment and versioning

conflicts.

 To provide a code-execution environment that promotes safe execution of code, including code

created by an unknown or semi-trusted third party.

 To provide a code-execution environment that eliminates the performance problems of scripted or

interpreted environments.

 To make the developer experience consistent across widely varying types of applications, such as

Windows-based applications and Web-based applications.

 To build all communication on industry standards to ensure that code based on the .NET

Framework can integrate with any other code.

 The .NET Framework consists of the common language runtime and the .NET Framework class

library. The common language runtime is the foundation of the .NET Framework. You can think of

the runtime as an agent that manages code at execution time, providing core services such as

memory management, thread management, and remoting, while also enforcing strict type safety

and other forms of code accuracy that promote security and robustness. In fact, the concept of code

management is a fundamental principle of the runtime. Code that targets the runtime is known as

managed code, while code that does not target the runtime is known as unmanaged code. The class

library is a comprehensive, object-oriented collection of reusable types that you can use to develop

applications ranging from traditional command-line or graphical user interface (GUI) applications

to applications based on the latest innovations provided by ASP.NET, such as Web Forms and

XML Web services.

 The .NET Framework can be hosted by unmanaged components that load the common language

runtime into their processes and initiate the execution of managed code, thereby creating a software

environment that can exploit both managed and unmanaged features. The .NET Framework not

only provides several runtime hosts, but also supports the development of third-party runtime hosts.

COPYRIGHT FIMT 2020 Page 96

 For example, ASP.NET hosts the runtime to provide a scalable, server-side environment for

managed code. ASP.NET works directly with the runtime to enable ASP.NET applications and

XML Web services, both of which are discussed later in this topic.

 Internet Explorer is an example of an unmanaged application that hosts the runtime (in the form of

a MIME type extension). Using Internet Explorer to host the runtime enables you to embed

managed components or Windows Forms controls in HTML documents. Hosting the runtime in

this way makes managed mobile code possible, but with significant improvements that only

managed code can offer, such as semi-trusted execution and isolated file storage.

 The following illustration shows the relationship of the common language runtime and the class

library to your applications and to the overall system. The illustration also shows how managed

code operates within a larger architecture.

.NET Framework in context.

Two-Tier and Three-Tier Architecture

All projects are broadly divided into two types of applications 2 tier and 3 tier

architecture. Basically high level we can say that 2-tier architecture is Client server application

and 3-tier architecture is Web based application. Below I am concentrating on the difference

between Two-Tier and Three-Tier Architecture, what all advantages, disadvantages and practical

examples.

Two-Tier Architecture:

The two-tier is based on Client Server architecture. The two-tier architecture is like client server

application. The direct communication takes place between client and server. There is no

intermediate between client and server. Because of tight coupling a 2 tiered application will run

faster.

COPYRIGHT FIMT 2020 Page 97

Two-Tier Architecture

The above figure shows the architecture of two-tier. Here the direct communication between client

and server, there is no intermediate between client and server.

Let’s take a look of real life example of Railway Reservation two-tier architecture:

Let’s consider that first Person is making Railway Reservation for Mumbai to Delhi by Mumbai

Express at Counter No. 1 and at same time second Person is also try to make Railway reservation

of Mumbai to Delhi from Counter No. 2

If staff from Counter No. 1 is searching for availability into system & at the same staff from

Counter No. 2 is also looking for availability of ticket for same day then in this case there is might

be good change of confusion and chaos occurs. There might be chance of lock the Railway

reservation that reserves the first.

But reservations can be making anywhere from the India, then how it is handled?

So here if there is difference of micro seconds for making reservation by staff from Counter No. 1

& 2 then second request is added into queue. So in this case the Staff is entering data to Client

Application and reservation request is sent to the database. The database sends back the

information/data to the client.

In this application the Staff user is an end user who is using Railway reservation application

software. He gives inputs to the application software and it sends requests to Server. So here both

Database and Server are incorporated with each other, so this technology is called as

“Client-Server Technology“.

The Two-tier architecture is divided into two parts:

1) Client Application (Client Tier)

2) Database (Data Tier)

On client application side the code is written for saving the data in the SQL server database. Client

sends the request to server and it process the request & send back with data. The main problem of

two tier architecture is the server cannot respond multiple request same time, as a result it cause a

data integrity issue.

http://www.softwaretestingclass.com/what-is-difference-between-two-tier-and-three-tier-architecture/two-tier-architecture/

COPYRIGHT FIMT 2020 Page 98

Advantages:

1. Easy to maintain and modification is bit easy

2. Communication is faster

Disadvantages:

1. In two tier architecture application performance will be degrade upon increasing the users.

2. Cost-ineffective

Three-Tier Architecture:

Three-tier architecture typically comprise a presentation tier, a business or data access tier, and

a data tier. Three layers in the three tier architecture are as follows:

1) Client layer

2) Business layer

3) Data layer

1) Client layer:

It is also called as Presentation layer which contains UI part of our application. This layer is used

for the design purpose where data is presented to the user or input is taken from the user. For

example designing registration form which contains text box, label, button etc.

2) Business layer:

In this layer all business logic written like validation of data, calculations, data insertion etc. This

acts as a interface between Client layer and Data Access Layer. This layer is also called the

intermediary layer helps to make communication faster between client and data layer.

3) Data layer:

In this layer actual database is comes in the picture. Data Access Layer contains methods to

connect with database and to perform insert, update, delete, get data from database based on our

input data.

Three-tier Architecture

http://www.softwaretestingclass.com/what-is-difference-between-two-tier-and-three-tier-architecture/three-tier-architecture/

COPYRIGHT FIMT 2020 Page 99

Advantages

1. High performance, lightweight persistent objects

2. Scalability – Each tier can scale horizontally

3. Performance – Because the Presentation tier can cache requests, network utilization is minimized,

and the load is reduced on the Application and Data tiers.

4. High degree of flexibility in deployment platform and configuration

5. Better Re-use

6. Improve Data Integrity

7. Improved Security – Client is not direct access to database.

8. Easy to maintain and modification is bit easy, won’t affect other modules

9. In three tier architecture application performance is good.

Disadvantages

1. Increase Complexity/Effort

.Net Architecture and .Net Framework basics:

Components of .Net Framework

Components of .Net Framework

Net Framework is a platform that provides tools and technologies to develop Windows, Web and

Enterprise applications. It mainly contains two components,

1. Common Language Runtime (CLR)

2. .Net Framework Class Library.

1. Common Language Runtime (CLR)

.Net Framework provides runtime environment called Common Language Runtime (CLR).It

provides an environment to run all the .Net Programs. The code which runs under the CLR is called

as Managed Code.

COPYRIGHT FIMT 2020 Page 100

 Programmers need not to worry on managing the memory if the programs are running under the

CLR as it provides memory management and thread management. Programmatically, when our

program needs memory, CLR allocates the memory for scope and de-allocates the memory if the

scope is completed.

Language Compilers (e.g. C#, VB.Net, J#) will convert the Code/Program to Microsoft

Intermediate Language (MSIL) intern this will be converted to Native Code by CLR. See the

below Fig.

There are currently over 15 language compilers being built by Microsoft and other companies also

producing the code that will execute under CLR.

2. .Net Framework Class Library (FCL)

This is also called as Base Class Library and it is common for all types of applications i.e. the way

you access the Library Classes and Methods in VB.NET will be the same in C#, and it is common

for all other languages in .NET.

The following are different types of applications that can make use of .net class library.

1. Windows Application.

2. Console Application

3. Web Application.

4. XML Web Services.

5. Windows Services.

In short, developers just need to import the BCL in their language code and use its predefined

methods and properties to implement common and complex functions like reading and writing to

file, graphic rendering, database interaction, and XML document manipulation.

Below are the few more concepts that we need to know and understand as part of this .Net

framework.

3. Common Type System (CTS)

It describes set of data types that can be used in different .Net languages in common. (i.e), CTS

ensures that objects written in different .Net languages can interact with each other.

For Communicating between programs written in any .NET complaint language, the types have to

be compatible on the basic level.

COPYRIGHT FIMT 2020 Page 101

The common type system supports two general categories of types:

Value types:

Value types directly contain their data, and instances of value types are either allocated on the stack

or allocated inline in a structure. Value types can be built-in (implemented by the runtime), user-

defined, or enumerations.

Reference types:

Reference types store a reference to the value's memory address, and are allocated on the heap.

Reference types can be self-describing types, pointer types, or interface types. The type of a

reference type can be determined from values of self-describing types. Self-describing types are

further split into arrays and class types. The class types are user-defined classes, boxed value types,

and delegates.

4. Common Language Specification (CLS)

It is a sub set of CTS and it specifies a set of rules that needs to be adhered or satisfied by all

language compilers targeting CLR. It helps in cross language inheritance and cross language

debugging.

Common language specification Rules:

It describes the minimal and complete set of features to produce code that can be hosted by CLR. It

ensures that products of compilers will work properly in .NET environment.

Sample Rules:

1. Representation of text strings

2. Internal representation of enumerations

3. Definition of static members and this is a subset of the CTS which all .NET languages are

expected to support.

4. Microsoft has defined CLS which are nothing but guidelines that language to follow so that it

can communicate with other .NET languages in a seamless manner.

Below mentioned the .Net Architecture stack for easy understanding.

COPYRIGHT FIMT 2020 Page 102

Features of .Net

 Features of .NET Platform are :-

 Common Language Runtime

 Explains the features and benefits of the common language runtime, a run-time environment that

manages the execution of code and provides services that simplify the development process.

 Assemblies

 Defines the concept of assemblies, which are collections of types and resources that form logical

units of functionality. Assemblies are the fundamental units of deployment, version control, reuse,

activation scoping, and security permissions.

 Application Domains

 Explains how to use application domains to provide isolation between applications.

 Runtime Hosts

 Describes the runtime hosts supported by the .NET Framework, including ASP.NET, Internet

Explorer, and shell executables.

 Common Type System

 Identifies the types supported by the common language runtime.

 Metadata and Self-Describing Components

 Explains how the .NET Framework simplifies component interoperation by allowing compilers to

emit additional declarative information, or metadata, into all modules and assemblies.

 Cross-Language Interoperability

 Explains how managed objects created in different programming languages can interact with one

another.

 .NET Framework Security

 Describes mechanisms for protecting resources and code from unauthorized code and unauthorized

users.

 NET Framework Class Library

 Introduces the library of types provided by the .NET Framework, which expedites and optimizes

the development process and gives you access to system functionality.

.NET and Its Advantages / Disadvantages

Developers, for a long time, have been looking for a framework that can help them easily create an

application. dotNET (also known as .NET) serves that purpose.

COPYRIGHT FIMT 2020 Page 103

 It is a framework, developed by Microsoft, which can be used to support the development as well

as running / maintenance of modern day apps and XML web services. The framework strives to

offer a highly consistent object oriented programming environment. It can be used to create apps

that run on multiple platforms. In short, these are desktop, mobile, as well as web apps that run on

Windows based devices, PCs, and servers. An interesting aspect of this framework is that it

supports the creation of cross platform server apps that can smoothly run across server platforms as

Linux, Windows, and even MAC. This framework can be used to design, develop, compile, build,

and deploy an application with its broad range of support programs, code libraries, compilers, and

APIs. These varied components assist in the development of a customized project/solution. .NET

has been used by a large number of developers for the creation of apps and services on multiple

devices and OS. One aspect of .NET that stands out is the range of features that it offers. In

addition to that, programmers get access to a code execution environment to minimize conflicts

during the deployment and versioning of the software. Another important characteristic that needs

to be spoken about here is its consistent developer experience while building a range of different

apps.

What is .NET used for?

Now we know that .NET is feature rich and it can be used for a wide variety of next generation

apps. Let’s now try to be more specific and delve into the range of apps that can be built with the

use of this framework.

 Business Functions

 Those days are gone when businesses were conducted without the presence of a software tool in

the background. Businesses, today, make constructive use of applications and software to

streamline their business processes. Be it supply chain management, sales, or finance; business

software can work wonders. .NET is regularly and extensively used in the creation of such software

like CRM, supply management app, and more.

 Re-Designing

 An organization doesn’t remain static. Your needs can alter with them, and your software needs to

scale with it. .NET has been found to be a great platform for re-designing current applications in

order to make it line up with the growing needs of an organization.

COPYRIGHT FIMT 2020 Page 104

 Interoperable Apps

 If one aspires to have an interoperable app that seamlessly brings together user experience across

multiple platforms, .NET can again play a pivotal role. With the range of features on offer, .NET

can help programmers create apps that work in sync across platforms.

 Gaming

 .NET is extremely versatile, and that makes it suitable for the development of gaming applications.

Its versatility can also help in the creation of web and enterprise-graded applications.

 Communication

 Businesses need emails and chat platforms for seamless communication between employees. .NET

is one of the most popular platforms used for emails & chat. It can integrate with your Outlook for

a more holistic experience. Moreover, there are various other techniques that make your

communication more fool proof.

 Multi-Tiered Software Architecture

 .NET makes use of multi-tiered software architecture. It is known as multi-tiered because it

physically separates functions for presentation, app processing, and data management. It helps

developers build flexible applications. Moreover, developers can also add or edit a layer without

being required to rework on the entire app.

 Cross Platform

 Most expert developers consider .NET to be a modular and swift platform that can be used to

create server apps that run equally well across Linux, Windows, and MAC.

 Mobile Apps

 It lets you create apps that work smoothly across computer, mobile, and other devices.

Advantages of .NET

Here are some of the compelling advantages of .NET:

 Object Oriented

 Everything that you see in the .NET framework is an object. It is the same for what you write

within the framework. This means that you get a powerful tool to not just access but also control

your apps. This also makes it simpler for you to respond to recurring events.

 Caching

 The caching system that .NET includes is extremely robust and easy-to-use.

COPYRIGHT FIMT 2020 Page 105

 Easy Maintenance

 Pages, with .NET, are extremely simple to write and maintain. This is because the source code and

HTML are both together. In addition to that, the source code executes on the server. What does this

mean? This makes your web pages more powerful and flexible.

 Time-Saving

 Time is money, and .NET helps you save a lot of that. The way it is developed, .NET removes a

large part of the coding requirement. This means that the developers save time, and the app’s time-

to-market can be shortened considerably.

 Simplicity

 Performing common tasks with .NET is extremely simple and straight forward. Submission of

forms is a breeze and so is site configuration, deployment, and client authentication.

 Feature-Rich

 There are a range of features that can be explored by the developers in order to create powerful

apps. Consider the case of its rich toolbox as also the designer in the visual studio. They let you

access such features as automatic deployment, WYSIWYG editing, and drag-and-drop controls.

 Consistency

 The management and monitoring of all the processes is performed by the framework. If one of the

processes is dead, a new process can be created just as easily. This lets your app be consistently

available for handling requests.

 Monitoring

 Finally, .NET also stands for its automatic monitoring. It will promptly notice any problems like

infinite loops, memory leaks, etc. Not just this, it will also destroy these activities automatically

and restart itself.

 In conclusion, there are tons of advantages that .NET offers. These features make it popular among

clients as well as programmers.

Disadvantages of .NET

Along with advantages, you will always come across disadvantages of any platform. That’s the

case with .NET too.

Here’s a compilation of some of the drawbacks of using .NET:

 Limited Object Relational (OR) support

 It is found to be limited at times, because such support is generally available with entity framework

only.

COPYRIGHT FIMT 2020 Page 106

 Slower than Native Code

 Managed code that you run with .NET can be slower than native code.

 Vendor lock-in

 The framework involves Vendor lock-in. This can mean that future development will be only

dependent on Microsoft.

 Expensive

 In some cases, migration of apps to .NET can turn out to be expensive.

Garbage Collection: Memory Management in .Net
Memory management using the Garbage Collector

The Garbage Collector is an important process in the .Net CLR. The Microsoft .NET common

language runtime requires that all resources be allocated from the managed heap. Objects are

automatically freed when they are no longer needed by the application. The CLR performs Non-

deterministic finalization: i.e. it cannot be predicted, when the Garbage Collector will be called to

clean up unnecessary objects from memory. Non deterministic finalization is performed when the

CLR foresees a memory deficiency. In all kinds of programs, resources are used. These resources

could be in the form of 'memory buffers', 'screen space', 'network connections', 'database resources',

and so on. Moreover, we should realize that in an object-oriented environment, every type is

actually a resource available for our program to use. To use any of these resources requires that

memory be allocated to represent the type. The bare minimum, steps required to access a resource

are as follows:

1. Allocate memory for the resource. (Resource Allocation - explained below)

2. Initialize the memory to set the initial state of the resource.

3. Use the resource by accessing the instance members of the type.

4. Reset the state of the resource for cleanup.

5. Free the memory. (Garbage Collection - explained below)

Resource Allocation

There are two data types that the Garbage collector bifurcates into: Value types and Reference

types

1. Value types

In C#, all the "things" declared with the following list of type declarations are Value types (because

they are from System.ValueType):

 bool

 byte

 char

COPYRIGHT FIMT 2020 Page 107

 decimal

 double

 enum

 float

 int

 long

 sbyte

 short

 struct

 uint

 ulong

 ushort

These Value Types reside on the stack. The CLR does not care about this type of data with

reference to memory management. The Stack is self-maintaining, meaning that it basically takes

care of its own memory management. When the top box is no longer used, it's thrown out.

2. Reference Types

All the "things" declared with the types in this list are Reference types. They inherit from

System.Object

 class

 interface

 delegate

These Reference Types exist on a managed heap. This is where the Garbage Collector comes into

the picture.

Managed Heap

A Managed Heap is a pool of memory where all the instances of Reference Types (classes and

arrays etc.) are created and allocated space. When an object is initialized, the CLR simply allocates

an address space in the Managed Heap. There is actually no storage space allocated at this point of

time. However a pointer to this heap is maintained to keep track of the next object within this heap.

The memory space on this heap is allocated only when an object is created using the new operator.

COPYRIGHT FIMT 2020 Page 108

Mechanics of Resource Allocation - Object creation, initialization and instantiation.

Initially, the next object pointer is set to the base address of the reserved address space region.

When we create an object i.e. declare a type, the runtime reserves a contiguous region of address

space that initially has no storage allocated for it, when we create an object. The Jitter (Just-in-time

Compiler) updates the manage heap and also maintains the addresses of all objects that are

allocated within this managed heap. After declaring an object, we instantiate the object using the

'new' operator. This 'new' operator first makes sure that the bytes required by the new object fit in

the reserved region (committing storage if necessary). If the object fits, then pointer points to the

object in the heap, this object's constructor is called, and the new operator returns the address of the

object. At this point, 'Next Object Pointer' is incremented past the object so that it points to where

the next object will be placed in the heap.

Similarly, the objects keep adding to the heap, with the instantiation of each new object.

In this process, it might reach to a condition where there is no more space left in the heap to be

allocated to a new object, or the available space is not enough to accommodate the new object that

has been instantiated. This is to say, when the 'Next Object Pointer' reaches beyond the end of the

address space, a memory deficiency occurs and therefore the CLR calls the Garbage Collector and

gives it this memory heap.

COPYRIGHT FIMT 2020 Page 109

Application Roots

Before we proceed to examine and understand the Garbage Collection process, let's take a final

look at the Managed Heap. So, we see that the required memory space is allocated on the heap, to

all the objects that have been initialized. An Object Pointer is set to the final location and stores the

address, where the next object would be allocated the memory space on the heap. Is this all? No it

is not. Many objects on a heap are linked one to the other forming a chain, depending on which

object is referenced by whom. There might be multiple such chains in the heap. The reference to

the first object, i.e. the memory location to any such chain is called a Root. Every application has a

set of such roots. E.g. the global and static object pointers, any local variable/parameter object

pointers and any CPU registers containing pointers to objects.

All these roots are stored in the Application stack and identify storage locations, which refer to

objects on the managed heap or to objects that are set to null. This list of active roots is maintained

by the just-in-time (JIT) compiler and common language runtime, and is made accessible to the

garbage collector's algorithm.

In reality, a collection occurs when generation 0 is completely full. Briefly, a generation is a

mechanism implemented by the garbage collector in order to improve performance. The idea is that

newly created objects are part of a young generation, and objects created early in the application's

lifecycle are in an old generation. Separating objects into generations can allow the garbage

collector to collect specific generations instead of collecting all objects in the managed heap.

The Garbage Collector

The basic algorithm used by the garbage collector is quite simple:

 Mark all managed memory as garbage

 Look for used memory blocks, and mark them as valid

 Discard all unused memory blocks

 Compact the heap

Once the GC receives this memory heap, The garbage collector checks to see if there are any

objects in the heap that are no longer being used by the application.

COPYRIGHT FIMT 2020 Page 110

 If such objects exist, then the memory used by these objects can be reclaimed. (If no more memory

is available for the heap, then the new operator throws an Out Of Memory Exception.)

Now there is a very valid question. How does the garbage collector know if the application is using

an object or not?

When the garbage collector starts running, it makes the assumption that all objects in the heap are

garbage. In other words, it assumes that none of the application's roots refer to any objects in the

heap. Now, the garbage collector starts checking the roots and building a graph of all objects

reachable from the roots.

In the above figure the Objects A, and E are directly referenced by the Application Roots. The

Garbage collector starts from the Root, traversing through all the objects in the chain and stores

them, making a graph. This action is repeated for all the chains one by one, and hence all the

objects that are either referred directly by the Application Root or are indirectly referred by another

object on the heap are added to the Graph. Here it is important to note that, if while traversing

down a chain, the garbage collector reaches an object that it has already added to the Graph, then it

stops going further down that path. This is because, it is obvious that the next objects further down

the chain would already be there in the Graph. This increases the performance of the process as

well as it also prevents infinite loops. In case there are any circular linked lists of objects. Once all

the roots/chains have been checked and added to the Graph, the Garbage Collector assumes that are

not in the Graph are not referenced from the application's roots and hence are not accessible by the

application, and are therefore considered garbage. The garbage collector now checks the entire

heap for contiguous blocks of garbage objects. It shifts the non-garbage objects down in the heap,

removing all of the gaps in the heap. It then modifies the application's roots so that all the pointers

now point to the objects' new locations. Also, if any object contains a pointer to another object, it

corrects these pointers as well. Finally, the Next

COPYRIGHT FIMT 2020 Page 111

Object Pointer is positioned just after the last non-garbage object. Now the heap is ready to

allocate the memory space, required by the new object that was initialized and had triggered the

Garbage Collection.

However there might be a case where even after the Garbage Collection there is not enough space

on the Heap to accommodate the new object. In such a scenario another very important feature of

Garbage Collector called; 'Generations' comes into action.

Generations

Though this feature of the garbage collector resolves the issue where even after the garbage

collection, there is not enough space on the heap to accommodate the new object. But, then it is

absolutely wrong to say that the feature of Generations address and was developed only to address

the memory accommodation issue. In fact this feature of the garbage collector exists purely to

improve the performance.

The Garbage Collector with this feature is known as an 'Ephemeral Garbage Collector', and it

makes the following assumptions:

 The newer an object is, the shorter its lifetime will be.

 The older an object is, the longer its lifetime will be.

 Newer objects tend to have strong relationships to each other and are frequently accessed around

the same time.

 Compacting a portion of the heap is faster than compacting the whole heap.

In order to understand, physically the Generations are nothing more than the identification of the

Heap area into 3 categories. Once the Garbage Collector receives the memory heap, it

divides/distributes the contents in the heap into three categories of objects and stores these objects

into three tables:

 Generation 0 this stores short lived objects.

 Generation 1 this stores older objects.

 Generation 2 this stores the oldest objects.

COPYRIGHT FIMT 2020 Page 112

Generation 0

At first when there are no objects on the Heap, then every time a new object is added, it goes into

Generation 0. , as discussed above. Hence the objects in the Generation 0 are all latest objects that

have never been examined by the Garbage Collector.

Generation 1

Here Objects A, C, E, F and I are free objects, i.e. they do not have any reference, neither from a

Root nor from any other object on the heap. When this Generation 0 is completely full, i.e. there is

no more space for a new Object then the garbage collection occurs. All the objects that survive the

collection (Objects B, D, G and H) are compacted into the left most portion of the heap. These

objects are the old objects and are now said to be in Generation1.

Now any new object added on the heap, goes to the Generation 0. So we see that in Generation 0

we have New Objects and in Generation 1 we have relative older objects.

Generation 2

Same as before, if again the Generation 0 is full, then again the heap is subjected to Garbage

Collection. However, this time first all the objects in Generation 1, that survive the collection

(Objects B, G & H) are compacted and are now considered to be in Generation 2. Then, all the

objects in Generation 0 are compacted as before and are now considered to be in Generation 1.

This clears the space in Generation 0 for new objects. Hence, we see that in Generation 2 we have

COPYRIGHT FIMT 2020 Page 113

the oldest objects (objects B, G & H), in generation we have relatively older objects (objects K &

N) and in generation we have the most recently added i.e. the newest objects (objects O, P, Q & R).

Currently, generation 2 is the highest generation supported by the runtime's garbage collector.

When future collections occur, any surviving objects currently in Generation 2 simply stays in

generation 2.

But now the question is, how exactly does this feature of generations, help in improving the

performance?

1. When the heap fills and a collection occurs, the garbage collector first examines and collects the

objects in the Generation 0. The assumption is that the newer an object is, the shorter its lifetime is

expected to be. Hence, we hope that, collecting and compacting the Generation 0 objects would

free enough space on the heap to accommodate the new object. We can see that, examining and

collecting objects from just the Generation 0 is much faster than if the collector had examined the

objects in all the generations. However, even if collecting objects from Generation 0 doesn't

provide the required amount of space, then the collector attempts to collect the objects from

generations 1 and 0. Similarly, if the collection from both the generations 1 & 0, fails to create the

required space, then the objects are collected from all the Generations-2, 1, and 0.

2. A generational collector can offer more optimizations by not traversing every object in the

managed heap. If a root or object refers to an object in an old generation, the garbage collector can

ignore any of the older objects' inner references, decreasing the time required to build the graph of

reachable objects. Of course, it is possible that an old object refers to a new object. So that these

objects are examined, the collector can take advantage of the system's write-watch support

(provided by the Win32 GetWriteWatch function in Kernel32.dll). This support lets the collector

know which old objects (if any) have been written to since the last collection. These specific old

objects can have their references checked to see if they refer to any new objects.

COPYRIGHT FIMT 2020 Page 114

Garbage Collection in Multithreaded Applications

While understanding the mechanism of Garbage Collection, as above, we made a big assumption

that, only one thread is running. Though in fact under normal circumstances, there would be

multiple threads accessing the managed heap or manipulating objects allocated space on the

managed heap. When the space is requested by a new object from one thread and the Collection is

triggered, then it becomes important that other threads must not access any objects (including

object references on its own stack) since the collector is likely to move these objects, changing

their memory locations. Hence, when the garbage collector starts a collection, all threads executing

managed code are suspended. The runtime employs different mechanisms to safely suspend

threads so as to keep the threads running as long as possible before the collection is performed.

This is to reduce overhead as much as possible. The mechanisms that the garbage collector

employs when applications have multiple threads are:

1. Fully Interruptible Code

When a collection starts, the collector suspends all application threads and determines -

i. Where the thread was suspended, i.e. where in a method the thread stopped,

ii. What object references the code is currently accessing, and

iii. Where those references are held in a variable or a CPU register, etc.

2. Hijacking

When a collection occurs, the collector modifies the thread's stack, such that when a method

returns, a special function is executed, to suspend the thread. When the collection is complete, the

thread resumes and returns to the method that originally called it. This is called Thread Hijacking.

This thread hijacking allows threads that are executing unmanaged code to continue execution

while a garbage collection is occurring. Please note, this does not cause any problem, since

unmanaged code is not accessing objects on the managed heap unless the objects do not contain

object references. If a thread that is currently executing unmanaged code returns to managed code,

the thread is hijacked and is suspended until the Garbage Collection completes.

3. Safe Points

While compiling a method, if the just-in-time compiler finds that a Garbage Collection is pending -

i. It inserts a call to a function that suspends the thread,

ii. First the Garbage Collection is completed, and

iii. Then the thread is resumed.

This position where the compiler inserts these method calls is called a Safe Point.

COPYRIGHT FIMT 2020 Page 115

4. Synchronization-free Allocations

On a multiprocessor system, generation 0 of the managed heap is split into multiple memory areas

using one area per thread. This allows multiple threads to make allocations simultaneously so that

exclusive access to the heap is not required.

5. Scalable Collections

On a multiprocessor system running the server version of the execution engine (MSCorSvr.dll), the

managed heap is split into several sections, one per CPU. When a collection is initiated, the

collector has one thread per CPU; all threads collect their own sections simultaneously. The

workstation version of the execution engine (MSCorWks.dll) doesn't support this feature.

Finalisation

Say if you want to execute a piece of code for an object, just before it is subjected to Collection by

the Garbage Collector. This has been made possible by a feature of the Garbage Collector called

'Finalization'.

Finalization allows a resource to be gracefully cleaned when it is being collected. By using

finalization, a resource like a file or network connection, is able to clean itself up properly when the

garbage collector decides to free the resource's memory. This is made possible by an override void

Finalize () with clean up resource code in it. When the Garbage Collector recognizes that the class

object is pretty much going to be a piece of garbage, it calls the Finalize() method.

public class objBase

{

 public objBase()

 {

 }

 protected override void Finalize()

 {

 // Resource Cleanup Code

 }

}

Let's try and understand, how the Finalization works. When we create and then instantiate an

object using the 'new' operator. This 'new' operator first makes sure that the bytes required by the

new object are available on the heap, i.e. the new object could fit on the heap. It then not only puts

the object on the heap, but also checks if the object's type contains a Finalize method. If yes then a

pointer to the object is placed on the Finalization Queue.

COPYRIGHT FIMT 2020 Page 116

The Finalization Queue is an internal data structure (Queue) controlled by the garbage collector.

Each entry in the queue points to an object that should have its Finalize method called before the

object's memory can be reclaimed. E.g. when the objects K, O and P were created, the system

detected that these objects had Finalize methods; hence after adding these objects to the heap, the

pointers to these objects were added to the Finalization Queue.

When the garbage collector finds the objects B, K, O, Q and S to be garbage, it scans the

Finalization Queue looking for pointers to these objects. If a pointer is found, it is removed from

the Finalization Queue and added to the Freachable Queue. The Freachable Queue is another

internal data structure (Queue) controlled by the garbage collector. Each pointer in the Freachable

Queue identifies an object that is ready to have its Finalize method called. Hence, we see that when

the collection occurs, the memory occupied by objects B, O, and S is reclaimed because these

objects did not have a Finalize method that needs to be called. However, the memory occupied by

objects K and Q could not be reclaimed because their Finalize method has not been called yet and

the pointers to both these objects are moved from the Finalization Queue to the Freachable Queue.

With this we reach to an understanding that, when an object is not reachable, the garbage collector

considers the object garbage. Then, when the garbage collector moves an object's entry from the

Finalization Queue to the Freachable Queue, the object is no longer considered garbage and its

memory is not reclaimed. At this point, the garbage collector has finished identifying garbage.

Some of the objects identified as garbage have been reclassified as not garbage.

COPYRIGHT FIMT 2020 Page 117

The garbage collector compacts the reclaimable memory and the special runtime thread empties the

Freachable Queue, executing each object's Finalize method.

There is a special runtime thread dedicated to calling Finalize methods. Normally when the

Freachable Queue is empty, this thread sleeps. But when the pointers are added to this queue, this

thread awakes, removes each entry from the queue, and calls each object's Finalize method.

Because of this, you should not execute any code in a Finalize method that makes any assumption

about the thread that's executing the code. For example, avoid accessing thread local storage in the

Finalize method. In our example, we see that the pointers to objects K and Q have been moved to

the Freachable Queue and their Finalize() method has been called by the thread.

Now the next time the garbage collection occurs, the Garbage Collector finds the pointers to

objects K and Q in the Freacheble Queue and realizes that these finalized objects are truly garbage,

and hence it goes ahead and reclaims the memory held by the objects K and Q. Please note that two

iterations of the Garbage Collection process are required to free the memory space occupied by the

objects that require finalization. In reality, more than two collections may be necessary since the

objects could get promoted to an older generation.

So, we see that the Finalization process is quite fascinating, but I personally feel, it is not advisable

to use this feature --

 When a garbage collection occurs, the Garbage collector looks for and identifies the objects that

contain a Finalize method. These objects are promoted to older generations, which for the time

being prevent the object's memory from being collected. Moreover, all the objects referred to

directly or indirectly by these finalized objects, also get promoted to older generations.

COPYRIGHT FIMT 2020 Page 118

 Finalizable objects take longer to allocate.

 When a garbage collector is forced to execute the Finalize method of an object, it has a strong

potential to significantly hurt the performance, as it would require each object to be finalized.

 Finalizable objects may refer to other non-finalizable objects, prolonging their lifetime

unnecessarily. In fact, you might want to consider breaking a type into two different types: a

lightweight type with a Finalize method that doesn't refer to any other objects, and a separate type

without a Finalize method that does refer to other objects.

 We have no control over when a Finalize method would execute. The object may hold on to the

resources until the next time the garbage collector runs.

 When an application terminates, some objects are still reachable and will not have their Finalize

method called. This can happen if background threads are using the objects or if objects are created

during application shutdown or AppDomain unloading. In addition, by default, Finalize methods

are not called for unreachable objects when an application exits so that the application may

terminate quickly. Of course, all operating system resources will be reclaimed, but any objects in

the managed heap are not able to clean up gracefully. We can change this default behavior by

calling the System.GC type's RequestFinalizeOnShutdown method. However, we should use this

method with care since calling it means that our type is controlling a policy for the entire

application.

 The runtime doesn't make any guarantees as to the order in which Finalize methods are called. For

example, let's say there is an object that contains a pointer to an inner object. The garbage collector

has detected that both objects are garbage. Furthermore, say that the inner object's Finalize method

gets called first. Now, the outer object's Finalize method is allowed to access the inner object and

call methods on it, but the inner object has been finalized and the results may be unpredictable. For

this reason, it is strongly recommended that Finalize methods not access any inner, member

objects.

What about External Resources?

The garbage collector efficiently handles freeing resources from the managed heap, but a collection

is only initiated when memory pressure triggers a collection. What about classes that manage

limited external resources such as database connections, Windows handles or External files etc.?

Waiting until a garbage collection is triggered to clean up database connections or file handles can

severely degrade system performance.

Dispose Method

Microsoft has provided another alternative whereby we could use the IDisposable interface. When

we implement this interface, we get a Dispose() method which can be used to convey a message to

the CLR to take care of objects that are no longer required by the application.

COPYRIGHT FIMT 2020 Page 119

This method can be used to close or release unmanaged resources such as files, streams, and

handles held by an instance of the class that implements this interface. This method is, by

convention, used for all tasks associated with freeing resources held by an object, or preparing an

object for reuse. When implementing this method, objects must seek to ensure that all held

resources are freed by propagating the call through the containment hierarchy. For example, if an

object A allocates an object B, and object B allocates an object C, then A's Dispose implementation

must call Dispose on B, which must in turn call Dispose on C. Objects must also call the Dispose

method of their base class if the base class implements IDisposable. If an object's Dispose method

is called more than once, the object must ignore all calls after the first one. The object must not

throw an exception if its Dispose method is called multiple times. Dispose can throw an exception

if an error occurs because a resource has already been freed and Dispose had not been called

previously. Because the Dispose method must be called explicitly, objects that implement

IDisposable must also implement a finalizer to handle freeing resources when Dispose is not called.

By default, the garbage collector will automatically call an object's finalizer prior to reclaiming its

memory. However, once the Dispose method has been called, it is typically unnecessary for the

garbage collector to call the disposed object's finalizer. To prevent automatic finalization, Dispose

implementations can call the GC.SuppressFinalize method.

Using the System.GC Class

The System.GC type allows your application some direct control over the garbage collector. It is

used to access the garbage collection mechanism exposed by the .NET framework. This class

includes the following useful methods:

 GC.MaxGeneration, is used to query the maximum generation supported by the managed heap.

By default, the GC.MaxGeneration property always returns 2.

 GC.SuppressFinalize was described earlier in the column; this method inhibits finalization for an

object. Call this method if you have already released external resources owned by an object.

 GC.Collect comes in two versions. The version that has no parameter performs a full collection on

all generations in the managed heap. Another version accepts an integer value representing the

generation to be collected. You'll rarely need to call this method, as the garbage collector

automatically runs when needed.

 void GC.Collect(Int32 Generation)

 void GC.Collect()

COPYRIGHT FIMT 2020 Page 120

 The first method allows you to specify which generation to collect. You may pass any integer from

0 to GC.MaxGeneration, inclusive. Passing 0 causes generation 0 to be collected; passing 1 cause

generation 1 and 0 to be collected; and passing 2 causes generation 2, 1, and 0 to be collected. The

version of the Collect method that takes no parameters forces a full collection of all generations

and is equivalent to calling:GC.Collect(GC.MaxGeneration);

 GC.Get Generation returns the generation number for an object passed as a parameter. This

method is useful when debugging or tracing for performance reasons, but has limited value in most

applications.

Int32 Get Generation(Object obj)

 Int32 GetGeneration(Weak Reference wr)

The first version of Get Generation takes an object reference as a parameter, and the second version

takes a Weak Reference reference as a parameter. Of course, the value returned will be somewhere

between 0 and GC.MaxGeneration, inclusive

 GC.GetTotalMemory returns the amount of memory allocated in the heap. This number is not

exact due to the way the managed heap works, but a close approximation can be obtained if true is

passed as a parameter. This causes a collection to be performed before the memory usage is

calculated.

 Wait For Pending Finalizers, this method simply suspends the calling thread until the thread

processing the Freachable Queue has emptied the queue, calling each object's Finalize method. In

most applications, it is unlikely that you will ever have to call this method.

Exception Handling

1. Exception is a runtime error which arises because of abnormal condition in a code sequence.

2. The exceptions are defined as the anomalies that occur during the execution of a program. Which

can be because of the user, logic or system failure/error.

3. If a user or programmer does not provide a proper procedure to handle these anomalies or

exceptions, then the .NET run time environment provide a default procedure, which terminates the

current execution of that program .

4. Exception handling is an in built mechanism in .NET framework to detect and handle run time

errors.

5. try, catch and finally are block which are used to handle the exceptions in .Net.

6. The try encloses the statements that might throw an exception whereas catch handles an exception

if one exists. The finally can be used for doing any cleanup process.

COPYRIGHT FIMT 2020 Page 121

7. If during exception of program no exception is occurred inside the try block, then the control is

directly transferred to finally block.

Examples of Exceptions :

System.OutOfMemoryException

System.NullReferenceException

Syste.InvalidCastException

Syste.ArrayTypeMismatchException

System.IndexOutOfRangeException

System.ArithmeticException

System.DevideByZeroException

System.OverFlowException

Below code will terminate the program after exception is thrown.

public class Exception_Handling

{

 public static void Main(string[] args)

 {

 int first = 0;

 int second = 100 / first;

 Console.WriteLine(second);

 }

}

 Below code will run after the exception is raised or thrown by program.

public class Exception_Handling

{

 public static void Main(string[] args)

 {

 int first = 0;

 int second = 0;

 try

 {

 second = 100 / first;

 Console.WriteLine("This code line is not executed");

 }

 catch (DivideByZeroException de)

COPYRIGHT FIMT 2020 Page 122

 {

 Console.WriteLine(de.ToString());

 }

 Console.WriteLine("Result of Division :- {0}", div);

 }

}

Code Access Security

Code Access Security (CAS), in the Microsoft .NET framework, is Microsoft's solution to prevent

untrusted code from performing privileged actions. When the CLR loads an assembly it will

obtain evidence for the assembly and use this to identify the code group that the assembly belongs

to. A code group contains a permission set (one or more permissions). Code that performs a

privileged action will perform a code access demand which will cause the CLR to walk up the call

stack and examine the permission set granted to the assembly of each method in the call stack. The

code groups and permission sets are determined by the administrator of the machine who defines

the security policy.

Evidence

Evidence can be any information associated with an assembly. The default evidences that are used

by .NET code access security are:

Application directory: the directory in which an assembly resides.

Publisher: the assembly's publisher's digital signature (requires the assembly to be signed via

Authenticode).

URL: the complete URL where the assembly was launched from

Site: the hostname of the URL/Remote Domain/VPN.

Zone: the security zone where the assembly resides

Hash: a cryptographic hash of the assembly, which identifies a specific version.

Strong Name: a combination of the assembly name, version and public key of the signing key used

to sign the assembly. The signing key is not an X509 certificate, but a custom key pair generated

by the strong naming tool, SN.EXE or by Visual Studio.

A developer can use custom evidence (so-called assembly evidence) but this requires writing a

security assembly and in version 1.1 of .NET this facility does not work.

Evidence based on a hash of the assembly is easily obtained in code. For example, in C#, evidence

may be obtained by the following code clause:

this.GetType().Assembly.Evidence

https://en.wikipedia.org/wiki/Microsoft_.NET
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Assembly_(CLI)
https://en.wikipedia.org/wiki/Code_Access_Security#Evidence
https://en.wikipedia.org/wiki/Code_Access_Security#Code_group
https://en.wikipedia.org/wiki/File_system_permissions
https://en.wikipedia.org/wiki/Code_Access_Security#Demands
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/Code_Access_Security#Policy

COPYRIGHT FIMT 2020 Page 123

Policy

A policy is a set of expressions that uses evidence to determine a code group membership. A code

group gives a permission set for the assemblies within that group. There are four policies in .NET:

Enterprise: policy for a family of machines that are part of an Active Directory installation.

Machine: policy for the current machine.

User: policy for the logged on user.

AppDomain: policy for the executing application domain.

The first three policies are stored in XML files and are administered through the .NET

Configuration Tool 1.1 (mscorcfg.msc). The final policy is administered through code for the

current application domain.

Code access security will present an assembly's evidence to each policy and will then take the

intersection (that is the permissions common to all the generated permission set) as the permissions

granted to the assembly. By default, the Enterprise, User, and AppDomain policies give full trust

(that is they allow all assemblies to have all permissions) and the Machine policy is more

restrictive. Since the intersection is taken this means that the final permission set is determined by

the Machine policy.

Note that the policy system has been eliminated in .NET Framework 4.0.

Code group

Code groups associate a piece of evidence with a named permission set. The administrator uses the

.NET Configuration Tool to specify a particular type of evidence (for example, Site) and a

particular value for that evidence (for example, www.mysite.com) and then identifies the

permission set that the code group will be granted.

Demands

Code that performs some privileged action will make a demand for one or more permissions. The

demand makes the CLR walk the call stack and for each method the CLR will ensure that the

demanded permissions are in the method's assembly's granted permissions. If the permission is not

granted then a security exception is thrown. This prevents downloaded code from performing

privileged actions. For example, if an assembly is downloaded from an untrusted site the assembly

will not have any file IO permissions and so if this assembly attempts to access a file code access

security will throw an exception preventing the call.

COPYRIGHT FIMT 2020 Page 124

VB.Net - Overview

Visual Basic .NET (VB.NET) is an object-oriented computer programming language implemented

on the .NET Framework. Although it is an evolution of classic Visual Basic language, it is not

backwards-compatible with VB6, and any code written in the old version does not compile under

VB.NET. Like all other .NET languages, VB.NET has complete support for object-oriented

concepts. Everything in VB.NET is an object, including all of the primitive types (Short, Integer,

Long, String, Boolean, etc.) and user-defined types, events, and even assemblies. All objects

inherits from the base class Object. VB.NET is implemented by Microsoft's .NET framework.

Therefore, it has full access to all the libraries in the .Net Framework. It's also possible to run

VB.NET programs on Mono, the open-source alternative to .NET, not only under Windows, but

even Linux or Mac OSX.

The following reasons make VB.Net a widely used professional language:

 Modern, general purpose.

 Object oriented.

 Component oriented.

 Easy to learn.

 Structured language.

 It produces efficient programs.

 It can be compiled on a variety of computer platforms.

 Part of .Net Framework.

Strong Programming Features VB.Net

VB.Net has numerous strong programming features that make it endearing to multitude of

programmers worldwide. Let us mention some of these features:

 Boolean Conditions

 Automatic Garbage Collection

 Standard Library

 Assembly Versioning

 Properties and Events

 Delegates and Events Management

 Easy-to-use Generics

 Indexers

COPYRIGHT FIMT 2020 Page 125

 Conditional Compilation

 Simple Multithreading

VB.Net - Environment Setup

In this chapter, we will discuss the tools available for creating VB.Net applications.

We have already mentioned that VB.Net is part of .Net framework and used for writing .Net

applications. Therefore before discussing the available tools for running a VB.Net program, let us

understand how VB.Net relates to the .Net framework.

The .Net Framework

The .Net framework is a revolutionary platform that helps you to write the following types of

applications:

 Windows applications

 Web applications

 Web services

The .Net framework applications are multi-platform applications. The framework has been

designed in such a way that it can be used from any of the following languages: Visual Basic, C#,

C++, Jscript, and COBOL, etc.

All these languages can access the framework as well as communicate with each other.

The .Net framework consists of an enormous library of codes used by the client languages like

VB.Net. These languages use object-oriented methodology.

Following are some of the components of the .Net framework:

 Common Language Runtime (CLR)

 The .Net Framework Class Library

 Common Language Specification

 Common Type System

 Metadata and Assemblies

 Windows Forms

 ASP.Net and ASP.Net AJAX

 ADO.Net

 Windows Workflow Foundation (WF)

 Windows Presentation Foundation

 Windows Communication Foundation (WCF)

 LINQ

COPYRIGHT FIMT 2020 Page 126

For the jobs each of these components perform, please see ASP.Net - Introduction, and for details

of each component, please consult Microsoft's documentation.

Integrated Development Environment (IDE) For VB.Net

Microsoft provides the following development tools for VB.Net programming:

 Visual Studio 2010 (VS)

 Visual Basic 2010 Express (VBE)

 Visual Web Developer

The last two are free. Using these tools, you can write all kinds of VB.Net programs from simple

command-line applications to more complex applications. Visual Basic Express and Visual Web

Developer Express edition are trimmed down versions of Visual Studio and has the same look and

feel. They retain most features of Visual Studio. In this tutorial, we have used Visual Basic 2010

Express and Visual Web Developer (for the web programming chapter).

You can download it from here. It gets automatically installed in your machine. Please note that

you need an active internet connection for installing the express edition.

Writing VB.Net Programs on Linux or Mac OS

Although the.NET Framework runs on the Windows operating system, there are some alternative

versions that work on other operating systems. Mono is an open-source version of the .NET

Framework which includes a Visual Basic compiler and runs on several operating systems,

including various flavors of Linux and Mac OS. The most recent version is VB 2012.

The stated purpose of Mono is not only to be able to run Microsoft .NET applications cross-

platform, but also to bring better development tools to Linux developers. Mono can be run on many

operating systems including Android, BSD, iOS, Linux, OS X, Windows, Solaris and UNIX.

VB.Net - Program Structure

Before we study basic building blocks of the VB.Net programming language, let us look a bare

minimum VB.Net program structure so that we can take it as a reference in upcoming chapters.

VB.Net Hello World Example

A VB.Net program basically consists of the following parts:

 Namespace declaration

 A class or module

 One or more procedures

 Variables

https://www.tutorialspoint.com/asp.net/asp.net_introduction.htm
http://www.microsoft.com/visualstudio/eng/downloads

COPYRIGHT FIMT 2020 Page 127

 The Main procedure

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello World":

Imports System

Module Module1

 'This program will display Hello World

 Sub Main()

 Console.WriteLine("Hello World")

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Hello, World!

Let us look various parts of the above program:

 The first line of the program Imports System is used to include the System namespace in the

program.

 The next line has a Module declaration, the module Module1. VB.Net is completely object

oriented, so every program must contain a module of a class that contains the data and procedures

that your program uses.

 Classes or Modules generally would contain more than one procedure. Procedures contain the

executable code, or in other words, they define the behavior of the class. A procedure could be any

of the following:

o Function

o Sub

o Operator

o Get

o Set

o AddHandler

o RemoveHandler

o RaiseEvent

COPYRIGHT FIMT 2020 Page 128

 The next line('This program) will be ignored by the compiler and it has been put to add additional

comments in the program.

 The next line defines the Main procedure, which is the entry point for all VB.Net programs. The

Main procedure states what the module or class will do when executed.

 The Main procedure specifies its behavior with the statement

Console.WriteLine("Hello World")

WriteLine is a method of the Console class defined in the System namespace. This statement causes

the message "Hello, World!" to be displayed on the screen.

 The last line Console.ReadKey() is for the VS.NET Users. This will prevent the screen from

running and closing quickly when the program is launched from Visual Studio .NET.

Compile & Execute VB.Net Program:

If you are using Visual Studio.Net IDE, take the following steps:

 Start Visual Studio.

 On the menu bar, choose File, New, Project.

 Choose Visual Basic from templates

 Choose Console Application.

 Specify a name and location for your project using the Browse button, and then choose the OK

button.

 The new project appears in Solution Explorer.

 Write code in the Code Editor.

 Click the Run button or the F5 key to run the project. A Command Prompt window appears that

contains the line Hello World.

You can compile a VB.Net program by using the command line instead of the Visual Studio IDE:

 Open a text editor and add the above mentioned code.

 Save the file as helloworld.vb

 Open the command prompt tool and go to the directory where you saved the file.

 Type vbc helloworld.vb and press enter to compile your code.

 If there are no errors in your code the command prompt will take you to the next line and would

generate helloworld.exe executable file.

 Next, type helloworld to execute your program.

 You will be able to see "Hello World" printed on the screen.

COPYRIGHT FIMT 2020 Page 129

VB.Net - Basic Syntax

VB.Net is an object-oriented programming language. In Object-Oriented Programming

methodology, a program consists of various objects that interact with each other by means of

actions. The actions that an object may take are called methods. Objects of the same kind are said

to have the same type or, more often, are said to be in the same class.

When we consider a VB.Net program, it can be defined as a collection of objects that communicate

via invoking each other's methods. Let us now briefly look into what do class, object, methods and

instance variables mean.

 Object - Objects have states and behaviors. Example: A dog has states - color, name, breed as well

as behaviors - wagging, barking, eating, etc. An object is an instance of a class.

 Class - A class can be defined as a template/blueprint that describes the behaviors/states that

objects of its type support.

 Methods - A method is basically a behavior. A class can contain many methods. It is in methods

where the logics are written, data is manipulated and all the actions are executed.

 Instance Variables - Each object has its unique set of instance variables. An object's state is

created by the values assigned to these instance variables.

A Rectangle Class in VB.Net

For example, let us consider a Rectangle object. It has attributes like length and width. Depending

upon the design, it may need ways for accepting the values of these attributes, calculating area and

displaying details.

Let us look at an implementation of a Rectangle class and discuss VB.Net basic syntax on the basis

of our observations in it:

Imports System

Public Class Rectangle

 Private length As Double

 Private width As Double

 'Public methods

 Public Sub AcceptDetails()

 length = 4.5

 width = 3.5

 End Sub

 Public Function GetArea() As Double

 GetArea = length * width

COPYRIGHT FIMT 2020 Page 130

End Function

 Public Sub Display()

 Console.WriteLine("Length: {0}", length)

 Console.WriteLine("Width: {0}", width)

 Console.WriteLine("Area: {0}", GetArea())

 End Sub

 Shared Sub Main()

 Dim r As New Rectangle()

 r.Acceptdetails()

 r.Display()

 Console.ReadLine()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Width: 3.5

Area: 15.75

In previous chapter, we created a Visual Basic module that held the code. Sub Main indicates the

entry point of VB.Net program. Here, we are using Class that contains both code and data. You use

classes to create objects. For example, in the code, r is a Rectangle object.

An object is an instance of a class:

Dim r As New Rectangle()

A class may have members that can be accessible from outside class, if so specified. Data members

are called fields and procedure members are called methods.

Shared methods or static methods can be invoked without creating an object of the class. Instance

methods are invoked through an object of the class:

Shared Sub Main()

 Dim r As New Rectangle()

 r.Acceptdetails()

 r.Display()

 Console.ReadLine()

End Sub

COPYRIGHT FIMT 2020 Page 131

Identifiers

An identifier is a name used to identify a class, variable, function, or any other user-defined item.

The basic rules for naming classes in VB.Net are as follows:

 A name must begin with a letter that could be followed by a sequence of letters, digits (0 - 9) or

underscore. The first character in an identifier cannot be a digit.

 It must not contain any embedded space or symbol like? - +! @ # % ^ & * () [] { } . ; : " ' / and \.

However, an underscore (_) can be used.

 It should not be a reserved keyword.

VB.Net Keywords

The following table lists the VB.Net reserved keywords:

AddHandler AddressOf Alias And AndAlso As Boolean

ByRef Byte ByVal Call Case Catch CBool

CByte CChar CDate CDec CDbl Char CInt

Class CLng CObj Const Continue CSByte CShort

CSng CStr CType CUInt CULng CUShort Date

Decimal Declare Default Delegate Dim DirectCast Do

Double Each Else ElseIf End End If Enum

Erase Error Event Exit False Finally For

Friend Function Get GetType GetXML

Namespace

Global GoTo

Handles If Implements Imports In Inherits Integer

Interface Is IsNot Let Lib Like Long

Loop Me Mod Module MustInherit MustOverride MyBase

MyClass Namespace Narrowing New Next Not Nothing

Not

Inheritable

Not

Overridable

Object Of On Operator Option

COPYRIGHT FIMT 2020 Page 132

Optional Or OrElse Overloads Overridable Overrides ParamArray

Partial Private Property Protected Public RaiseEvent ReadOnly

ReDim REM Remove

Handler

Resume Return SByte Select

Set Shadows Shared Short Single Static Step

Stop String Structure Sub SyncLock Then Throw

To True Try TryCast TypeOf UInteger While

Widening With WithEvents WriteOnly Xor

VB.Net - Data Types

Data types refer to an extensive system used for declaring variables or functions of different types.

The type of a variable determines how much space it occupies in storage and how the bit pattern

stored is interpreted.

Data Types Available in VB.Net

VB.Net provides a wide range of data types. The following table shows all the data types available:

COPYRIGHT FIMT 2020 Page 133

Data

Type

Storage Allocation Value Range

Boolean Depends on

implementing platform

True or False

Byte 1 byte 0 through 255 (unsigned)

Char 2 bytes 0 through 65535 (unsigned)

Date 8 bytes 0:00:00 (midnight) on January 1, 0001

through 11:59:59 PM on December 31,

9999

Decimal 16 bytes 0 through +/-

79,228,162,514,264,337,593,543,950,335

(+/-7.9...E+28) with no decimal point; 0

through +/-

7.9228162514264337593543950335

with 28 places to the right of the decimal

Double 8 bytes -1.79769313486231570E+308 through -

4.94065645841246544E-324, for

negative values

4.94065645841246544E-324 through

1.79769313486231570E+308, for

positive values

Integer 4 bytes -2,147,483,648 through 2,147,483,647

(signed)

Long 8 bytes -9,223,372,036,854,775,808 through

9,223,372,036,854,775,807(signed)

Object 4 bytes on 32-bit

platform

8 bytes on 64-bit

platform

Any type can be stored in a variable of

type Object

SByte 1 byte -128 through 127 (signed)

Short 2 bytes -32,768 through 32,767 (signed)

Single 4 bytes -3.4028235E+38 through -1.401298E-45

for negative values;

1.401298E-45 through 3.4028235E+38

for positive values

COPYRIGHT FIMT 2020 Page 134

Example

The following example demonstrates use of some of the types:

Module DataTypes

 Sub Main()

 Dim b As Byte

 Dim n As Integer

 Dim si As Single

 Dim d As Double

 Dim da As Date

 Dim c As Char

 Dim s As String

 Dim bl As Boolean

 b = 1

 n = 1234567

 si = 0.12345678901234566

 d = 0.12345678901234566

 da = Today

 c = "U"c

 s = "Me"

 If ScriptEngine = "VB" Then

 bl = True

 Else

 bl = False

 End If

 If bl Then

 'the oath taking

 Console.Write(c & " and," & s & vbCrLf)

 Console.WriteLine("declaring on the day of: {0}", da)

 Console.WriteLine("We will learn VB.Net seriously")

 Console.WriteLine("Lets see what happens to the floating point variables:")

 Console.WriteLine("The Single: {0}, The Double: {1}", si, d)

 End If

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

COPYRIGHT FIMT 2020 Page 135

U and, Me

declaring on the day of: 12/4/2012 12:00:00 PM

We will learn VB.Net seriously

Lets see what happens to the floating point variables:

The Single:0.1234568, The Double: 0.123456789012346

The Type Conversion Functions in VB.Net

VB.Net provides the following in-line type conversion functions:

S.N Functions & Description

1 CBool(expression)

Converts the expression to Boolean data type.

2 CByte(expression)

Converts the expression to Byte data type.

3 CChar(expression)

Converts the expression to Char data type.

4 CDate(expression)

Converts the expression to Date data type

5 CDbl(expression)
Converts the expression to Double data type.

6 CDec(expression)
Converts the expression to Decimal data type.

7 CInt(expression)
Converts the expression to Integer data type.

8 CLng(expression)
Converts the expression to Long data type.

9 CObj(expression)
Converts the expression to Object type.

10 CSByte(expression)
Converts the expression to SByte data type.

11 CShort(expression)
Converts the expression to Short data type.

12 CSng(expression)

Converts the expression to Single data type.

Example:

The following example demonstrates some of these functions:

Module DataTypes

COPYRIGHT FIMT 2020 Page 136

 Sub Main()

 Dim n As Integer

 Dim da As Date

 Dim bl As Boolean = True

 n = 1234567

 da = Today

 Console.WriteLine(bl)

 Console.WriteLine(CSByte(bl))

 Console.WriteLine(CStr(bl))

 Console.WriteLine(CStr(da))

 Console.WriteLine(CChar(CChar(CStr(n))))

 Console.WriteLine(CChar(CStr(da)))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

True

-1

True

12/4/2012

1

1

VB.Net - Variables

A variable is nothing but a name given to a storage area that our programs can manipulate. Each

variable in VB.Net has a specific type, which determines the size and layout of the variable's

memory; the range of values that can be stored within that memory; and the set of operations that

can be applied to the variable.

We have already discussed various data types. The basic value types provided in VB.Net can be

categorized as:

Type Example

Integral types SByte, Byte, Short, UShort, Integer, UInteger, Long,

ULong and Char

COPYRIGHT FIMT 2020 Page 137

Floating point types Single and Double

Decimal types Decimal

Boolean types True or False values, as assigned

Date types Date

VB.Net also allows defining other value types of variable like Enum and reference types of

variables like Class. We will discuss date types and Classes in subsequent chapters.

Variable Declaration in VB.Net The Dim statement is used for variable declaration and storage

allocation for one or more variables. The Dim statement is used at module, class, structure,

procedure or block level.

Syntax for variable declaration in VB.Net is:

[< attributelist>] [accessmodifier] [[Shared] [Shadows] | [Static]]

[ReadOnly] Dim [WithEvents] variablelist

Where,

 attributelist is a list of attributes that apply to the variable. Optional.

 accessmodifier defines the access levels of the variables, it has values as - Public, Protected,

Friend, Protected Friend and Private. Optional.

 Shared declares a shared variable, which is not associated with any specific instance of a class or

structure, rather available to all the instances of the class or structure. Optional.

 Shadows indicate that the variable re-declares and hides an identically named element, or set of

overloaded elements, in a base class. Optional.

 Static indicates that the variable will retain its value, even when the after termination of the

procedure in which it is declared. Optional.

 ReadOnly means the variable can be read, but not written. Optional.

 WithEvents specifies that the variable is used to respond to events raised by the instance assigned

to the variable. Optional.

 Variablelist provides the list of variables declared.

Each variable in the variable list has the following syntax and parts:

variablename[([boundslist])] [As [New] datatype] [= initializer]

COPYRIGHT FIMT 2020 Page 138

Where,

 variablename: is the name of the variable

 boundslist: optional. It provides list of bounds of each dimension of an array variable.

 New: optional. It creates a new instance of the class when the Dim statement runs.

 datatype: Required if Option Strict is On. It specifies the data type of the variable.

 initializer: Optional if New is not specified. Expression that is evaluated and assigned to the

variable when it is created.

Some valid variable declarations along with their definition are shown here:

Dim StudentID As Integer

Dim StudentName As String

Dim Salary As Double

Dim count1, count2 As Integer

Dim status As Boolean

Dim exitButton As New System.Windows.Forms.Button

Dim lastTime, nextTime As Date

Variable Initialization in VB.Net

Variables are initialized (assigned a value) with an equal sign followed by a constant expression.

The general form of initialization is:

variable_name = value;

for example,

Dim pi As Double

pi = 3.14159

You can initialize a variable at the time of declaration as follows:

Dim StudentID As Integer = 100

Dim StudentName As String = "Bill Smith"

Example

Try the following example which makes use of various types of variables:

Module variablesNdataypes

 Sub Main()

 Dim a As Short

COPYRIGHT FIMT 2020 Page 139

 Dim b As Integer

 Dim c As Double

 a = 10

 b = 20

 c = a + b

 Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a = 10, b = 20, c = 30

Accepting Values from User

The Console class in the System namespace provides a function ReadLine for accepting input

from the user and store it into a variable. For example,

Dim message As String

message = Console.ReadLine

The following example demonstrates it:

Module variablesNdataypes

 Sub Main()

 Dim message As String

 Console.Write("Enter message: ")

 message = Console.ReadLine

 Console.WriteLine()

 Console.WriteLine("Your Message: {0}", message)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result (assume the user

inputs Hello World):

Enter message: Hello World

Your Message: Hello World

Lvalues and Rvalues

There are two kinds of expressions:

COPYRIGHT FIMT 2020 Page 140

 lvalue : An expression that is an lvalue may appear as either the left-hand or right-hand side of an

assignment.

 rvalue : An expression that is an rvalue may appear on the right- but not left-hand side of an

assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric literals

are rvalues and so may not be assigned and can not appear on the left-hand side. Following is a

valid statement:

Dim g As Integer = 20

But following is not a valid statement and would generate compile-time error:

20 = g

VB.Net - Constants and Enumerations

The constants refer to fixed values that the program may not alter during its execution. These fixed

values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant, a

character constant, or a string literal. There are also enumeration constants as well.

The constants are treated just like regular variables except that their values cannot be modified after

their definition.

An enumeration is a set of named integer constants.

Declaring Constants

In VB.Net, constants are declared using the Const statement. The Const statement is used at

module, class, structure, procedure, or block level for use in place of literal values.

The syntax for the Const statement is:

[< attributelist>] [accessmodifier] [Shadows]

Const constantlist

Where,

 attributelist: specifies the list of attributes applied to the constants; you can provide multiple

attributes separated by commas. Optional.

 accessmodifier: specifies which code can access these constants. Optional. Values can be either of

the: Public, Protected, Friend, Protected Friend, or Private.

COPYRIGHT FIMT 2020 Page 141

 Shadows: this makes the constant hide a programming element of identical name in a base class.

Optional.

 Constantlist: gives the list of names of constants declared. Required.

Where, each constant name has the following syntax and parts:

constantname [As datatype] = initializer

 constantname: specifies the name of the constant

 datatype: specifies the data type of the constant

 initializer: specifies the value assigned to the constant

For example,

'The following statements declare constants.'

Const maxval As Long = 4999

Public Const message As String = "HELLO"

Private Const piValue As Double = 3.1415

Example

The following example demonstrates declaration and use of a constant value:

Module constantsNenum

 Sub Main()

 Const PI = 3.14149

 Dim radius, area As Single

 radius = 7

 area = PI * radius * radius

 Console.WriteLine("Area = " & Str(area))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Area = 153.933

Print and Display Constants in VB.Net

VB.Net provides the following print and display constants:

Constant Description

vbCrLf Carriage return/linefeed character combination.

COPYRIGHT FIMT 2020 Page 142

vbCr Carriage return character.

vbLf Linefeed character.

vbNewLine Newline character.

vbNullChar Null character.

vbNullString Not the same as a zero-length string (""); used for

calling external procedures.

vbObjectError Error number. User-defined error numbers should be

greater than this value. For example:

Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

Declaring Enumerations

An enumerated type is declared using the Enum statement. The Enum statement declares an

enumeration and defines the values of its members. The Enum statement can be used at the

module, class, structure, procedure, or block level.

The syntax for the Enum statement is as follows:

[< attributelist >] [accessmodifier] [Shadows]

Enum enumerationname [As datatype]

 memberlist

End Enum

Where,

 attributelist: refers to the list of attributes applied to the variable. Optional.

 asscessmodifier: specifies which code can access these enumerations. Optional. Values can be

either of the: Public, Protected, Friend or Private.

 Shadows: this makes the enumeration hide a programming element of identical name in a base

class. Optional.

 enumerationname: name of the enumeration. Required

 datatype: specifies the data type of the enumeration and all its members.

 memberlist: specifies the list of member constants being declared in this statement. Required.

Each member in the memberlist has the following syntax and parts:

[< attribute list>] member name [= initializer]

Where,

COPYRIGHT FIMT 2020 Page 143

 name: specifies the name of the member. Required.

 initializer: value assigned to the enumeration member. Optional.

For example,

Enum Colors

 red = 1

 orange = 2

 yellow = 3

 green = 4

 azure = 5

 blue = 6

 violet = 7

End Enum

Example

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

The Color Red is: 1

The Color Yellow is: 3

The Color Blue is: 6

The Color Green is: 4

VB.Net - Modifiers

The modifiers are keywords added with any programming element to give some especial emphasis

on how the programming element will behave or will be accessed in the program

For example, the access modifiers: Public, Private, Protected, Friend, Protected Friend, etc.,

indicate the access level of a programming element like a variable, constant, enumeration or a

class.

List of Available Modifiers in VB.Net

The following table provides the complete list of VB.Net modifiers:

S.N Modifier Description

COPYRIGHT FIMT 2020 Page 144

1 Ansi Specifies that Visual Basic should marshal all

strings to American National Standards Institute

(ANSI) values regardless of the name of the

external procedure being declared.

2 Assembly Specifies that an attribute at the beginning of a

source file applies to the entire assembly.

3 Async Indicates that the method or lambda expression

that it modifies is asynchronous. Such methods

are referred to as async methods. The caller of an

async method can resume its work without

waiting for the async method to finish.

4 Auto The charsetmodifier part in

the Declare statement supplies the character set

information for marshaling strings during a call

to the external procedure. It also affects how

Visual Basic searches the external file for the

external procedure name. The Auto modifier

specifies that Visual Basic should marshal

strings according to .NET Framework rules.

5 ByRef Specifies that an argument is passed by

reference, i.e., the called procedure can change

the value of a variable underlying the argument

in the calling code. It is used under the contexts

of:

 Declare Statement

 Function Statement

 Sub Statement

6 ByVal Specifies that an argument is passed in such a

way that the called procedure or property cannot

change the value of a variable underlying the

argument in the calling code. It is used under the

contexts of:

 Declare Statement

 Function Statement

 Operator Statement

 Property Statement

 Sub Statement

7 Default Identifies a property as the default property of its

class, structure, or interface.

8 Friend Specifies that one or more declared

programming elements are accessible from

within the assembly that contains their

declaration, not only by the component that

declares them.

Friend access is often the preferred level for an

application's programming elements, and Friend

COPYRIGHT FIMT 2020 Page 145

is the default access level of an interface, a

module, a class, or a structure.

9 In It is used in generic interfaces and delegates.

10 Iterator Specifies that a function or Get accessor is an

iterator. An iterator performs a custom iteration

over a collection.

11 Key The Key keyword enables you to specify

behavior for properties of anonymous types.

12 Module Specifies that an attribute at the beginning of a

source file applies to the current assembly

module. It is not same as the Module statement.

13 MustInherit Specifies that a class can be used only as a base

class and that you cannot create an object

directly from it.

14 MustOverride Specifies that a property or procedure is not

implemented in this class and must be

overridden in a derived class before it can be

used.

15 Narrowing Indicates that a conversion operator (CType)

converts a class or structure to a type that might

not be able to hold some of the possible values

of the original class or structure.

16 NotInheritable Specifies that a class cannot be used as a base

class.

17 NotOverridable Specifies that a property or procedure cannot be

overridden in a derived class.

18 Optional Specifies that a procedure argument can be

omitted when the procedure is called.

19 Out For generic type parameters, the Out keyword

specifies that the type is covariant.

20 Overloads Specifies that a property or procedure redeclares

one or more existing properties or procedures

with the same name.

21 Overridable Specifies that a property or procedure can be

overridden by an identically named property or

procedure in a derived class.

22 Overrides Specifies that a property or procedure overrides

an identically named property or procedure

inherited from a base class.

COPYRIGHT FIMT 2020 Page 146

23 ParamArray ParamArray allows you to pass an arbitrary

number of arguments to the procedure. A

ParamArray parameter is always declared using

ByVal.

24 Partial Indicates that a class or structure declaration is a

partial definition of the class or structure.

25 Private Specifies that one or more declared

programming elements are accessible only from

within their declaration context, including from

within any contained types.

26 Protected Specifies that one or more declared

programming elements are accessible only from

within their own class or from a derived class.

27 Public Specifies that one or more declared

programming elements have no access

restrictions.

28 ReadOnly Specifies that a variable or property can be read

but not written.

29 Shadows Specifies that a declared programming element

redeclares and hides an identically named

element, or set of overloaded elements, in a base

class.

30 Shared Specifies that one or more declared

programming elements are associated with a

class or structure at large, and not with a specific

instance of the class or structure.

31 Static Specifies that one or more declared local

variables are to continue to exist and retain their

latest values after termination of the procedure in

which they are declared.

32 Unicode Specifies that Visual Basic should marshal all

strings to Unicode values regardless of the name

of the external procedure being declared.

33 Widening Indicates that a conversion operator (CType)

converts a class or structure to a type that can

hold all possible values of the original class or

structure.

34 WithEvents Specifies that one or more declared member

variables refer to an instance of a class that can

raise events.

35 WriteOnly Specifies that a property can be written but not

read.

COPYRIGHT FIMT 2020 Page 147

VB.Net - Statements

A statement is a complete instruction in Visual Basic programs. It may contain keywords,

operators, variables, literal values, constants and expressions.

Statements could be categorized as:

 Declaration statements - these are the statements where you name a variable, constant, or

procedure, and can also specify a data type.

 Executable statements - these are the statements, which initiate actions. These statements can call

a method or function, loop or branch through blocks of code or assign values or expression to a

variable or constant. In the last case, it is called an Assignment statement.

Declaration Statements

The declaration statements are used to name and define procedures, variables, properties, arrays,

and constants. When you declare a programming element, you can also define its data type, access

level, and scope.

The programming elements you may declare include variables, constants, enumerations, classes,

structures, modules, interfaces, procedures, procedure parameters, function returns, external

procedure references, operators, properties, events, and delegates.

Following are the declaration statements in VB.Net:

S.N Statements and Description Example

1 Dim Statement
Declares and allocates storage space for one

or more variables.

Dim number As

Integer

Dim quantity As

Integer = 100

Dim message As

String = "Hello!"

2 Const Statement

Declares and defines one or more constants.

Const maximum As

Long = 1000

Const

naturalLogBase As

Object

=

CDec(2.7182818284)

3 Enum Statement

Declares an enumeration and defines the

values of its members.

Enum

CoffeeMugSize

 Jumbo

 ExtraLarge

 Large

 Medium

 Small

COPYRIGHT FIMT 2020 Page 148

End Enum

4 Class Statement

Declares the name of a class and introduces

the definition of the variables, properties,

events, and procedures that the class

comprises.

Class Box

Public length As

Double

Public breadth As

Double

Public height As

Double

End Class

5 Structure Statement
Declares the name of a structure and

introduces the definition of the variables,

properties, events, and procedures that the

structure comprises.

Structure Box

Public length As

Double

Public breadth As

Double

Public height As

Double

End Structure

6 Module Statement

Declares the name of a module and

introduces the definition of the variables,

properties, events, and procedures that the

module comprises.

Public Module

myModule

Sub Main()

Dim user As String =

InputBox("What is

your name?")

MsgBox("User name

is" & user)

End Sub

End Module

7 Interface Statement

Declares the name of an interface and

introduces the definitions of the members

that the interface comprises.

Public Interface

MyInterface

 Sub

doSomething()

End Interface

8 Function Statement

Declares the name, parameters, and code

that define a Function procedure.

Function myFunction

(ByVal n As Integer)

As Double

 Return 5.87 * n

End Function

9 Sub Statement

Declares the name, parameters, and code

that define a Sub procedure.

Sub mySub(ByVal s

As String)

 Return

End Sub

10 Declare Statement Declare Function

COPYRIGHT FIMT 2020 Page 149

Declares a reference to a procedure

implemented in an external file.

getUserName

Lib "advapi32.dll"

Alias

"GetUserNameA"

(

 ByVal lpBuffer As

String,

 ByRef nSize As

Integer) As Integer

11 Operator Statement
Declares the operator symbol, operands, and

code that define an operator procedure on a

class or structure.

Public Shared

Operator +

(ByVal x As obj,

ByVal y As obj) As

obj

 Dim r As New

obj

' implemention code

for r = x + y

 Return r

 End Operator

12 Property Statement

Declares the name of a property, and the

property procedures used to store and

retrieve the value of the property.

ReadOnly Property

quote() As String

 Get

 Return

quoteString

 End Get

End Property

13 Event Statement

Declares a user-defined event.
Public Event

Finished()

14 Delegate Statement
Used to declare a delegate.

Delegate Function

MathOperator(

 ByVal x As

Double,

 ByVal y As

Double

) As Double

Executable Statements

An executable statement performs an action. Statements calling a procedure, branching to another

place in the code, looping through several statements, or evaluating an expression are executable

statements. An assignment statement is a special case of an executable statement.

Example

The following example demonstrates a decision making statement:

Module decisions

COPYRIGHT FIMT 2020 Page 150

 Sub Main()

 'local variable definition '

 Dim a As Integer = 10

 ' check the boolean condition using if statement '

 If (a < 20) Then

 ' if condition is true then print the following '

 Console.WriteLine("a is less than 20")

 End If

 Console.WriteLine("value of a is : {0}", a)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a is less than 20;

value of a is : 10

VB.Net - Directives

The VB.Net compiler directives give instructions to the compiler to preprocess the information

before actual compilation starts.

All these directives begin with #, and only white-space characters may appear before a directive on

a line. These directives are not statements.

VB.Net compiler does not have a separate preprocessor; however, the directives are processed as if

there was one. In VB.Net, the compiler directives are used to help in conditional compilation.

Unlike C and C++ directives, they are not used to create macros.

Compiler Directives in VB.Net

VB.Net provides the following set of compiler directives:

 The #Const Directive

 The #ExternalSource Directive

 The #If...Then...#Else Directives

 The #Region Directive

The #Const Directive

This directive defines conditional compiler constants. Syntax for this directive is:

COPYRIGHT FIMT 2020 Page 151

#Const constname = expression

Where,

 constname: specifies the name of the constant. Required.

 expression: it is either a literal, or other conditional compiler constant, or a combination including

any or all arithmetic or logical operators except Is.

For example,

#Const state = "WEST BENGAL"

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives

#Const age = True

Sub Main()

 #If age Then

 Console.WriteLine("You are welcome to the Robotics Club")

 #End If

 Console.ReadKey()

End Sub

End Module

When the above code is compiled and executed, it produces the following result:

You are welcome to the Robotics Club

The #ExternalSource Directive

This directive is used for indicating a mapping between specific lines of source code and text

external to the source. It is used only by the compiler and the debugger has no effect on code

compilation.

This directive allows including external code from an external code file into a source code file.

Syntax for this directive is:

#ExternalSource(StringLiteral , IntLiteral)

 [LogicalLine]

#End ExternalSource

The parameters of #ExternalSource directive are the path of external file, line number of the first

line, and the line where the error occurred.

Example

COPYRIGHT FIMT 2020 Page 152

The following code demonstrates a hypothetical use of the directive:

Module mydirectives

 Public Class ExternalSourceTester

 Sub TestExternalSource()

 #ExternalSource("c:\vbprogs\directives.vb", 5)

 Console.WriteLine("This is External Code. ")

 #End ExternalSource

 End Sub

 End Class

 Sub Main()

 Dim t As New ExternalSourceTester()

 t.TestExternalSource()

 Console.WriteLine("In Main.")

 Console.ReadKey()

 End Sub

When the above code is compiled and executed, it produces the following result:

This is External Code.

In Main.

The #If...Then...#Else Directives

This directive conditionally compiles selected blocks of Visual Basic code.

Syntax for this directive is:

#If expression Then

 statements

[#ElseIf expression Then

 [statements]

...

#ElseIf expression Then

 [statements]]

COPYRIGHT FIMT 2020 Page 153

[#Else

 [statements]]

#End If

For example,

#Const TargetOS = "Linux"

#If TargetOS = "Windows 7" Then

 ' Windows 7 specific code

#ElseIf TargetOS = "WinXP" Then

 ' Windows XP specific code

#Else

 ' Code for other OS

#End if

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives

#Const classCode = 8

 Sub Main()

 #If classCode = 7 Then

 Console.WriteLine("Exam Questions for Class VII")

 #ElseIf classCode = 8 Then

 Console.WriteLine("Exam Questions for Class VIII")

 #Else

 Console.WriteLine("Exam Questions for Higher Classes")

 #End If

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Exam Questions for Class VIII

The #Region Directive

This directive helps in collapsing and hiding sections of code in Visual Basic files.

COPYRIGHT FIMT 2020 Page 154

Syntax for this directive is:

#Region "identifier_string"

#End Region

For example,

#Region "StatsFunctions"

 ' Insert code for the Statistical functions here.

#End Region

VB.Net - Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. VB.Net is rich in built-in operators and provides following types of commonly used

operators:

 Arithmetic Operators

 Comparison Operators

 Logical/Bitwise Operators

 Bit Shift Operators

 Assignment Operators

 Miscellaneous Operators

This tutorial will explain the most commonly used operators.

Arithmetic Operators

Following table shows all the arithmetic operators supported by VB.Net. Assume variable A holds

2 and variable B holds 7, then:

Operator Description Example

^ Raises one operand to the power of another B^A will

give 49

+ Adds two operands A + B

will give

9

- Subtracts second operand from the first A - B

will give

-5

* Multiplies both operands A * B

will give

14

COPYRIGHT FIMT 2020 Page 155

/ Divides one operand by another and returns a

floating point result

B / A

will give

3.5

\ Divides one operand by another and returns an

integer result

B \ A

will give

3

MOD Modulus Operator and remainder of after an

integer division

B MOD

A will

give 1

Comparison Operators

Following table shows all the comparison operators supported by VB.Net. Assume

variable A holds 10 and variable B holds 20, then:

Operator Description Example

= Checks if the values of two operands are equal or

not; if yes, then condition becomes true.

(A = B)

is not

true.

<> Checks if the values of two operands are equal or

not; if values are not equal, then condition

becomes true.

(A <> B)

is true.

> Checks if the value of left operand is greater than

the value of right operand; if yes, then condition

becomes true.

(A > B)

is not

true.

< Checks if the value of left operand is less than the

value of right operand; if yes, then condition

becomes true.

(A < B)

is true.

>= Checks if the value of left operand is greater than

or equal to the value of right operand; if yes, then

condition becomes true.

(A >= B)

is not

true.

<= Checks if the value of left operand is less than or

equal to the value of right operand; if yes, then

condition becomes true.

(A <= B)

is true.

Apart from the above, VB.Net provides three more comparison operators, which we will be using

in forthcoming chapters; however, we give a brief description here.

 Is Operator - It compares two object reference variables and determines if two object references

refer to the same object without performing value comparisons. If object1 and object2 both refer to

the exact same object instance, result is True; otherwise, result is False.

 IsNot Operator - It also compares two object reference variables and determines if two object

references refer to different objects. If object1 and object2 both refer to the exact same object

instance, result is False; otherwise, result is True.

COPYRIGHT FIMT 2020 Page 156

 Like Operator - It compares a string against a pattern.

Logical/Bitwise Operators

Following table shows all the logical operators supported by VB.Net. Assume variable A holds

Boolean value True and variable B holds Boolean value False, then:

Operator Description Example

And It is the logical as well as bitwise AND operator. If

both the operands are true, then condition becomes

true. This operator does not perform short-

circuiting, i.e., it evaluates both the expressions.

(A And

B) is

False.

Or It is the logical as well as bitwise OR operator. If

any of the two operands is true, then condition

becomes true. This operator does not perform

short-circuiting, i.e., it evaluates both the

expressions.

(A Or B)

is True.

Not It is the logical as well as bitwise NOT operator.

Use to reverses the logical state of its operand. If a

condition is true, then Logical NOT operator will

make false.

Not(A

And B)

is True.

Xor It is the logical as well as bitwise Logical

Exclusive OR operator. It returns True if both

expressions are True or both expressions are False;

otherwise it returns False. This operator does not

perform short-circuiting, it always evaluates both

expressions and there is no short-circuiting

counterpart of this operator.

A Xor B

is True.

AndAlso It is the logical AND operator. It works only on

Boolean data. It performs short-circuiting.

(A

AndAlso

B) is

False.

OrElse It is the logical OR operator. It works only on

Boolean data. It performs short-circuiting.

(A

OrElse

B) is

True.

IsFalse It determines whether an expression is False.

IsTrue It determines whether an expression is True.

Bit Shift Operators

We have already discussed the bitwise operators. The bit shift operators perform the shift

operations on binary values. Before coming into the bit shift operators, let us understand the bit

operations. Bitwise operators work on bits and perform bit-by-bit operations. The truth tables for

&, |, and ^ are as follows:

COPYRIGHT FIMT 2020 Page 157

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

We have seen that the Bitwise operators supported by VB.Net are And, Or, Xor and Not. The Bit

shift operators are >> and << for left shift and right shift, respectively.

Assume that the variable A holds 60 and variable B holds 13, then:

Operator Description Example

And Bitwise AND Operator copies a bit to the result if it

exists in both operands.

(A AND B) will give 12,

which is 0000 1100

Or Binary OR Operator copies a bit if it exists in either

operand.

(A Or B) will give 61,

which is 0011 1101

Xor Binary XOR Operator copies the bit if it is set in one

operand but not both.

(A Xor B) will give 49,

which is 0011 0001

Not Binary Ones Complement Operator is unary and has

the effect of 'flipping' bits.

(Not A) will give -61,

which is 1100 0011 in 2's

complement form due to a

signed binary number.

<< Binary Left Shift Operator. The left operands value

is moved left by the number of bits specified by the

right operand.

A << 2 will give 240, which

is 1111 0000

>> Binary Right Shift Operator. The left operands value

is moved right by the number of bits specified by the

right operand.

A >> 2 will give 15, which

is 0000 1111

Assignment Operators

There are following assignment operators supported by VB.Net:

COPYRIGHT FIMT 2020 Page 158

Operator Description Example

= Simple assignment operator, Assigns values from

right side operands to left side operand

C = A + B will assign value

of A + B into C

+= Add AND assignment operator, It adds right operand

to the left operand and assigns the result to left

operand

C += A is equivalent to C =

C + A

-= Subtract AND assignment operator, It subtracts right

operand from the left operand and assigns the result

to left operand

C -= A is equivalent to C =

C - A

*= Multiply AND assignment operator, It multiplies

right operand with the left operand and assigns the

result to left operand

C *= A is equivalent to C =

C * A

/= Divide AND assignment operator, It divides left

operand with the right operand and assigns the result

to left operand (floating point division)

C /= A is equivalent to C =

C / A

\= Divide AND assignment operator, It divides left

operand with the right operand and assigns the result

to left operand (Integer division)

C \= A is equivalent to C =

C \A

^= Exponentiation and assignment operator. It raises the

left operand to the power of the right operand and

assigns the result to left operand.

C^=A is equivalent to C =

C ^ A

<<= Left shift AND assignment operator C <<= 2 is same as C = C

<< 2

>>= Right shift AND assignment operator C >>= 2 is same as C = C

>> 2

&= Concatenates a String expression to a String variable

or property and assigns the result to the variable or

property.

Str1 &= Str2 is same as

Str1 = Str1 & Str2

Miscellaneous Operators

There are few other important operators supported by VB.Net.

Operator Description Example

AddressOf Returns the address of a procedure. AddHandler Button1.Click,

AddressOf Button1_Click

Await It is applied to an operand in an

asynchronous method or lambda

expression to suspend execution of the

method until the awaited task

completes.

Dim result As res

= Await

AsyncMethodThatReturnsResult()

Await AsyncMethod()

COPYRIGHT FIMT 2020 Page 159

GetType It returns a Type object for the

specified type. The Type object

provides information about the type

such as its properties, methods, and

events.

MsgBox(GetType(Integer).ToString())

Function

Expression

It declares the parameters and code

that define a function lambda

expression.

Dim add5 = Function(num As

 Integer) num + 5

'prints 10

Console.WriteLine(add5(5))

If It uses short-circuit evaluation to

conditionally return one of two values.

The If operator can be called with

three arguments or with two

arguments.

Dim num = 5

Console.WriteLine(If(num >= 0,

"Positive", "Negative"))

Operators Precedence in VB.Net

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example, the

multiplication operator has higher precedence than the addition operator:

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence

than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest

appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Operator Precedence

Await Highest

Exponentiation (^)

Unary identity and negation (+, -)

Multiplication and floating-point division (*, /)

Integer division (\)

Modulus arithmetic (Mod)

Addition and subtraction (+, -)

Arithmetic bit shift (<<, >>)

All comparison operators (=, <>, <, <=, >, >=, Is, IsNot,

Like, TypeOf...Is)

Negation (Not)

Conjunction (And, AndAlso)

COPYRIGHT FIMT 2020 Page 160

Inclusive disjunction (Or, OrElse)

Exclusive disjunction (Xor) Lowest

VB.Net - Decision Making

Decision making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be executed if the condition

is determined to be false.

Following is the general form of a typical decision making structure found in most of the

programming languages:

VB.Net provides the following types of decision making statements. Click the following links to

check their details.

Statement Description

If ... Then statement
An If...Then statement consists of a boolean expression

followed by one or more statements.

If...Then...Else statement
An If...Then statement can be followed by an

optional Else statement, which executes when the

boolean expression is false.

nested If statements
You can use one If or Else if statement inside

another If or Else if statement(s).

Select Case statement
A Select Case statement allows a variable to be tested for

equality against a list of values.

nested Select Case statements
You can use one select case statement inside

another select case statement(s).

https://www.tutorialspoint.com/vb.net/vb.net_if_statements.htm
https://www.tutorialspoint.com/vb.net/vb.net_if_else_statements.htm
https://www.tutorialspoint.com/vb.net/vb.net_nested_if_statements.htm
https://www.tutorialspoint.com/vb.net/vb.net_select_case_statements.htm
https://www.tutorialspoint.com/vb.net/vb.net_nested_select_case_statements.htm

COPYRIGHT FIMT 2020 Page 161

VB.Net - Loops

There may be a situation when you need to execute a block of code several number of times. In

general, statements are executed sequentially: The first statement in a function is executed first,

followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and

following is the general form of a loop statement in most of the programming languages:

VB.Net provides following types of loops to handle looping requirements. Click the following

links to check their details.

Loop Type Description

Do Loop
It repeats the enclosed block of statements while a Boolean

condition is True or until the condition becomes True. It

could be terminated at any time with the Exit Do statement.

For...Next
It repeats a group of statements a specified number of times

and a loop index counts the number of loop iterations as the

loop executes.

For Each...Next
It repeats a group of statements for each element in a

collection. This loop is used for accessing and manipulating

all elements in an array or a VB.Net collection.

While... End While
It executes a series of statements as long as a given condition

is True.

With... End With
It is not exactly a looping construct. It executes a series of

statements that repeatedly refer to a single object or structure.

Nested loops
You can use one or more loops inside any another While, For

or Do loop.

Loop Control Statements:

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

VB.Net provides the following control statements. Click the following links to check their details.

https://www.tutorialspoint.com/vb.net/vb.net_do_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_fornext_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_foreachnext_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_while_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_with_statement.htm
https://www.tutorialspoint.com/vb.net/vb.net_nested_loops.htm

COPYRIGHT FIMT 2020 Page 162

Control Statement Description

Exit statement
Terminates the loop or select case statement and transfers

execution to the statement immediately following the loop

or select case.

Continue statement
Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

GoTo statement
Transfers control to the labeled statement. Though it is not

advised to use GoTo statement in your program.

VB.Net - Strings

In VB.Net, you can use strings as array of characters, however, more common practice is to use the

String keyword to declare a string variable. The string keyword is an alias for

the System.String class.

Creating a String Object

You can create string object using one of the following methods:

 By assigning a string literal to a String variable

 By using a String class constructor

 By using the string concatenation operator (+)

 By retrieving a property or calling a method that returns a string

 By calling a formatting method to convert a value or object to its string representation

The following example demonstrates this:

Module strings

 Sub Main()

 Dim fname, lname, fullname, greetings As String

 fname = "Rowan"

 lname = "Atkinson"

 fullname = fname + " " + lname

 Console.WriteLine("Full Name: {0}", fullname)

 'by using string constructor

 Dim letters As Char() = {"H", "e", "l", "l", "o"}

 greetings = New String(letters)

 Console.WriteLine("Greetings: {0}", greetings)

 'methods returning String

 Dim sarray() As String = {"Hello", "From", "Tutorials", "Point"}

 Dim message As String = String.Join(" ", sarray)

https://www.tutorialspoint.com/vb.net/vb.net_exit_statement.htm
https://www.tutorialspoint.com/vb.net/vb.net_continue_statement.htm
https://www.tutorialspoint.com/vb.net/vb.net_goto_statement.htm

COPYRIGHT FIMT 2020 Page 163

 Console.WriteLine("Message: {0}", message)

 'formatting method to convert a value

 Dim waiting As DateTime = New DateTime(2012, 12, 12, 17, 58, 1)

 Dim chat As String = String.Format("Message sent at {0:t} on {0:D}", waiting)

 Console.WriteLine("Message: {0}", chat)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Full Name: Rowan Atkinson

Greetings: Hello

Message: Hello From Tutorials Point

Message: Message sent at 5:58 PM on Wednesday, December 12, 2012

Properties of the String Class

The String class has the following two properties:

S.N Property Name & Description

1 Chars

Gets the Char object at a specified position in the current String object.

2 Length

Gets the number of characters in the current String object.

Methods of the String Class

The String class has numerous methods that help you in working with the string objects. The

following table provides some of the most commonly used methods:

S.N Method Name & Description

1 Public Shared Function Compare (strA As String, strB As String) As Integer

Compares two specified string objects and returns an integer that indicates their

relative position in the sort order.

2 Public Shared Function Compare (strA As String, strB As String, ignoreCase As

Boolean) As Integer

Compares two specified string objects and returns an integer that indicates their

relative position in the sort order. However, it ignores case if the Boolean parameter is

true.

3 Public Shared Function Concat (str0 As String, str1 As String) As String

Concatenates two string objects.

COPYRIGHT FIMT 2020 Page 164

4 Public Shared Function Concat (str0 As String, str1 As String, str2 As String)

As String

Concatenates three string objects.

5 Public Shared Function Concat (str0 As String, str1 As String, str2 As String,

str3 As String) As String
Concatenates four string objects.

6 Public Function Contains (value As String) As Boolean
Returns a value indicating whether the specified string object occurs within this string.

7 Public Shared Function Copy (str As String) As String
Creates a new String object with the same value as the specified string.

8 pPublic Sub CopyTo (sourceIndex As Integer, destination As Char(),

destinationIndex As Integer, count As Integer)

Copies a specified number of characters from a specified position of the string object

to a specified position in an array of Unicode characters.

9 Public Function EndsWith (value As String) As Boolean
Determines whether the end of the string object matches the specified string.

10 Public Function Equals (value As String) As Boolean

Determines whether the current string object and the specified string object have the

same value.

11 Public Shared Function Equals (a As String, b As String) As Boolean
Determines whether two specified string objects have the same value.

12 Public Shared Function Format (format As String, arg0 As Object) As String
Replaces one or more format items in a specified string with the string representation

of a specified object.

13 Public Function IndexOf (value As Char) As Integer

Returns the zero-based index of the first occurrence of the specified Unicode character

in the current string.

14 Public Function IndexOf (value As String) As Integer
Returns the zero-based index of the first occurrence of the specified string in this

instance.

15 Public Function IndexOf (value As Char, startIndex As Integer) As Integer

Returns the zero-based index of the first occurrence of the specified Unicode character

in this string, starting search at the specified character position.

16 Public Function IndexOf (value As String, startIndex As Integer) As Integer
Returns the zero-based index of the first occurrence of the specified string in this

instance, starting search at the specified character position.

17 Public Function IndexOfAny (anyOf As Char()) As Integer

Returns the zero-based index of the first occurrence in this instance of any character in

a specified array of Unicode characters.

18 Public Function IndexOfAny (anyOf As Char(), startIndex As Integer) As

COPYRIGHT FIMT 2020 Page 165

Integer
Returns the zero-based index of the first occurrence in this instance of any character in

a specified array of Unicode characters, starting search at the specified character

position.

19 Public Function Insert (startIndex As Integer, value As String) As String
Returns a new string in which a specified string is inserted at a specified index position

in the current string object.

20 Public Shared Function IsNullOrEmpty (value As String) As Boolean

Indicates whether the specified string is null or an Empty string.

21 Public Shared Function Join (separator As String, ParamArray value As String()

) As String
Concatenates all the elements of a string array, using the specified separator between

each element.

22 Public Shared Function Join (separator As String, value As String(), startIndex

As Integer, count As Integer) As String
Concatenates the specified elements of a string array, using the specified separator

between each element.

23 Public Function LastIndexOf (value As Char) As Integer

Returns the zero-based index position of the last occurrence of the specified Unicode

character within the current string object.

24 Public Function LastIndexOf (value As String) As Integer
Returns the zero-based index position of the last occurrence of a specified string within

the current string object.

25 Public Function Remove (startIndex As Integer) As String
Removes all the characters in the current instance, beginning at a specified position

and continuing through the last position, and returns the string.

26 Public Function Remove (startIndex As Integer, count As Integer) As String

Removes the specified number of characters in the current string beginning at a

specified position and returns the string.

27 Public Function Replace (oldChar As Char, newChar As Char) As String
Replaces all occurrences of a specified Unicode character in the current string object

with the specified Unicode character and returns the new string.

28 Public Function Replace (oldValue As String, newValue As String) As String

Replaces all occurrences of a specified string in the current string object with the

specified string and returns the new string.

29 Public Function Split (ParamArray separator As Char()) As String()
Returns a string array that contains the substrings in the current string object, delimited

by elements of a specified Unicode character array.

30 Public Function Split (separator As Char(), count As Integer) As String()

Returns a string array that contains the substrings in the current string object, delimited

by elements of a specified Unicode character array. The int parameter specifies the

maximum number of substrings to return.

COPYRIGHT FIMT 2020 Page 166

31 Public Function StartsWith (value As String) As Boolean
Determines whether the beginning of this string instance matches the specified string.

32 Public Function ToCharArray As Char()
Returns a Unicode character array with all the characters in the current string object.

33 Public Function ToCharArray (startIndex As Integer, length As Integer) As

Char()

Returns a Unicode character array with all the characters in the current string object,

starting from the specified index and up to the specified length.

34 Public Function ToLower As String
Returns a copy of this string converted to lowercase.

35 Public Function ToUpper As String
Returns a copy of this string converted to uppercase.

36 Public Function Trim As String
Removes all leading and trailing white-space characters from the current String object.

The above list of methods is not exhaustive, please visit MSDN library for the complete list of

methods and String class constructors.

Examples:

The following example demonstrates some of the methods mentioned above:

Comparing Strings:

Module strings

 Sub Main()

 Dim str1, str2 As String

 str1 = "This is test"

 str2 = "This is text"

 If (String.Compare(str1, str2) = 0) Then

 Console.WriteLine(str1 + " and " + str2 +

 " are equal.")

 Else

 Console.WriteLine(str1 + " and " + str2 +

 " are not equal.")

 End If

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

This is test and This is text are not equal.

COPYRIGHT FIMT 2020 Page 167

String Contains String:

Module strings

 Sub Main()

 Dim str1 As String

 str1 = "This is test"

 If (str1.Contains("test")) Then

 Console.WriteLine("The sequence 'test' was found.")

 End If

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

The sequence 'test' was found.

Getting a Substring:

Module strings

 Sub Main()

 Dim str As String

 str = "Last night I dreamt of San Pedro"

 Console.WriteLine(str)

 Dim substr As String = str.Substring(23)

 Console.WriteLine(substr)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Last night I dreamt of San Pedro

San Pedro.

Joining Strings:

Module strings

 Sub Main()

 Dim strarray As String() = {"Down the way where the nights are gay",

 "And the sun shines daily on the mountain top",

 "I took a trip on a sailing ship",

 "And when I reached Jamaica",

COPYRIGHT FIMT 2020 Page 168

 "I made a stop"}

 Dim str As String = String.Join(vbCrLf, strarray)

 Console.WriteLine(str)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Down the way where the nights are gay

And the sun shines daily on the mountain top

I took a trip on a sailing ship

And when I reached Jamaica

I made a stop

VB.Net - Date & Time

Most of the softwares you write need implementing some form of date functions returning current

date and time. Dates are so much part of everyday life that it becomes easy to work with them

without thinking. VB.Net also provides powerful tools for date arithmetic that makes manipulating

dates easy.

The Date data type contains date values, time values, or date and time values. The default value of

Date is 0:00:00 (midnight) on January 1, 0001. The equivalent .NET data type

is System.DateTime.

The DateTime structure represents an instant in time, typically expressed as a date and time of day

'Declaration

<SerializableAttribute> _

Public Structure DateTime _

 Implements IComparable, IFormattable, IConvertible, ISerializable,

 IComparable(Of DateTime), IEquatable(Of DateTime)

You can also get the current date and time from the DateAndTime class.

The DateAndTime module contains the procedures and properties used in date and time

operations.

'Declaration

<StandardModuleAttribute> _

Public NotInheritable Class DateAndTime

COPYRIGHT FIMT 2020 Page 169

Note:

Both the DateTime structure and the DateAndTime module contain properties

like Now and Today, so often beginners find it confusing. The DateAndTime class belongs to

the Microsoft.VisualBasic namespace and the DateTime structure belongs to the System

namespace.

Therefore, using the later would help you in porting your code to another .Net language like C#.

However, the DateAndTime class/module contains all the legacy date functions available in

Visual Basic.

Properties and Methods of the DateTime Structure

The following table lists some of the commonly used properties of the DateTime Structure:

S.N Property Description

1 Date Gets the date component of this instance.

2 Day Gets the day of the month represented by this instance.

3 DayOfWeek Gets the day of the week represented by this instance.

4 DayOfYear Gets the day of the year represented by this instance.

5 Hour Gets the hour component of the date represented by this

instance.

6 Kind Gets a value that indicates whether the time represented by

this instance is based on local time, Coordinated Universal

Time (UTC), or neither.

7 Millisecond Gets the milliseconds component of the date represented by

this instance.

8 Minute Gets the minute component of the date represented by this

instance.

9 Month Gets the month component of the date represented by this

instance.

10 Now Gets a DateTime object that is set to the current date and

time on this computer, expressed as the local time.

11 Second Gets the seconds component of the date represented by this

instance.

12 Ticks Gets the number of ticks that represent the date and time of

this instance.

13 TimeOfDay Gets the time of day for this instance.

14 Today Gets the current date.

COPYRIGHT FIMT 2020 Page 170

15 UtcNow Gets a DateTime object that is set to the current date and

time on this computer, expressed as the Coordinated

Universal Time (UTC).

16 Year Gets the year component of the date represented by this

instance.

The following table lists some of the commonly used methods of the DateTime structure:

S.N Method Name & Description

1 Public Function Add (value As TimeSpan) As DateTime

Returns a new DateTime that adds the value of the specified TimeSpan to the value of

this instance.

2 Public Function AddDays (value As Double) As DateTime
Returns a new DateTime that adds the specified number of days to the value of this

instance.

3 Public Function AddHours (value As Double) As DateTime

Returns a new DateTime that adds the specified number of hours to the value of this

instance.

4 Public Function AddMinutes (value As Double) As DateTime
Returns a new DateTime that adds the specified number of minutes to the value of this

instance.

5 Public Function AddMonths (months As Integer) As DateTime

Returns a new DateTime that adds the specified number of months to the value of this

instance.

6 Public Function AddSeconds (value As Double) As DateTime
Returns a new DateTime that adds the specified number of seconds to the value of this

instance.

7 Public Function AddYears (value As Integer) As DateTime
Returns a new DateTime that adds the specified number of years to the value of this

instance.

8 Public Shared Function Compare (t1 As DateTime,t2 As DateTime) As Integer

Compares two instances of DateTime and returns an integer that indicates whether the

first instance is earlier than, the same as, or later than the second instance.

9 Public Function CompareTo (value As DateTime) As Integer
Compares the value of this instance to a specified DateTime value and returns an integer

that indicates whether this instance is earlier than, the same as, or later than the specified

DateTime value.

10 Public Function Equals (value As DateTime) As Boolean
Returns a value indicating whether the value of this instance is equal to the value of the

specified DateTime instance.

11 Public Shared Function Equals (t1 As DateTime, t2 As DateTime) As Boolean

Returns a value indicating whether two DateTime instances have the same date and time

COPYRIGHT FIMT 2020 Page 171

value.

12 Public Overrides Function ToString As String

Converts the value of the current DateTime object to its equivalent string representation.

The above list of methods is not exhaustive, please visit Microsoft documentation for the complete

list of methods and properties of the DateTime structure.

Creating a DateTime Object

You can create a DateTime object in one of the following ways:

 By calling a DateTime constructor from any of the overloaded DateTime constructors.

 By assigning the DateTime object a date and time value returned by a property or method.

 By parsing the string representation of a date and time value.

 By calling the DateTime structure's implicit default constructor.

The following example demonstrates this:

Module Module1

 Sub Main()

 'DateTime constructor: parameters year, month, day, hour, min, sec

 Dim date1 As New Date(2012, 12, 16, 12, 0, 0)

 'initializes a new DateTime value

 Dim date2 As Date = #12/16/2012 12:00:52 AM#

 'using properties

 Dim date3 As Date = Date.Now

 Dim date4 As Date = Date.UtcNow

 Dim date5 As Date = Date.Today

 Console.WriteLine(date1)

 Console.WriteLine(date2)

 Console.WriteLine(date3)

 Console.WriteLine(date4)

 Console.WriteLine(date5)

 Console.ReadKey()

 End Sub

End Module

When the above code was compiled and executed, it produces the following result:

12/16/2012 12:00:00 PM

http://msdn.microsoft.com/en-us/library/system.datetime.aspx

COPYRIGHT FIMT 2020 Page 172

12/16/2012 12:00:52 PM

12/12/2012 10:22:50 PM

12/12/2012 12:00:00 PM

Getting the Current Date and Time:

The following programs demonstrate how to get the current date and time in VB.Net:

Current Time:

Module dateNtime

 Sub Main()

 Console.Write("Current Time: ")

 Console.WriteLine(Now.ToLongTimeString)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Current Time: 11 :05 :32 AM

Current Date:

Module dateNtime

 Sub Main()

 Console.WriteLine("Current Date: ")

 Dim dt As Date = Today

 Console.WriteLine("Today is: {0}", dt)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Today is: 12/11/2012 12:00:00 AM

Formatting Date

A Date literal should be enclosed within hash signs (# #), and specified in the format M/d/yyyy, for

example #12/16/2012#. Otherwise, your code may change depending on the locale in which your

application is running.

For example, you specified Date literal of #2/6/2012# for the date February 6, 2012. It is alright for

the locale that uses mm/dd/yyyy format. However, in a locale that uses dd/mm/yyyy format, your

literal would compile to June 2, 2012. If a locale uses another format say, yyyy/mm/dd, the literal

would be invalid and cause a compiler error.

COPYRIGHT FIMT 2020 Page 173

To convert a Date literal to the format of your locale or to a custom format, use

the Format function of String class, specifying either a predefined or user-defined date format.

The following example demonstrates this.

Module dateNtime

 Sub Main()

 Console.WriteLine("India Wins Freedom: ")

 Dim independenceDay As New Date(1947, 8, 15, 0, 0, 0)

 ' Use format specifiers to control the date display.

 Console.WriteLine(" Format 'd:' " & independenceDay.ToString("d"))

 Console.WriteLine(" Format 'D:' " & independenceDay.ToString("D"))

 Console.WriteLine(" Format 't:' " & independenceDay.ToString("t"))

 Console.WriteLine(" Format 'T:' " & independenceDay.ToString("T"))

 Console.WriteLine(" Format 'f:' " & independenceDay.ToString("f"))

 Console.WriteLine(" Format 'F:' " & independenceDay.ToString("F"))

 Console.WriteLine(" Format 'g:' " & independenceDay.ToString("g"))

 Console.WriteLine(" Format 'G:' " & independenceDay.ToString("G"))

 Console.WriteLine(" Format 'M:' " & independenceDay.ToString("M"))

 Console.WriteLine(" Format 'R:' " & independenceDay.ToString("R"))

 Console.WriteLine(" Format 'y:' " & independenceDay.ToString("y"))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

India Wins Freedom:

Format 'd:' 8/15/1947

Format 'D:' Friday, August 15, 1947

Format 't:' 12:00 AM

Format 'T:' 12:00:00 AM

Format 'f:' Friday, August 15, 1947 12:00 AM

Format 'F:' Friday, August 15, 1947 12:00:00 AM

Format 'g:' 8/15/1947 12:00 AM

Format 'G:' 8/15/1947 12:00:00 AM

Format 'M:' 8/15/1947 August 15

Format 'R:' Fri, 15 August 1947 00:00:00 GMT

COPYRIGHT FIMT 2020 Page 174

Format 'y:' August, 1947

Predefined Date/Time Formats

The following table identifies the predefined date and time format names. These may be used by

name as the style argument for the Format function:

Format Description

General Date, or G Displays a date and/or time. For example, 1/12/2012

07:07:30 AM.

Long Date,Medium Date, or D Displays a date according to your current culture's long date

format. For example, Sunday, December 16, 2012.

Short Date, or d Displays a date using your current culture's short date format.

For example, 12/12/2012.

Long Time,Medium Time, orT Displays a time using your current culture's long time format;

typically includes hours, minutes, seconds. For example,

01:07:30 AM.

Short Time or t Displays a time using your current culture's short time

format. For example, 11:07 AM.

f Displays the long date and short time according to your

current culture's format. For example, Sunday, December 16,

2012 12:15 AM.

F Displays the long date and long time according to your

current culture's format. For example, Sunday, December 16,

2012 12:15:31 AM.

g Displays the short date and short time according to your

current culture's format. For example, 12/16/2012 12:15 AM.

M, m Displays the month and the day of a date. For example,

December 16.

R, r Formats the date according to the RFC1123Pattern property.

s Formats the date and time as a sortable index. For example,

2012-12-16T12:07:31.

u Formats the date and time as a GMT sortable index. For

example, 2012-12-16 12:15:31Z.

U Formats the date and time with the long date and long time as

GMT. For example, Sunday, December 16, 2012 6:07:31

PM.

Y, y Formats the date as the year and month. For example,

December, 2012.

For other formats like user-defined formats, please consult Microsoft Documentation.

http://msdn.microsoft.com/en-us/library/microsoft.visualbasic.strings.format.aspx

COPYRIGHT FIMT 2020 Page 175

Properties and Methods of the DateAndTime Class

The following table lists some of the commonly used properties of the DateAndTime Class:

S.N Property Description

1 Date Returns or sets a String value representing the current date

according to your system.

2 Now Returns a Date value containing the current date and time

according to your system.

3 TimeOfDay Returns or sets a Date value containing the current time of

day according to your system.

4 Timer Returns a Double value representing the number of seconds

elapsed since midnight.

5 TimeString Returns or sets a String value representing the current time of

day according to your system.

6 Today Gets the current date.

The following table lists some of the commonly used methods of the DateAndTime class:

S.N Method Name & Description

1 Public Shared Function DateAdd (Interval As DateInterval, Number As Double,

DateValue As DateTime) As DateTime
Returns a Date value containing a date and time value to which a specified time interval

has been added.

2 Public Shared Function DateAdd (Interval As String,Number As Double,DateValue

As Object) As DateTime

Returns a Date value containing a date and time value to which a specified time interval

has been added.

3 Public Shared Function DateDiff (Interval As DateInterval, Date1 As DateTime,

Date2 As DateTime, DayOfWeek As FirstDayOfWeek, WeekOfYear As

FirstWeekOfYear) As Long
Returns a Long value specifying the number of time intervals between two Date values.

4 Public Shared Function DatePart (Interval As DateInterval, DateValue As

DateTime, FirstDayOfWeekValue As FirstDayOfWeek, FirstWeekOfYearValue As

FirstWeekOfYear) As Integer
Returns an Integer value containing the specified component of a given Date value.

5 Public Shared Function Day (DateValue As DateTime) As Integer
Returns an Integer value from 1 through 31 representing the day of the month.

6 Public Shared Function Hour (TimeValue As DateTime) As Integer
Returns an Integer value from 0 through 23 representing the hour of the day.

7 Public Shared Function Minute (TimeValue As DateTime) As Integer
Returns an Integer value from 0 through 59 representing the minute of the hour.

COPYRIGHT FIMT 2020 Page 176

8 Public Shared Function Month (DateValue As DateTime) As Integer
Returns an Integer value from 1 through 12 representing the month of the year.

9 Public Shared Function MonthName (Month As Integer, Abbreviate As Boolean) As

String

Returns a String value containing the name of the specified month.

10 Public Shared Function Second (TimeValue As DateTime) As Integer

Returns an Integer value from 0 through 59 representing the second of the minute.

11 Public Overridable Function ToString As String

Returns a string that represents the current object.

12 Public Shared Function Weekday (DateValue As DateTime, DayOfWeek As

FirstDayOfWeek) As Integer
Returns an Integer value containing a number representing the day of the week.

13 Public Shared Function WeekdayName (Weekday As Integer, Abbreviate As

Boolean, FirstDayOfWeekValue As FirstDayOfWeek) As String

Returns a String value containing the name of the specified weekday.

14 Public Shared Function Year (DateValue As DateTime) As Integer
Returns an Integer value from 1 through 9999 representing the year.

The above list is not exhaustive. For complete list of properties and methods of the DateAndTime

class, please consult Microsoft Documentation.

The following program demonstrates some of these and methods:

Module Module1

 Sub Main()

 Dim birthday As Date

 Dim bday As Integer

 Dim month As Integer

 Dim monthname As String

 ' Assign a date using standard short format.

 birthday = #7/27/1998#

 bday = Microsoft.VisualBasic.DateAndTime.Day(birthday)

 month = Microsoft.VisualBasic.DateAndTime.Month(birthday)

 monthname = Microsoft.VisualBasic.DateAndTime.MonthName(month)

 Console.WriteLine(birthday)

 Console.WriteLine(bday)

 Console.WriteLine(month)

 Console.WriteLine(monthname)

 Console.ReadKey()

 End Sub

http://msdn.microsoft.com/en-us/library/microsoft.visualbasic.dateandtime.aspx

COPYRIGHT FIMT 2020 Page 177

End Module

When the above code is compiled and executed, it produces the following result:

7/27/1998 12:00:00 AM

27

7

July

VB.Net - Arrays

An array stores a fixed-size sequential collection of elements of the same type. An array is used to

store a collection of data, but it is often more useful to think of an array as a collection of variables

of the same type. All arrays consist of contiguous memory locations. The lowest address

corresponds to the first element and the highest address to the last element.

Creating Arrays in VB.Net

To declare an array in VB.Net, you use the Dim statement. For example,

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

You can also initialize the array elements while declaring the array. For example,

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya", _

"Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

The elements in an array can be stored and accessed by using the index of the array. The following

program demonstrates this:

Module arrayApl

 Sub Main()

 Dim n(10) As Integer ' n is an array of 11 integers '

 Dim i, j As Integer

 ' initialize elements of array n '

COPYRIGHT FIMT 2020 Page 178

 For i = 0 To 10

 n(i) = i + 100 ' set element at location i to i + 100

 Next i

 ' output each array element's value '

 For j = 0 To 10

 Console.WriteLine("Element({0}) = {1}", j, n(j))

 Next j

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Element(0) = 100

Element(1) = 101

Element(2) = 102

Element(3) = 103

Element(4) = 104

Element(5) = 105

Element(6) = 106

Element(7) = 107

Element(8) = 108

Element(9) = 109

Element(10) = 110

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need of the

program. You can declare a dynamic array using the ReDim statement.

Syntax for ReDim statement:

ReDim [Preserve] arrayname(subscripts)

Where,

 The Preserve keyword helps to preserve the data in an existing array, when you resize it.

 arrayname is the name of the array to re-dimension.

 subscripts specifies the new dimension.

Module arrayApl

 Sub Main()

 Dim marks() As Integer

COPYRIGHT FIMT 2020 Page 179

 ReDim marks(2)

 marks(0) = 85

 marks(1) = 75

 marks(2) = 90

 ReDim Preserve marks(10)

 marks(3) = 80

 marks(4) = 76

 marks(5) = 92

 marks(6) = 99

 marks(7) = 79

 marks(8) = 75

 For i = 0 To 10

 Console.WriteLine(i & vbTab & marks(i))

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

0 85

1 75

2 90

3 80

4 76

5 92

6 99

7 79

8 75

9 0

10 0

Multi-Dimensional Arrays

VB.Net allows multidimensional arrays. Multidimensional arrays are also called rectangular arrays.

You can declare a 2-dimensional array of strings as:

Dim twoDStringArray(10, 20) As String

or, a 3-dimensional array of Integer variables:

COPYRIGHT FIMT 2020 Page 180

Dim threeDIntArray(10, 10, 10) As Integer

The following program demonstrates creating and using a 2-dimensional array:

Module arrayApl

 Sub Main()

 ' an array with 5 rows and 2 columns

 Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

 Dim i, j As Integer

 ' output each array element's value '

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a[0,0]: 0

a[0,1]: 0

a[1,0]: 1

a[1,1]: 2

a[2,0]: 2

a[2,1]: 4

a[3,0]: 3

a[3,1]: 6

a[4,0]: 4

a[4,1]: 8

Jagged Array

A Jagged array is an array of arrays. The follwoing code shows declaring a jagged array

named scores of Integers:

Dim scores As Integer()() = New Integer(5)(){}

The following example illustrates using a jagged array:

Module arrayApl

 Sub Main()

COPYRIGHT FIMT 2020 Page 181

 'a jagged array of 5 array of integers

 Dim a As Integer()() = New Integer(4)() {}

 a(0) = New Integer() {0, 0}

 a(1) = New Integer() {1, 2}

 a(2) = New Integer() {2, 4}

 a(3) = New Integer() {3, 6}

 a(4) = New Integer() {4, 8}

 Dim i, j As Integer

 ' output each array element's value

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i)(j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

The Array Class

The Array class is the base class for all the arrays in VB.Net. It is defined in the System

namespace. The Array class provides various properties and methods to work with arrays.

Properties of the Array Class

The following table provides some of the most commonly used properties of the Array class:

COPYRIGHT FIMT 2020 Page 182

S.N Property Name & Description

1 IsFixedSize

Gets a value indicating whether the Array has a fixed size.

2 IsReadOnly

Gets a value indicating whether the Array is read-only.

3 Length

Gets a 32-bit integer that represents the total number of elements in all

the dimensions of the Array.

4 LongLength
Gets a 64-bit integer that represents the total number of elements in all

the dimensions of the Array.

5 Rank

Gets the rank (number of dimensions) of the Array.

Methods of the Array Class

The following table provides some of the most commonly used methods of the Array class:

S.N Method Name & Description

1 Public Shared Sub Clear (array As Array, index As Integer, length

As Integer)

Sets a range of elements in the Array to zero, to false, or to null,

depending on the element type.

2 Public Shared Sub Copy (sourceArray As Array, destinationArray

As Array, length As Integer)

Copies a range of elements from an Array starting at the first element

and pastes them into another Array starting at the first element. The

length is specified as a 32-bit integer.

3 Public Sub CopyTo (array As Array, index As Integer)

Copies all the elements of the current one-dimensional Array to the

specified one-dimensional Array starting at the specified destination

Array index. The index is specified as a 32-bit integer.

4 Public Function GetLength (dimension As Integer) As Integer
Gets a 32-bit integer that represents the number of elements in the

specified dimension of the Array.

5 Public Function GetLongLength (dimension As Integer) As Long

Gets a 64-bit integer that represents the number of elements in the

specified dimension of the Array.

6 Public Function GetLowerBound (dimension As Integer) As Integer

COPYRIGHT FIMT 2020 Page 183

Gets the lower bound of the specified dimension in the Array.

7 Public Function GetType As Type

Gets the Type of the current instance (Inherited from Object).

8 Public Function GetUpperBound (dimension As Integer) As Integer

Gets the upper bound of the specified dimension in the Array.

9 Public Function GetValue (index As Integer) As Object

Gets the value at the specified position in the one-dimensional Array.

The index is specified as a 32-bit integer.

10 Public Shared Function IndexOf (array As Array,value As Object)

As Integer

Searches for the specified object and returns the index of the first

occurrence within the entire one-dimensional Array.

11 Public Shared Sub Reverse (array As Array)
Reverses the sequence of the elements in the entire one-dimensional

Array.

12 Public Sub SetValue (value As Object, index As Integer)
Sets a value to the element at the specified position in the one-

dimensional Array. The index is specified as a 32-bit integer.

13 Public Shared Sub Sort (array As Array)

Sorts the elements in an entire one-dimensional Array using the

IComparable implementation of each element of the Array.

14 Public Overridable Function ToString As String
Returns a string that represents the current object (Inherited from

Object).

For complete list of Array class properties and methods, please consult Microsoft documentation.

Example

The following program demonstrates use of some of the methods of the Array class:

Module arrayApl

 Sub Main()

 Dim list As Integer() = {34, 72, 13, 44, 25, 30, 10}

 Dim temp As Integer() = list

 Dim i As Integer

 Console.Write("Original Array: ")

 For Each i In list

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

COPYRIGHT FIMT 2020 Page 184

 ' reverse the array

 Array.Reverse(temp)

 Console.Write("Reversed Array: ")

 For Each i In temp

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 'sort the array

 Array.Sort(list)

 Console.Write("Sorted Array: ")

 For Each i In list

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Original Array: 34 72 13 44 25 30 10

Reversed Array: 10 30 25 44 13 72 34

Sorted Array: 10 13 25 30 34 44 72

VB.Net - Collections

Collection classes are specialized classes for data storage and retrieval. These classes provide

support for stacks, queues, lists, and hash tables. Most collection classes implement the same

interfaces. Collection classes serve various purposes, such as allocating memory dynamically to

elements and accessing a list of items on the basis of an index, etc. These classes create collections

of objects of the Object class, which is the base class for all data types in VB.Net.

Various Collection Classes and Their Usage

The following are the various commonly used classes of the System.Collection namespace. Click

the following links to check their details.

Class Description and Useage

ArrayList
It represents ordered collection of an object that can

be indexed individually.

https://www.tutorialspoint.com/vb.net/vb.net_arraylist.htm

COPYRIGHT FIMT 2020 Page 185

It is basically an alternative to an array. However, unlike array, you can add

and remove items from a list at a specified position using an index and the

array resizes itself automatically. It also allows dynamic memory allocation,

add, search and sort items in the list.

Hashtable
It uses a key to access the elements in the collection.

A hash table is used when you need to access elements by using key, and

you can identify a useful key value. Each item in the hash table has

a key/value pair. The key is used to access the items in the collection.

SortedList
It uses a key as well as an index to access the items in a list.

A sorted list is a combination of an array and a hash table. It contains a list

of items that can be accessed using a key or an index. If you access items

using an index, it is an ArrayList, and if you access items using a key, it is a

Hashtable. The collection of items is always sorted by the key value.

Stack
It represents a last-in, first out collection of object.

It is used when you need a last-in, first-out access of items. When you add

an item in the list, it is called pushing the item, and when you remove it, it

is called popping the item.

Queue
It represents a first-in, first out collection of object.

It is used when you need a first-in, first-out access of items. When you add

an item in the list, it is called enqueue, and when you remove an item, it is

called deque.

BitArray
It represents an array of the binary representation using the values 1 and 0.

It is used when you need to store the bits but do not know the number of bits

in advance. You can access items from the BitArray collection by using

an integer index, which starts from zero.

VB.Net - Functions

A procedure is a group of statements that together perform a task when called. After the procedure

is executed, the control returns to the statement calling the procedure. VB.Net has two types of

procedures:

 Functions

 Sub procedures or Subs

Functions return a value, whereas Subs do not return a value.

Defining a Function

The Function statement is used to declare the name, parameter and the body of a function. The

syntax for the Function statement is:

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

https://www.tutorialspoint.com/vb.net/vb.net_hashtable.htm
https://www.tutorialspoint.com/vb.net/vb.net_sortedlist.htm
https://www.tutorialspoint.com/vb.net/vb.net_stack.htm
https://www.tutorialspoint.com/vb.net/vb.net_queue.htm
https://www.tutorialspoint.com/vb.net/vb.net_bitarray.htm

COPYRIGHT FIMT 2020 Page 186

Where,

 Modifiers: specify the access level of the function; possible values are: Public, Private, Protected,

Friend, Protected Friend and information regarding overloading, overriding, sharing, and

shadowing.

 FunctionName: indicates the name of the function

 ParameterList: specifies the list of the parameters

 ReturnType: specifies the data type of the variable the function returns

Example

Following code snippet shows a function FindMax that takes two integer values and returns the

larger of the two.

Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

End Function

Function Returning a Value

In VB.Net, a function can return a value to the calling code in two ways:

 By using the return statement

 By assigning the value to the function name

The following example demonstrates using the FindMax function:

Module myfunctions

 Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

COPYRIGHT FIMT 2020 Page 187

 result = num2

 End If

 FindMax = result

 End Function

 Sub Main()

 Dim a As Integer = 100

 Dim b As Integer = 200

 Dim res As Integer

 res = FindMax(a, b)

 Console.WriteLine("Max value is : {0}", res)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Max value is : 200

Recursive Function

A function can call itself. This is known as recursion. Following is an example that calculates

factorial for a given number using a recursive function:

Module myfunctions

 Function factorial(ByVal num As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num = 1) Then

 Return 1

 Else

 result = factorial(num - 1) * num

 Return result

 End If

 End Function

 Sub Main()

 'calling the factorial method

 Console.WriteLine("Factorial of 6 is : {0}", factorial(6))

 Console.WriteLine("Factorial of 7 is : {0}", factorial(7))

 Console.WriteLine("Factorial of 8 is : {0}", factorial(8))

 Console.ReadLine()

COPYRIGHT FIMT 2020 Page 188

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Factorial of 6 is: 720

Factorial of 7 is: 5040

Factorial of 8 is: 40320

Param Arrays

At times, while declaring a function or sub procedure, you are not sure of the number of arguments

passed as a parameter. VB.Net param arrays (or parameter arrays) come into help at these times.

The following example demonstrates this:

Module myparamfunc

 Function AddElements(ParamArray arr As Integer()) As Integer

 Dim sum As Integer = 0

 Dim i As Integer = 0

 For Each i In arr

 sum += i

 Next i

 Return sum

 End Function

 Sub Main()

 Dim sum As Integer

 sum = AddElements(512, 720, 250, 567, 889)

 Console.WriteLine("The sum is: {0}", sum)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

The sum is: 2938

Passing Arrays as Function Arguments

You can pass an array as a function argument in VB.Net. The following example demonstrates this:

Module arrayParameter

 Function getAverage(ByVal arr As Integer(), ByVal size As Integer) As Double

 'local variables

 Dim i As Integer

COPYRIGHT FIMT 2020 Page 189

 Dim avg As Double

 Dim sum As Integer = 0

 For i = 0 To size - 1

 sum += arr(i)

 Next i

 avg = sum / size

 Return avg

 End Function

 Sub Main()

 ' an int array with 5 elements '

 Dim balance As Integer() = {1000, 2, 3, 17, 50}

 Dim avg As Double

 'pass pointer to the array as an argument

 avg = getAverage(balance, 5)

 ' output the returned value '

 Console.WriteLine("Average value is: {0} ", avg)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Average value is: 214.4

VB.Net - Sub Procedures

As we mentioned in the previous chapter, Sub procedures are procedures that do not return any

value. We have been using the Sub procedure Main in all our examples. We have been writing

console applications so far in these tutorials. When these applications start, the control goes to the

Main Sub procedure, and it in turn, runs any other statements constituting the body of the program.

Defining Sub Procedures

The Sub statement is used to declare the name, parameter and the body of a sub procedure. The

syntax for the Sub statement is:

[Modifiers] Sub SubName [(ParameterList)]

 [Statements]

End Sub

Where,

COPYRIGHT FIMT 2020 Page 190

 Modifiers: specify the access level of the procedure; possible values are: Public, Private, Protected,

Friend, Protected Friend and information regarding overloading, overriding, sharing, and

shadowing.

 SubName: indicates the name of the Sub

 ParameterList: specifies the list of the parameters

Example

The following example demonstrates a Sub procedure CalculatePay that takes two

parameters hours and wages and displays the total pay of an employee:

Module mysub

 Sub CalculatePay(ByRef hours As Double, ByRef wage As Decimal)

 'local variable declaration

 Dim pay As Double

 pay = hours * wage

 Console.WriteLine("Total Pay: {0:C}", pay)

 End Sub

 Sub Main()

 'calling the CalculatePay Sub Procedure

 CalculatePay(25, 10)

 CalculatePay(40, 20)

 CalculatePay(30, 27.5)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Total Pay: $250.00

Total Pay: $800.00

Total Pay: $825.00

Passing Parameters by Value

This is the default mechanism for passing parameters to a method. In this mechanism, when a

method is called, a new storage location is created for each value parameter. The values of the

actual parameters are copied into them. So, the changes made to the parameter inside the method

have no effect on the argument.

In VB.Net, you declare the reference parameters using the ByVal keyword. The following example

demonstrates the concept:

Module paramByval

COPYRIGHT FIMT 2020 Page 191

 Sub swap(ByVal x As Integer, ByVal y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

It shows that there is no change in the values though they had been changed inside the function.

Passing Parameters by Reference

A reference parameter is a reference to a memory location of a variable. When you pass parameters

by reference, unlike value parameters, a new storage location is not created for these parameters.

The reference parameters represent the same memory location as the actual parameters that are

supplied to the method. In VB.Net, you declare the reference parameters using the ByRef keyword.

The following example demonstrates this:

Module paramByref

 Sub swap(ByRef x As Integer, ByRef y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

COPYRIGHT FIMT 2020 Page 192

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

VB.Net - Classes & Objects

When you define a class, you define a blueprint for a data type. This doesn't actually define any

data, but it does define what the class name means, that is, what an object of the class will consist

of and what operations can be performed on such an object.

Objects are instances of a class. The methods and variables that constitute a class are called

members of the class.

Class Definition

A class definition starts with the keyword Class followed by the class name; and the class body,

ended by the End Class statement. Following is the general form of a class definition:

[<attributelist>] [accessmodifier] [Shadows] [MustInherit | NotInheritable] [Partial] _

Class name [(Of typelist)]

 [Inherits classname]

 [Implements interfacenames]

COPYRIGHT FIMT 2020 Page 193

 [statements]

End Class

Where,

 attributelist is a list of attributes that apply to the class. Optional.

 accessmodifier defines the access levels of the class, it has values as - Public, Protected, Friend,

Protected Friend and Private. Optional.

 Shadows indicate that the variable re-declares and hides an identically named element, or set of

overloaded elements, in a base class. Optional.

 MustInherit specifies that the class can be used only as a base class and that you cannot create an

object directly from it, i.e., an abstract class. Optional.

 NotInheritable specifies that the class cannot be used as a base class.

 Partial indicates a partial definition of the class.

 Inherits specifies the base class it is inheriting from.

 Implements specifies the interfaces the class is inheriting from.

The following example demonstrates a Box class, with three data members, length, breadth and

height:

Module mybox

 Class Box

 Public length As Double ' Length of a box

 Public breadth As Double ' Breadth of a box

 Public height As Double ' Height of a box

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() ' Declare Box1 of type Box

 Dim Box2 As Box = New Box() ' Declare Box2 of type Box

 Dim volume As Double = 0.0 ' Store the volume of a box here

 ' box 1 specification

 Box1.height = 5.0

 Box1.length = 6.0

 Box1.breadth = 7.0

 ' box 2 specification

 Box2.height = 10.0

 Box2.length = 12.0

 Box2.breadth = 13.0

 'volume of box 1

COPYRIGHT FIMT 2020 Page 194

 volume = Box1.height * Box1.length * Box1.breadth

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth

 Console.WriteLine("Volume of Box2 : {0}", volume)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Member Functions and Encapsulation

A member function of a class is a function that has its definition or its prototype within the class

definition like any other variable. It operates on any object of the class of which it is a member and

has access to all the members of a class for that object.

Member variables are attributes of an object (from design perspective) and they are kept private to

implement encapsulation. These variables can only be accessed using the public member functions.

Let us put above concepts to set and get the value of different class members in a class:

Module mybox

 Class Box

 Public length As Double ' Length of a box

 Public breadth As Double ' Breadth of a box

 Public height As Double ' Height of a box

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Sub setBreadth(ByVal bre As Double)

 breadth = bre

 End Sub

 Public Sub setHeight(ByVal hei As Double)

 height = hei

 End Sub

 Public Function getVolume() As Double

 Return length * breadth * height

 End Function

COPYRIGHT FIMT 2020 Page 195

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() ' Declare Box1 of type Box

 Dim Box2 As Box = New Box() ' Declare Box2 of type Box

 Dim volume As Double = 0.0 ' Store the volume of a box here

 ' box 1 specification

 Box1.setLength(6.0)

 Box1.setBreadth(7.0)

 Box1.setHeight(5.0)

 'box 2 specification

 Box2.setLength(12.0)

 Box2.setBreadth(13.0)

 Box2.setHeight(10.0)

 ' volume of box 1

 volume = Box1.getVolume()

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume = Box2.getVolume()

 Console.WriteLine("Volume of Box2 : {0}", volume)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Constructors and Destructors

A class constructor is a special member Sub of a class that is executed whenever we create new

objects of that class. A constructor has the name New and it does not have any return type.

Following program explains the concept of constructor:

Class Line

 Private length As Double ' Length of a line

 Public Sub New() 'constructor

 Console.WriteLine("Object is being created")

 End Sub

 Public Sub setLength(ByVal len As Double)

COPYRIGHT FIMT 2020 Page 196

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Object is being created

Length of line : 6

A default constructor does not have any parameter, but if you need, a constructor can have

parameters. Such constructors are called parameterized constructors. This technique helps you to

assign initial value to an object at the time of its creation as shown in the following example:

Class Line

 Private length As Double ' Length of a line

 Public Sub New(ByVal len As Double) 'parameterised constructor

 Console.WriteLine("Object is being created, length = {0}", len)

 length = len

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line(10.0)

 Console.WriteLine("Length of line set by constructor : {0}", line.getLength())

 'set line length

COPYRIGHT FIMT 2020 Page 197

 line.setLength(6.0)

 Console.WriteLine("Length of line set by setLength : {0}", line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Object is being created, length = 10

Length of line set by constructor : 10

Length of line set by setLength : 6

A destructor is a special member Sub of a class that is executed whenever an object of its class

goes out of scope. A destructor has the name Finalize and it can neither return a value nor can it

take any parameters. Destructor can be very useful for releasing resources before coming out of the

program like closing files, releasing memories, etc.

Destructors cannot be inherited or overloaded.

Following example explains the concept of destructor:

Class Line

 Private length As Double ' Length of a line

 Public Sub New() 'parameterised constructor

 Console.WriteLine("Object is being created")

 End Sub

 Protected Overrides Sub Finalize() ' destructor

 Console.WriteLine("Object is being deleted")

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

COPYRIGHT FIMT 2020 Page 198

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Object is being created

Length of line : 6

Object is being deleted

Shared Members of a VB.Net Class

We can define class members as static using the Shared keyword. When we declare a member of a

class as Shared, it means no matter how many objects of the class are created, there is only one

copy of the member. The keyword Shared implies that only one instance of the member exists for

a class. Shared variables are used for defining constants because their values can be retrieved by

invoking the class without creating an instance of it. Shared variables can be initialized outside the

member function or class definition. You can also initialize Shared variables inside the class

definition. You can also declare a member function as Shared. Such functions can access only

Shared variables. The Shared functions exist even before the object is created.

The following example demonstrates the use of shared members:

Class StaticVar

 Public Shared num As Integer

 Public Sub count()

 num = num + 1

 End Sub

 Public Shared Function getNum() As Integer

 Return num

 End Function

 Shared Sub Main()

 Dim s As StaticVar = New StaticVar()

 s.count()

 s.count()

 s.count()

 Console.WriteLine("Value of variable num: {0}", StaticVar.getNum())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

COPYRIGHT FIMT 2020 Page 199

Value of variable num: 3

Inheritance

One of the most important concepts in object-oriented programming is that of inheritance.

Inheritance allows us to define a class in terms of another class which makes it easier to create and

maintain an application. This also provides an opportunity to reuse the code functionality and fast

implementation time. When creating a class, instead of writing completely new data members and

member functions, the programmer can designate that the new class should inherit the members of

an existing class. This existing class is called the base class, and the new class is referred to as

the derived class.

Base & Derived Classes:

A class can be derived from more than one class or interface, which means that it can inherit data

and functions from multiple base classes or interfaces.

The syntax used in VB.Net for creating derived classes is as follows:

<access-specifier> Class <base_class>

...

End Class

Class <derived_class>: Inherits <base_class>

...

End Class

Consider a base class Shape and its derived class Rectangle:

' Base class

Class Shape

 Protected width As Integer

 Protected height As Integer

 Public Sub setWidth(ByVal w As Integer)

 width = w

 End Sub

 Public Sub setHeight(ByVal h As Integer)

 height = h

 End Sub

End Class

' Derived class

Class Rectangle : Inherits Shape

 Public Function getArea() As Integer

 Return (width * height)

COPYRIGHT FIMT 2020 Page 200

 End Function

End Class

Class RectangleTester

 Shared Sub Main()

 Dim rect As Rectangle = New Rectangle()

 rect.setWidth(5)

 rect.setHeight(7)

 ' Print the area of the object.

 Console.WriteLine("Total area: {0}", rect.getArea())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Total area: 35

Base Class Initialization

The derived class inherits the base class member variables and member methods. Therefore, the

super class object should be created before the subclass is created. The super class or the base class

is implicitly known as MyBase in VB.Net

The following program demonstrates this:

' Base class

Class Rectangle

 Protected width As Double

 Protected length As Double

 Public Sub New(ByVal l As Double, ByVal w As Double)

 length = l

 width = w

 End Sub

 Public Function GetArea() As Double

 Return (width * length)

 End Function

 Public Overridable Sub Display()

 Console.WriteLine("Length: {0}", length)

 Console.WriteLine("Width: {0}", width)

 Console.WriteLine("Area: {0}", GetArea())

 End Sub

COPYRIGHT FIMT 2020 Page 201

 'end class Rectangle

End Class

'Derived class

Class Tabletop : Inherits Rectangle

 Private cost As Double

 Public Sub New(ByVal l As Double, ByVal w As Double)

 MyBase.New(l, w)

 End Sub

 Public Function GetCost() As Double

 Dim cost As Double

 cost = GetArea() * 70

 Return cost

 End Function

 Public Overrides Sub Display()

 MyBase.Display()

 Console.WriteLine("Cost: {0}", GetCost())

 End Sub

 'end class Tabletop

End Class

Class RectangleTester

 Shared Sub Main()

 Dim t As Tabletop = New Tabletop(4.5, 7.5)

 t.Display()

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Width: 7.5

Area: 33.75

Cost: 2362.5

VB.Net supports multiple inheritance.

COPYRIGHT FIMT 2020 Page 202

VB.Net - Exception Handling

An exception is a problem that arises during the execution of a program. An exception is a

response to an exceptional circumstance that arises while a program is running, such as an attempt

to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. VB.Net

exception handling is built upon four keywords: Try, Catch, Finally and Throw.

 Try: A Try block identifies a block of code for which particular exceptions will be activated. It's

followed by one or more Catch blocks.

 Catch: A program catches an exception with an exception handler at the place in a program where

you want to handle the problem. The Catch keyword indicates the catching of an exception.

 Finally: The Finally block is used to execute a given set of statements, whether an exception is

thrown or not thrown. For example, if you open a file, it must be closed whether an exception is

raised or not.

 Throw: A program throws an exception when a problem shows up. This is done using a Throw

keyword.

Syntax

Assuming a block will raise an exception, a method catches an exception using a combination of

the Try and Catch keywords. A Try/Catch block is placed around the code that might generate an

exception. Code within a Try/Catch block is referred to as protected code, and the syntax for using

Try/Catch looks like the following:

Try

 [tryStatements]

 [Exit Try]

[Catch [exception [As type]] [When expression]

 [catchStatements]

 [Exit Try]]

[Catch ...]

[Finally

 [finallyStatements]]

End Try

You can list down multiple catch statements to catch different type of exceptions in case your try

block raises more than one exception in different situations.

Exception Classes in .Net Framework

In the .Net Framework, exceptions are represented by classes. The exception classes in .Net

Framework are mainly directly or indirectly derived from the System. Exception class. Some of

COPYRIGHT FIMT 2020 Page 203

the exception classes derived from the System. Exception class are

the System.ApplicationException and System.SystemException classes.

The System.ApplicationException class supports exceptions generated by application programs.

So the exceptions defined by the programmers should derive from this class.

The System.SystemException class is the base class for all predefined system exception.

The following table provides some of the predefined exception classes derived from the

Sytem.SystemException class:

Exception Class Description

System.IO.IOException Handles I/O errors.

System.IndexOutOfRangeException Handles errors generated when a

method refers to an array index out

of range.

System.ArrayTypeMismatchException Handles errors generated when type

is mismatched with the array type.

System.NullReferenceException Handles errors generated from

deferencing a null object.

System.DivideByZeroException Handles errors generated from

dividing a dividend with zero.

System.InvalidCastException Handles errors generated during

typecasting.

System.OutOfMemoryException Handles errors generated from

insufficient free memory.

System.StackOverflowException Handles errors generated from stack

overflow.

Handling Exceptions

VB.Net provides a structured solution to the exception handling problems in the form of try and

catch blocks. Using these blocks the core program statements are separated from the error-handling

statements.

These error handling blocks are implemented using the Try, Catch and Finally keywords.

Following is an example of throwing an exception when dividing by zero condition occurs:

Module exceptionProg

 Sub division(ByVal num1 As Integer, ByVal num2 As Integer)

 Dim result As Integer

 Try

 result = num1 \ num2

COPYRIGHT FIMT 2020 Page 204

 Catch e As DivideByZeroException

 Console.WriteLine("Exception caught: {0}", e)

 Finally

 Console.WriteLine("Result: {0}", result)

 End Try

 End Sub

 Sub Main()

 division(25, 0)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Exception caught: System.DivideByZeroException: Attempted to divide by zero.

at ...

Result: 0

Creating User-Defined Exceptions

You can also define your own exception. User-defined exception classes are derived from

the ApplicationException class. The following example demonstrates this:

Module exceptionProg

 Public Class TempIsZeroException : Inherits ApplicationException

 Public Sub New(ByVal message As String)

 MyBase.New(message)

 End Sub

 End Class

 Public Class Temperature

 Dim temperature As Integer = 0

 Sub showTemp()

 If (temperature = 0) Then

 Throw (New TempIsZeroException("Zero Temperature found"))

 Else

 Console.WriteLine("Temperature: {0}", temperature)

 End If

 End Sub

 End Class

 Sub Main()

COPYRIGHT FIMT 2020 Page 205

 Dim temp As Temperature = New Temperature()

 Try

 temp.showTemp()

 Catch e As TempIsZeroException

 Console.WriteLine("TempIsZeroException: {0}", e.Message)

 End Try

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

TempIsZeroException: Zero Temperature found

Throwing Objects

You can throw an object if it is either directly or indirectly derived from the System.Exception

class.

You can use a throw statement in the catch block to throw the present object as:

Throw [expression]

The following program demonstrates this:

Module exceptionProg

 Sub Main()

 Try

 Throw New ApplicationException("A custom exception _

 is being thrown here...")

 Catch e As Exception

 Console.WriteLine(e.Message)

 Finally

 Console.WriteLine("Now inside the Finally Block")

 End Try

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

A custom exception is being thrown here...

Now inside the Finally Block

COPYRIGHT FIMT 2020 Page 206

VB.Net - File Handling

A file is a collection of data stored in a disk with a specific name and a directory path. When a file

is opened for reading or writing, it becomes a stream. The stream is basically the sequence of bytes

passing through the communication path. There are two main streams: the input stream and

the output stream. The input stream is used for reading data from file (read operation) and

the output stream is used for writing into the file (write operation).

VB.Net I/O Classes

The System.IO namespace has various classes that are used for performing various operations with

files, like creating and deleting files, reading from or writing to a file, closing a file, etc.

The following table shows some commonly used non-abstract classes in the System.IO namespace:

I/O Class Description

BinaryReader Reads primitive data from a binary stream.

BinaryWriter Writes primitive data in binary format.

BufferedStream A temporary storage for a stream of bytes.

Directory Helps in manipulating a directory structure.

DirectoryInfo Used for performing operations on directories.

DriveInfo Provides information for the drives.

File Helps in manipulating files.

FileInfo Used for performing operations on files.

FileStream Used to read from and write to any location in a file.

MemoryStream Used for random access of streamed data stored in

memory.

Path Performs operations on path information.

StreamReader Used for reading characters from a byte stream.

StreamWriter Is used for writing characters to a stream.

StringReader Is used for reading from a string buffer.

StringWriter Is used for writing into a string buffer.

The FileStream Class

The FileStream class in the System.IO namespace helps in reading from, writing to and closing

files. This class derives from the abstract class Stream.

You need to create a FileStream object to create a new file or open an existing file. The syntax for

creating a FileStream object is as follows:

COPYRIGHT FIMT 2020 Page 207

Dim <object_name> As FileStream = New FileStream(<file_name>, <FileMode Enumerator>,

<FileAccess Enumerator>, <FileShare Enumerator>)

For example, for creating a FileStream object F for reading a file named sample.txt:

Dim f1 As FileStream = New FileStream("sample.txt", FileMode.OpenOrCreate,

FileAccess.ReadWrite)

Parameter Description

FileMode The FileMode enumerator defines various methods for opening

files. The members of the FileMode enumerator are:

 Append: It opens an existing file and puts cursor at the end of

file, or creates the file, if the file does not exist.

 Create: It creates a new file.

 CreateNew: It specifies to the operating system that it should

create a new file.

 Open: It opens an existing file.

 OpenOrCreate: It specifies to the operating system that it

should open a file if it exists, otherwise it should create a new

file.

 Truncate: It opens an existing file and truncates its size to zero

bytes.

FileAccess FileAccess enumerators have

members: Read, ReadWrite and Write.

FileShare FileShare enumerators have the following members:

 Inheritable: It allows a file handle to pass inheritance to the

child processes

 None: It declines sharing of the current file

 Read: It allows opening the file for reading

 ReadWrite: It allows opening the file for reading and writing

 Write: It allows opening the file for writing

Example:

The following program demonstrates use of the FileStream class:

Imports System.IO

Module fileProg

 Sub Main()

 Dim f1 As FileStream = New FileStream("sample.txt", _

 FileMode.OpenOrCreate, FileAccess.ReadWrite)

 Dim i As Integer

 For i = 0 To 20

 f1.WriteByte(CByte(i))

 Next i

 f1.Position = 0

COPYRIGHT FIMT 2020 Page 208

 For i = 0 To 20

 Console.Write("{0} ", f1.ReadByte())

 Next i

 f1.Close()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -1

Advanced File Operations in VB.Net

The preceding example provides simple file operations in VB.Net. However, to utilize the immense

powers of System.IO classes, you need to know the commonly used properties and methods of

these classes. We will discuss these classes and the operations they perform in the following

sections. Please click the links provided to get to the individual sections:

Topic and Description

Reading from and Writing into Text files
It involves reading from and writing into text files.

The StreamReader and StreamWriter classes help to accomplish it.

Reading from and Writing into Binary files

It involves reading from and writing into binary files.

The BinaryReader and BinaryWriter classes help to accomplish this.

Manipulating the Windows file system
It gives a VB.Net programmer the ability to browse and locate Windows

files and directories.

VB.Net - Basic Controls

An object is a type of user interface element you create on a Visual Basic form by using a toolbox

control. In fact, in Visual Basic, the form itself is an object. Every Visual Basic control consists of

three important elements:

 Properties which describe the object,

 Methods cause an object to do something and

 Events are what happens when an object does something.

Control Properties

All the Visual Basic Objects can be moved, resized or customized by setting their properties. A

property is a value or characteristic held by a Visual Basic object, such as Caption or Fore Color.

https://www.tutorialspoint.com/vb.net/vb.net_text_files.htm
https://www.tutorialspoint.com/vb.net/vb.net_binary_files.htm
https://www.tutorialspoint.com/vb.net/vb.net_windows_file_system.htm

COPYRIGHT FIMT 2020 Page 209

Properties can be set at design time by using the Properties window or at run time by using

statements in the program code.

Object. Property = Value

Where

 Object is the name of the object you're customizing.

 Property is the characteristic you want to change.

 Value is the new property setting.

For example,

Form1.Caption = "Hello"

You can set any of the form properties using Properties Window. Most of the properties can be set

or read during application execution. You can refer to Microsoft documentation for a complete list

of properties associated with different controls and restrictions applied to them.

Control Methods

A method is a procedure created as a member of a class and they cause an object to do something.

Methods are used to access or manipulate the characteristics of an object or a variable. There are

mainly two categories of methods you will use in your classes:

 If you are using a control such as one of those provided by the Toolbox, you can call any of its

public methods. The requirements of such a method depend on the class being used.

 If none of the existing methods can perform your desired task, you can add a method to a class.

For example, the MessageBox control has a method named Show, which is called in the code

snippet below:

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

 Handles Button1.Click

 MessageBox.Show("Hello, World")

 End Sub

End Class

Control Events

An event is a signal that informs an application that something important has occurred. For

example, when a user clicks a control on a form, the form can raise a Click event and call a

procedure that handles the event. There are various types of events associated with a Form like

click, double click, close, load, resize, etc.

COPYRIGHT FIMT 2020 Page 210

Following is the default structure of a form Load event handler subroutine. You can see this code

by double clicking the code which will give you a complete list of the all events associated with

Form control:

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 'event handler code goes here

End Sub

Here, Handles MyBase.Load indicates that Form1_Load() subroutine handles Load event.

Similar way, you can check stub code for click, double click. If you want to initialize some

variables like properties, etc., then you will keep such code inside Form1_Load() subroutine. Here,

important point to note is the name of the event handler, which is by default Form1_Load, but you

can change this name based on your naming convention you use in your application programming.

Basic Controls

VB.Net provides a huge variety of controls that help you to create rich user interface.

Functionalities of all these controls are defined in the respective control classes. The control classes

are defined in the System.Windows.Forms namespace.

The following table lists some of the commonly used controls:

S.N. Widget & Description

1 Forms
The container for all the controls that make up the user interface.

2 TextBox
It represents a Windows text box control.

3 Label
It represents a standard Windows label.

4 Button
It represents a Windows button control.

5 ListBox
It represents a Windows control to display a list of items.

6 ComboBox
It represents a Windows combo box control.

7 RadioButton

It enables the user to select a single option from a group of choices

when paired with other RadioButton controls.

8 CheckBox
It represents a Windows CheckBox.

9 PictureBox
It represents a Windows picture box control for displaying an

https://www.tutorialspoint.com/vb.net/vb.net_forms.htm
https://www.tutorialspoint.com/vb.net/vb.net_textbox.htm
https://www.tutorialspoint.com/vb.net/vb.net_label.htm
https://www.tutorialspoint.com/vb.net/vb.net_button.htm
https://www.tutorialspoint.com/vb.net/vb.net_listbox.htm
https://www.tutorialspoint.com/vb.net/vb.net_combobox.htm
https://www.tutorialspoint.com/vb.net/vb.net_radio_button.htm
https://www.tutorialspoint.com/vb.net/vb.net_checkbox.htm
https://www.tutorialspoint.com/vb.net/vb.net_picturebox.htm

COPYRIGHT FIMT 2020 Page 211

image.

10 ProgressBar

It represents a Windows progress bar control.

11 ScrollBar

It Implements the basic functionality of a scroll bar control.

12 DateTimePicker

It represents a Windows control that allows the user to select a date

and a time and to display the date and time with a specified format.

13 TreeView
It displays a hierarchical collection of labeled items, each

represented by a TreeNode.

14 ListView

It represents a Windows list view control, which displays a

collection of items that can be displayed using one of four different

views.

VB.Net - Dialog Boxes

There are many built-in dialog boxes to be used in Windows forms for various tasks like opening

and saving files, printing a page, providing choices for colors, fonts, page setup, etc., to the user of

an application. These built-in dialog boxes reduce the developer's time and workload.

All of these dialog box control classes inherit from the CommonDialog class and override

the RunDialog() function of the base class to create the specific dialog box.

The RunDialog() function is automatically invoked when a user of a dialog box calls

its ShowDialog() function.

The ShowDialog method is used to display all the dialog box controls at run-time. It returns a

value of the type of DialogResult enumeration. The values of DialogResult enumeration are:

 Abort - returns DialogResult.Abort value, when user clicks an Abort button.

 Cancel- returns DialogResult.Cancel, when user clicks a Cancel button.

 Ignore - returns DialogResult.Ignore, when user clicks an Ignore button.

 No - returns DialogResult.No, when user clicks a No button.

 None - returns nothing and the dialog box continues running.

 OK - returns DialogResult.OK, when user clicks an OK button

 Retry - returns DialogResult.Retry , when user clicks an Retry button

 Yes - returns DialogResult.Yes, when user clicks an Yes button

The following diagram shows the common dialog class inheritance:

https://www.tutorialspoint.com/vb.net/vb.net_progress_bar.htm
https://www.tutorialspoint.com/vb.net/vb.net_scrollbar.htm
https://www.tutorialspoint.com/vb.net/vb.net_date_time_picker.htm
https://www.tutorialspoint.com/vb.net/vb.net_treeview.htm
https://www.tutorialspoint.com/vb.net/vb.net_listview.htm

COPYRIGHT FIMT 2020 Page 212

All these above-mentioned classes have corresponding controls that could be added from the

Toolbox during design time. You can include relevant functionality of these classes to your

application, either by instantiating the class programmatically or by using relevant controls. When

you double click any of the dialog controls in the toolbox or drag the control onto the form, it

appears in the Component tray at the bottom of the Windows Forms Designer, they do not directly

show up on the form. The following table lists the commonly used dialog box controls. Click the

following links to check their detail:

S.N. Control & Description

1 ColorDialog
It represents a common dialog box that displays available colors along with controls

that enable the user to define custom colors.

2 FontDialog

It prompts the user to choose a font from among those installed on the local computer

and lets the user select the font, font size, and color.

3 OpenFileDialog
It prompts the user to open a file and allows the user to select a file to open.

4 SaveFileDialog

It prompts the user to select a location for saving a file and allows the user to specify

the name of the file to save data.

5 PrintDialog
It lets the user to print documents by selecting a printer and choosing which sections of

the document to print from a Windows Forms application.

VB.Net - Advanced Form

In this chapter, let us study the following concepts:

 Adding menus and sub menus in an application

 Adding the cut, copy and paste functionalities in a form

 Anchoring and docking controls in a form

https://www.tutorialspoint.com/vb.net/vb.net_color_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_font_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_openfile_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_savefile_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_print_dialog.htm

COPYRIGHT FIMT 2020 Page 213

 Modal forms

Adding Menus and Sub Menus in an Application

Traditionally, the Menu, MainMenu, ContextMenu, and MenuItem classes were used for adding

menus, sub-menus and context menus in a Windows application.

Now,the MenuStrip,the ToolStripMenuItem, ToolStripDropDown and ToolStripDropDownM

enu controls replace and add functionality to the Menu-related controls of previous versions.

However, the old control classes are retained for both backward compatibility and future use.

Let us create a typical windows main menu bar and sub menus using the old version controls first

since these controls are still much used in old applications.

Following is an example, which shows how we create a menu bar with menu items: File, Edit,

View and Project. The File menu has the sub menus New, Open and Save.

Let's double click on the Form and put the following code in the opened window.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 'defining the main menu bar

 Dim mnuBar As New MainMenu()

 'defining the menu items for the main menu bar

 Dim myMenuItemFile As New MenuItem("&File")

 Dim myMenuItemEdit As New MenuItem("&Edit")

 Dim myMenuItemView As New MenuItem("&View")

 Dim myMenuItemProject As New MenuItem("&Project")

 'adding the menu items to the main menu bar

 mnuBar.MenuItems.Add(myMenuItemFile)

 mnuBar.MenuItems.Add(myMenuItemEdit)

 mnuBar.MenuItems.Add(myMenuItemView)

 mnuBar.MenuItems.Add(myMenuItemProject)

 ' defining some sub menus

 Dim myMenuItemNew As New MenuItem("&New")

 Dim myMenuItemOpen As New MenuItem("&Open")

 Dim myMenuItemSave As New MenuItem("&Save")

 'add sub menus to the File menu

 myMenuItemFile.MenuItems.Add(myMenuItemNew)

 myMenuItemFile.MenuItems.Add(myMenuItemOpen)

 myMenuItemFile.MenuItems.Add(myMenuItemSave)

 'add the main menu to the form

COPYRIGHT FIMT 2020 Page 214

 Me.Menu = mnuBar

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

Windows Forms contain a rich set of classes for creating your own custom menus with modern

appearance, look and feel. The MenuStrip, ToolStripMenuItem, ContextMenuStrip controls are

used to create menu bars and context menus efficiently.

Click the following links to check their details:

S.N. Control & Description

1 MenuStrip
It provides a menu system for a form.

2 ToolStripMenuItem
It represents a selectable option displayed on

a MenuStrip or ContextMenuStrip. The ToolStripMenuItem control

replaces and adds functionality to the MenuItem control of previous

versions.

2 ContextMenuStrip
It represents a shortcut menu.

Adding the Cut, Copy and Paste Functionalities in a Form

The methods exposed by the ClipBoard class are used for adding the cut, copy and paste

functionalities in an application. The ClipBoard class provides methods to place data on and

retrieve data from the system Clipboard.

It has the following commonly used methods:

S.N Method Name & Description

1 Clear

Removes all data from the Clipboard.

2 ContainsData
Indicates whether there is data on the Clipboard that is in the specified

format or can be converted to that format.

https://www.tutorialspoint.com/vb.net/vb.net_menustrip.htm
https://www.tutorialspoint.com/vb.net/vb.net_toolstrip_menuitem.htm
https://www.tutorialspoint.com/vb.net/vb.net_context_menustrip.htm

COPYRIGHT FIMT 2020 Page 215

3 ContainsImage
Indicates whether there is data on the Clipboard that is in the Bitmap

format or can be converted to that format.

4 ContainsText

Indicates whether there is data on the Clipboard in the Text or

UnicodeText format, depending on the operating system.

5 GetData
Retrieves data from the Clipboard in the specified format.

6 GetDataObject
Retrieves the data that is currently on the system Clipboard.

7 GetImage
Retrieves an image from the Clipboard.

8 GetText
Retrieves text data from the Clipboard in the Text or UnicodeText

format, depending on the operating system.

9 GetText(TextDataFormat)
Retrieves text data from the Clipboard in the format indicated by the

specified TextDataFormat value.

10 SetData

Clears the Clipboard and then adds data in the specified format.

11 SetText(String)

Clears the Clipboard and then adds text data in the Text or UnicodeText

format, depending on the operating system.

Following is an example, which shows how we cut, copy and paste data using methods of the

Clipboard class. Take the following steps:

 Add a rich text box control and three button controls on the form.

 Change the text property of the buttons to Cut, Copy and Paste, respectively.

 Double click on the buttons to add the following code in the code editor:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 Clipboard.SetDataObject(RichTextBox1.SelectedText)

 RichTextBox1.SelectedText = ""

COPYRIGHT FIMT 2020 Page 216

 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) _

 Handles Button2.Click

 Clipboard.SetDataObject(RichTextBox1.SelectedText)

 End Sub

 Private Sub Button3_Click(sender As Object, e As EventArgs) _

 Handles Button3.Click

 Dim iData As IDataObject

 iData = Clipboard.GetDataObject()

 If (iData.GetDataPresent(DataFormats.Text)) Then

 RichTextBox1.SelectedText = iData.GetData(DataFormats.Text)

 Else

 RichTextBox1.SelectedText = " "

 End If

 End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

Enter some text and check how the buttons work.

Anchoring and Docking Controls in a Form

Anchoring allows you to set an anchor position for a control to the edges of its container control,

for example, the form. The Anchor property of the Control class allows you to set values of this

property. The Anchor property gets or sets the edges of the container to which a control is bound

and determines how a control is resized with its parent. When you anchor a control to a form, the

control maintains its distance from the edges of the form and its anchored position, when the form

is resized. You can set the Anchor property values of a control from the Properties window:

COPYRIGHT FIMT 2020 Page 217

For example, let us add a Button control on a form and set its anchor property to Bottom, Right.

Run this form to see the original position of the Button control with respect to the form.

Now, when you stretch the form, the distance between the Button and the bottom right corner of

the form remains same.

Docking of a control means docking it to one of the edges of its container. In docking, the control

fills certain area of the container completely. The Dock property of the Control class does this. The

Dock property gets or sets which control borders are docked to its parent control and determines

how a control is resized with its parent.

You can set the Dock property values of a control from the Properties window:

COPYRIGHT FIMT 2020 Page 218

For example, let us add a Button control on a form and set its Dock property to Bottom. Run this

form to see the original position of the Button control with respect to the form.

Now, when you stretch the form, the Button resizes itself with the form.

Modal Forms

Modal Forms are those forms that need to be closed or hidden before you can continue working

with the rest of the application. All dialog boxes are modal forms. A MessageBox is also a modal

form.

You can call a modal form by two ways:

 Calling the ShowDialog method

 Calling the Show method

Let us take up an example in which we will create a modal form, a dialog box. Take the following

steps:

 Add a form, Form1 to your application, and add two labels and a button control to Form1

 Change the text properties of the first label and the button to 'Welcome to Tutorials Point' and

'Enter your Name', respectively. Keep the text properties of the second label as blank.

 Add a new Windows Form, Form2, and add two buttons, one label, and a text box to Form2.

 Change the text properties of the buttons to OK and Cancel, respectively. Change the text

properties of the label to 'Enter your name:'.

 Set the FormBorderStyle property of Form2 to FixedDialog, for giving it a dialog box border.

COPYRIGHT FIMT 2020 Page 219

 Set the ControlBox property of Form2 to False.

 Set the ShowInTaskbar property of Form2 to False.

 Set the DialogResult property of the OK button to OK and the Cancel button to Cancel.

Add the following code snippets in the Form2_Load method of Form2:

Private Sub Form2_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 AcceptButton = Button1

 CancelButton = Button2

End Sub

Add the following code snippets in the Button1_Click method of Form1:

Private Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 Dim frmSecond As Form2 = New Form2()

 If frmSecond.ShowDialog() = DialogResult.OK Then

 Label2.Text = frmSecond.TextBox1.Text

 End If

End Sub

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

Clicking on the 'Enter your Name' button displays the second form:

COPYRIGHT FIMT 2020 Page 220

Clicking on the OK button takes the control and information back from the modal form to the

previous form:

VB.Net - Event Handling

Events are basically a user action like key press, clicks, mouse movements, etc., or some

occurrence like system generated notifications. Applications need to respond to events when they

occur. Clicking on a button, or entering some text in a text box, or clicking on a menu item, all are

examples of events. An event is an action that calls a function or may cause another event.

Event handlers are functions that tell how to respond to an event.

VB.Net is an event-driven language. There are mainly two types of events:

 Mouse events

 Keyboard events

Handling Mouse Events

Mouse events occur with mouse movements in forms and controls. Following are the various

mouse events related with a Control class:

 MouseDown - it occurs when a mouse button is pressed

 MouseEnter - it occurs when the mouse pointer enters the control

 MouseHover - it occurs when the mouse pointer hovers over the control

 MouseLeave - it occurs when the mouse pointer leaves the control

 MouseMove - it occurs when the mouse pointer moves over the control

 MouseUp - it occurs when the mouse pointer is over the control and the mouse button is released

 MouseWheel - it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs. The

MouseEventArgs object is used for handling mouse events. It has the following properties:

COPYRIGHT FIMT 2020 Page 221

 Buttons - indicates the mouse button pressed

 Clicks - indicates the number of clicks

 Delta - indicates the number of detents the mouse wheel rotated

 X - indicates the x-coordinate of mouse click

 Y - indicates the y-coordinate of mouse click

Example

Following is an example, which shows how to handle mouse events. Take the following steps:

 Add three labels, three text boxes and a button control in the form.

 Change the text properties of the labels to - Customer ID, Name and Address, respectively.

 Change the name properties of the text boxes to txtID, txtName and txtAddress, respectively.

 Change the text property of the button to 'Submit'.

 Add the following code in the code editor window:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 End Sub

 Private Sub txtID_MouseEnter(sender As Object, e As EventArgs)_

 Handles txtID.MouseEnter

 'code for handling mouse enter on ID textbox

 txtID.BackColor = Color.CornflowerBlue

 txtID.ForeColor = Color.White

 End Sub

 Private Sub txtID_MouseLeave(sender As Object, e As EventArgs) _

 Handles txtID.MouseLeave

 'code for handling mouse leave on ID textbox

 txtID.BackColor = Color.White

 txtID.ForeColor = Color.Blue

 End Sub

 Private Sub txtName_MouseEnter(sender As Object, e As EventArgs) _

 Handles txtName.MouseEnter

 'code for handling mouse enter on Name textbox

 txtName.BackColor = Color.CornflowerBlue

 txtName.ForeColor = Color.White

 End Sub

 Private Sub txtName_MouseLeave(sender As Object, e As EventArgs) _

COPYRIGHT FIMT 2020 Page 222

 Handles txtName.MouseLeave

 'code for handling mouse leave on Name textbox

 txtName.BackColor = Color.White

 txtName.ForeColor = Color.Blue

 End Sub

 Private Sub txtAddress_MouseEnter(sender As Object, e As EventArgs) _

 Handles txtAddress.MouseEnter

 'code for handling mouse enter on Address textbox

 txtAddress.BackColor = Color.CornflowerBlue

 txtAddress.ForeColor = Color.White

 End Sub

 Private Sub txtAddress_MouseLeave(sender As Object, e As EventArgs) _

 Handles txtAddress.MouseLeave

 'code for handling mouse leave on Address textbox

 txtAddress.BackColor = Color.White

 txtAddress.ForeColor = Color.Blue

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 MsgBox("Thank you " & txtName.Text & ", for your kind cooperation")

 End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

Try to enter text in the text boxes and check the mouse events:

COPYRIGHT FIMT 2020 Page 223

Handling Keyboard Events

Following are the various keyboard events related with a Control class:

 KeyDown - occurs when a key is pressed down and the control has focus

 KeyPress - occurs when a key is pressed and the control has focus

 KeyUp - occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs.

This object has the following properties:

 Alt - it indicates whether the ALT key is pressed/p>

 Control - it indicates whether the CTRL key is pressed

 Handled - it indicates whether the event is handled

 KeyCode - stores the keyboard code for the event

 KeyData - stores the keyboard data for the event

 KeyValue - stores the keyboard value for the event

 Modifiers - it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

 Shift - it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs.

This object has the following properties:

 Handled - indicates if the KeyPress event is handled

 KeyChar - stores the character corresponding to the key pressed

Example

Let us continue with the previous example to show how to handle keyboard events. The code will

verify that the user enters some numbers for his customer ID and age.

 Add a label with text Property as 'Age' and add a corresponding text box named txtAge.

 Add the following codes for handling the KeyUP events of the text box txtID.

 Private Sub txtID_KeyUP(sender As Object, e As KeyEventArgs) _

 Handles txtID.KeyUp

 If (Not Char.IsNumber(ChrW(e.KeyCode))) Then

 MessageBox.Show("Enter numbers for your Customer ID")

 txtID.Text = " "

COPYRIGHT FIMT 2020 Page 224

 End If

End Sub

 Add the following codes for handling the KeyUP events of the text box txtID.

 Private Sub txtAge_KeyUP(sender As Object, e As KeyEventArgs) _

 Handles txtAge.KeyUp

 If (Not Char.IsNumber(ChrW(e.keyCode))) Then

 MessageBox.Show("Enter numbers for age")

 txtAge.Text = " "

 End If

End Sub

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

If you leave the text for age or ID as blank or enter some non-numeric data, it gives a warning

message box and clears the respective text:

VB.Net - Regular Expressions

A regular expression is a pattern that could be matched against an input text. The .Net framework

provides a regular expression engine that allows such matching. A pattern consists of one or more

character literals, operators, or constructs.

COPYRIGHT FIMT 2020 Page 225

Constructs for Defining Regular Expressions

There are various categories of characters, operators, and constructs that lets you to define regular

expressions. Click the follwoing links to find these constructs.

 Character escapes

 Character classes

 Anchors

 Grouping constructs

 Quantifiers

 Backreference constructs

 Alternation constructs

 Substitutions

 Miscellaneous constructs

The Regex Class

The Regex class is used for representing a regular expression.

The Regex class has the following commonly used methods:

S.N Methods & Description

1 Public Function IsMatch (input As String) As Boolean
Indicates whether the regular expression specified in the Regex

constructor finds a match in a specified input string.

2 Public Function IsMatch (input As String, startat As Integer)

As Boolean
Indicates whether the regular expression specified in the Regex

constructor finds a match in the specified input string, beginning at

the specified starting position in the string.

3 Public Shared Function IsMatch (input As String, pattern As

String) As Boolean

Indicates whether the specified regular expression finds a match in

the specified input string.

4 Public Function Matches (input As String) As MatchCollection
Searches the specified input string for all occurrences of a regular

expression.

5 Public Function Replace (input As String, replacement As

String) As String

In a specified input string, replaces all strings that match a regular

expression pattern with a specified replacement string.

6 Public Function Split (input As String) As String()
Splits an input string into an array of substrings at the positions

defined by a regular expression pattern specified in the Regex

constructor.

For the complete list of methods and properties, please consult Microsoft documentation.

https://www.tutorialspoint.com/vb.net/vb.net_character_escapes.htm
https://www.tutorialspoint.com/vb.net/vb.net_character_classes.htm
https://www.tutorialspoint.com/vb.net/vb.net_anchors.htm
https://www.tutorialspoint.com/vb.net/vb.net_grouping_constructs.htm
https://www.tutorialspoint.com/vb.net/vb.net_quantifiers.htm
https://www.tutorialspoint.com/vb.net/vb.net_backreference_constructs.htm
https://www.tutorialspoint.com/vb.net/vb.net_alternation_constructs.htm
https://www.tutorialspoint.com/vb.net/vb.net_substitutions.htm
https://www.tutorialspoint.com/vb.net/vb.net_miscellaneous_constructs.htm

COPYRIGHT FIMT 2020 Page 226

Example 1

The following example matches words that start with 'S':

Imports System.Text.RegularExpressions

Module regexProg

 Sub showMatch(ByVal text As String, ByVal expr As String)

 Console.WriteLine("The Expression: " + expr)

 Dim mc As MatchCollection = Regex.Matches(text, expr)

 Dim m As Match

 For Each m In mc

 Console.WriteLine(m)

 Next m

 End Sub

 Sub Main()

 Dim str As String = "A Thousand Splendid Suns"

 Console.WriteLine("Matching words that start with 'S': ")

 showMatch(str, "\bS\S*")

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Matching words that start with 'S':

The Expression: \bS\S*

Splendid

Suns

Example 2

The following example matches words that start with 'm' and ends with 'e':

Imports System.Text.RegularExpressions

Module regexProg

 Sub showMatch(ByVal text As String, ByVal expr As String)

 Console.WriteLine("The Expression: " + expr)

 Dim mc As MatchCollection = Regex.Matches(text, expr)

 Dim m As Match

 For Each m In mc

 Console.WriteLine(m)

 Next m

COPYRIGHT FIMT 2020 Page 227

 End Sub

 Sub Main()

 Dim str As String = "make a maze and manage to measure it"

 Console.WriteLine("Matching words that start with 'm' and ends with 'e': ")

 showMatch(str, "\bm\S*e\b")

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Matching words start with 'm' and ends with 'e':

The Expression: \bm\S*e\b

make

maze

manage

measure

Example 3

This example replaces extra white space:

Imports System.Text.RegularExpressions

Module regexProg

 Sub Main()

 Dim input As String = "Hello World "

 Dim pattern As String = "\\s+"

 Dim replacement As String = " "

 Dim rgx As Regex = New Regex(pattern)

 Dim result As String = rgx.Replace(input, replacement)

 Console.WriteLine("Original String: {0}", input)

 Console.WriteLine("Replacement String: {0}", result)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Original String: Hello World

Replacement String: Hello World

COPYRIGHT FIMT 2020 Page 228

VB.Net - Database Access

Applications communicate with a database, firstly, to retrieve the data stored there and present it in

a user-friendly way, and secondly, to update the database by inserting, modifying and deleting data.

Microsoft ActiveX Data Objects.Net (ADO.Net) is a model, a part of the .Net framework that is

used by the .Net applications for retrieving, accessing and updating data.

ADO.Net Object Model

ADO.Net object model is nothing but the structured process flow through various components. The

object model can be pictorially described as:

The data residing in a data store or database is retrieved through the data provider. Various

components of the data provider retrieve data for the application and update data.

An application accesses data either through a dataset or a data reader.

 Datasets store data in a disconnected cache and the application retrieves data from it.

 Data readers provide data to the application in a read-only and forward-only mode.

Data Provider

A data provider is used for connecting to a database, executing commands and retrieving data,

storing it in a dataset, reading the retrieved data and updating the database.

The data provider in ADO.Net consists of the following four objects:

S.N Objects & Description

1 Connection
This component is used to set up a connection with a data source.

2 Command
A command is a SQL statement or a stored procedure used to

retrieve, insert, delete or modify data in a data source.

3 DataReader

Data reader is used to retrieve data from a data source in a read-only

and forward-only mode.

4 DataAdapter

This is integral to the working of ADO.Net since data is transferred

to and from a database through a data adapter. It retrieves data from

a database into a dataset and updates the database. When changes

COPYRIGHT FIMT 2020 Page 229

are made to the dataset, the changes in the database are actually

done by the data adapter.

There are following different types of data providers included in ADO.Net

 The .Net Framework data provider for SQL Server - provides access to Microsoft SQL Server.

 The .Net Framework data provider for OLE DB - provides access to data sources exposed by using

OLE DB.

 The .Net Framework data provider for ODBC - provides access to data sources exposed by ODBC.

 The .Net Framework data provider for Oracle - provides access to Oracle data source.

 The EntityClient provider - enables accessing data through Entity Data Model (EDM) applications.

DataSet

DataSet is an in-memory representation of data. It is a disconnected, cached set of records that are

retrieved from a database. When a connection is established with the database, the data adapter

creates a dataset and stores data in it. After the data is retrieved and stored in a dataset, the

connection with the database is closed. This is called the 'disconnected architecture'. The dataset

works as a virtual database containing tables, rows, and columns.

The following diagram shows the dataset object model:

The DataSet class is present in the System.Data namespace. The following table describes all the

components of DataSet:

S.N Components & Description

1 DataTableCollection

It contains all the tables retrieved from the data source.

2 DataRelationCollection

It contains relationships and the links between tables in a data set.

3 ExtendedProperties

It contains additional information, like the SQL statement for

retrieving data, time of retrieval, etc.

4 DataTable

It represents a table in the DataTableCollection of a dataset. It

consists of the DataRow and DataColumn objects. The DataTable

objects are case-sensitive.

5 DataRelation

It represents a relationship in the DataRelationshipCollection of the

dataset. It is used to relate two DataTable objects to each other

COPYRIGHT FIMT 2020 Page 230

through the DataColumn objects.

6 DataRowCollection

It contains all the rows in a DataTable.

7 DataView

It represents a fixed customized view of a DataTable for sorting,

filtering, searching, editing and navigation.

8 PrimaryKey
It represents the column that uniquely identifies a row in a

DataTable.

9 DataRow

It represents a row in the DataTable. The DataRow object and its

properties and methods are used to retrieve, evaluate, insert, delete,

and update values in the DataTable. The NewRow method is used to

create a new row and the Add method adds a row to the table.

10 DataColumnCollection
It represents all the columns in a DataTable.

11 DataColumn

It consists of the number of columns that comprise a DataTable.

Connecting to a Database

The .Net Framework provides two types of Connection classes:

 SqlConnection - designed for connecting to Microsoft SQL Server.

 OleDbConnection - designed for connecting to a wide range of databases, like Microsoft Access

and Oracle.

Example 1

We have a table stored in Microsoft SQL Server, named Customers, in a database named testDB.

Please consult 'SQL Server' tutorial for creating databases and database tables in SQL Server.

Let us connect to this database. Take the following steps:

 Select TOOLS -> Connect to Database

 Select a server name and the database name in the Add Connection dialog box.

COPYRIGHT FIMT 2020 Page 231

 Click on the Test Connection button to check if the connection succeeded.

 Add a DataGridView on the form.

 Click on the Choose Data Source combo box.

 Click on the Add Project Data Source link.

 This opens the Data Source Configuration Wizard.

 Select Database as the data source type

COPYRIGHT FIMT 2020 Page 232

 Choose DataSet as the database model.

 Choose the connection already set up.

 Save the connection string.

 Choose the database object, Customers table in our example, and click the Finish button.

COPYRIGHT FIMT 2020 Page 233

 Select the Preview Data link to see the data in the Results grid:

When the application is run using Start button available at the Microsoft Visual Studio tool bar, it

will show the following window:

Example 2

In this example, let us access data in a DataGridView control using code. Take the following steps:

 Add a DataGridView control and a button in the form.

 Change the text of the button control to 'Fill'.

 Double click the button control to add the required code for the Click event of the button, as shown

below:

Imports System.Data.SqlClient

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 'TODO: This line of code loads data into the 'TestDBDataSet.CUSTOMERS' table. You can

move, or remove it, as needed.

 Me.CUSTOMERSTableAdapter.Fill(Me.TestDBDataSet.CUSTOMERS)

COPYRIGHT FIMT 2020 Page 234

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim connection As SqlConnection = New sqlconnection()

 connection.ConnectionString = "Data Source=KABIR-DESKTOP; _

 Initial Catalog=testDB;Integrated Security=True"

 connection.Open()

 Dim adp As SqlDataAdapter = New SqlDataAdapter _

 ("select * from Customers", connection)

 Dim ds As DataSet = New DataSet()

 adp.Fill(ds)

 DataGridView1.DataSource = ds.Tables(0)

 End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

Clicking the Fill button displays the table on the data grid view control:

Creating Table, Columns and Rows

We have discussed that the DataSet components like DataTable, DataColumn and DataRow allow

us to create tables, columns and rows, respectively.

The following example demonstrates the concept:

COPYRIGHT FIMT 2020 Page 235

Example 3

So far, we have used tables and databases already existing in our computer. In this example, we

will create a table, add columns, rows and data into it and display the table using a DataGridView

object.

Take the following steps:

 Add a DataGridView control and a button in the form.

 Change the text of the button control to 'Fill'.

 Add the following code in the code editor.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 End Sub

 Private Function CreateDataSet() As DataSet

 'creating a DataSet object for tables

 Dim dataset As DataSet = New DataSet()

 ' creating the student table

 Dim Students As DataTable = CreateStudentTable()

 dataset.Tables.Add(Students)

 Return dataset

 End Function

 Private Function CreateStudentTable() As DataTable

 Dim Students As DataTable

 Students = New DataTable("Student")

 ' adding columns

 AddNewColumn(Students, "System.Int32", "StudentID")

 AddNewColumn(Students, "System.String", "StudentName")

 AddNewColumn(Students, "System.String", "StudentCity")

 ' adding rows

 AddNewRow(Students, 1, "Zara Ali", "Kolkata")

 AddNewRow(Students, 2, "Shreya Sharma", "Delhi")

 AddNewRow(Students, 3, "Rini Mukherjee", "Hyderabad")

 AddNewRow(Students, 4, "Sunil Dubey", "Bikaner")

 AddNewRow(Students, 5, "Rajat Mishra", "Patna")

 Return Students

 End Function

COPYRIGHT FIMT 2020 Page 236

 Private Sub AddNewColumn(ByRef table As DataTable, _

 ByVal columnType As String, ByVal columnName As String)

 Dim column As DataColumn = _

 table.Columns.Add(columnName, Type.GetType(columnType))

 End Sub

 'adding data into the table

 Private Sub AddNewRow(ByRef table As DataTable, ByRef id As Integer,_

 ByRef name As String, ByRef city As String)

 Dim newrow As DataRow = table.NewRow()

 newrow("StudentID") = id

 newrow("StudentName") = name

 newrow("StudentCity") = city

 table.Rows.Add(newrow)

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim ds As New DataSet

 ds = CreateDataSet()

 DataGridView1.DataSource = ds.Tables("Student")

 End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

Clicking the Fill button displays the table on the data grid view control:

COPYRIGHT FIMT 2020 Page 237

VB.Net - Excel Sheet

VB.Net provides support for interoperability between the COM object model of Microsoft Excel

2010 and your application.

To avail this interoperability in your application, you need to import the

namespace Microsoft.Office.Interop.Excel in your Windows Form Application.

Creating an Excel Application from VB.Net

Let's start with creating a Window Forms Application by following the following steps in

Microsoft Visual Studio: File -> New Project -> Windows Forms Applications

Finally, select OK, Microsoft Visual Studio creates your project and displays following Form1.

Insert a Button control Button1 in the form.

Add a reference to Microsoft Excel Object Library to your project. To do this:

 Select Add Reference from the Project Menu.

 On the COM tab, locate Microsoft Excel Object Library and then click Select.

 Click OK.

Double click the code window and populate the Click event of Button1, as shown below.

' Add the following code snippet on top of Form1.vb

Imports Excel = Microsoft.Office.Interop.Excel

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim appXL As Excel.Application

 Dim wbXl As Excel.Workbook

 Dim shXL As Excel.Worksheet

COPYRIGHT FIMT 2020 Page 238

 Dim raXL As Excel.Range

 ' Start Excel and get Application object.

 appXL = CreateObject("Excel.Application")

 appXL.Visible = True

 ' Add a new workbook.

 wbXl = appXL.Workbooks.Add

 shXL = wbXl.ActiveSheet

 ' Add table headers going cell by cell.

 shXL.Cells(1, 1).Value = "First Name"

 shXL.Cells(1, 2).Value = "Last Name"

 shXL.Cells(1, 3).Value = "Full Name"

 shXL.Cells(1, 4).Value = "Specialization"

 ' Format A1:D1 as bold, vertical alignment = center.

 With shXL.Range("A1", "D1")

 .Font.Bold = True

 .VerticalAlignment = Excel.XlVAlign.xlVAlignCenter

 End With

 ' Create an array to set multiple values at once.

 Dim students(5, 2) As String

 students(0, 0) = "Zara"

 students(0, 1) = "Ali"

 students(1, 0) = "Nuha"

 students(1, 1) = "Ali"

 students(2, 0) = "Arilia"

 students(2, 1) = "RamKumar"

 students(3, 0) = "Rita"

 students(3, 1) = "Jones"

 students(4, 0) = "Umme"

 students(4, 1) = "Ayman"

 ' Fill A2:B6 with an array of values (First and Last Names).

 shXL.Range("A2", "B6").Value = students

 ' Fill C2:C6 with a relative formula (=A2 & " " & B2).

 raXL = shXL.Range("C2", "C6")

 raXL.Formula = "=A2 & "" "" & B2"

 ' Fill D2:D6 values.

 With shXL

COPYRIGHT FIMT 2020 Page 239

 .Cells(2, 4).Value = "Biology"

 .Cells(3, 4).Value = "Mathmematics"

 .Cells(4, 4).Value = "Physics"

 .Cells(5, 4).Value = "Mathmematics"

 .Cells(6, 4).Value = "Arabic"

 End With

 ' AutoFit columns A:D.

 raXL = shXL.Range("A1", "D1")

 raXL.EntireColumn.AutoFit()

 ' Make sure Excel is visible and give the user control

 ' of Excel's lifetime.

 appXL.Visible = True

 appXL.UserControl = True

 ' Release object references.

 raXL = Nothing

 shXL = Nothing

 wbXl = Nothing

 appXL.Quit()

 appXL = Nothing

 Exit Sub

Err_Handler:

 MsgBox(Err.Description, vbCritical, "Error: " & Err.Number)

 End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

Clicking on the Button would display the following excel sheet. You will be asked to save the

workbook.

COPYRIGHT FIMT 2020 Page 240

VB.Net - Send Email

VB.Net allows sending e-mails from your application. The System.Net.Mail namespace contains

classes used for sending e-mails to a Simple Mail Transfer Protocol (SMTP) server for delivery.

The following table lists some of these commonly used classes:

S.N Class Description

1 Attachment Represents an attachment to an e-mail.

2 AttachmentCollection Stores attachments to be sent as part of

an e-mail message.

3 MailAddress Represents the address of an electronic

mail sender or recipient.

4 MailAddressCollection Stores e-mail addresses that are

associated with an e-mail message.

5 MailMessage Represents an e-mail message that can

be sent using the SmtpClient class.

6 SmtpClient Allows applications to send e-mail by

using the Simple Mail Transfer

Protocol (SMTP).

7 SmtpException Represents the exception that is

thrown when the SmtpClient is not

able to complete a Send or SendAsync

operation.

The SmtpClient Class

The SmtpClient class allows applications to send e-mail by using the Simple Mail Transfer

Protocol (SMTP).

Following are some commonly used properties of the SmtpClient class:

S.N Property Description

1 ClientCertificates Specifies which certificates should be

used to establish the Secure Sockets

Layer (SSL) connection.

2 Credentials Gets or sets the credentials used to

authenticate the sender.

COPYRIGHT FIMT 2020 Page 241

3 EnableSsl Specifies whether the SmtpClient uses

Secure Sockets Layer (SSL) to encrypt

the connection.

4 Host Gets or sets the name or IP address of

the host used for SMTP transactions.

5 Port Gets or sets the port used for SMTP

transactions.

6 Timeout Gets or sets a value that specifies the

amount of time after which a

synchronous Send call times out.

7 UseDefaultCredentials Gets or sets a Boolean value that

controls whether the

DefaultCredentials are sent with

requests.

Following are some commonly used methods of the SmtpClient class:

S.N Method & Description

1 Dispose
Sends a QUIT message to the SMTP server, gracefully ends the TCP

connection, and releases all resources used by the current instance of

the SmtpClient class.

2 Dispose(Boolean)
Sends a QUIT message to the SMTP server, gracefully ends the TCP

connection, releases all resources used by the current instance of the

SmtpClient class, and optionally disposes of the managed resources.

3 OnSendCompleted
Raises the SendCompleted event.

4 Send(MailMessage)

Sends the specified message to an SMTP server for delivery.

5 Send(String, String, String, String)

Sends the specified e-mail message to an SMTP server for delivery.

The message sender, recipients, subject, and message body are

specified using String objects.

6 SendAsync(MailMessage, Object)

Sends the specified e-mail message to an SMTP server for delivery.

This method does not block the calling thread and allows the caller

to pass an object to the method that is invoked when the operation

completes.

7 SendAsync(String, String, String, String, Object)
Sends an e-mail message to an SMTP server for delivery. The

message sender, recipients, subject, and message body are specified

using String objects. This method does not block the calling thread

COPYRIGHT FIMT 2020 Page 242

and allows the caller to pass an object to the method that is invoked

when the operation completes.

8 SendAsyncCancel
Cancels an asynchronous operation to send an e-mail message.

9 SendMailAsync(MailMessage)
Sends the specified message to an SMTP server for delivery as an

asynchronous operation.

10 SendMailAsync(String, String, String, String)

Sends the specified message to an SMTP server for delivery as an

asynchronous operation. . The message sender, recipients, subject,

and message body are specified using String objects.

11 ToString

Returns a string that represents the current object.

The following example demonstrates how to send mail using the SmtpClient class. Following

points are to be noted in this respect:

 You must specify the SMTP host server that you use to send e-mail. The Host and Port properties

will be different for different host server. We will be using gmail server.

 You need to give the Credentials for authentication, if required by the SMTP server.

 You should also provide the email address of the sender and the e-mail address or addresses of the

recipients using the MailMessage.From and MailMessage.To properties, respectively.

 You should also specify the message content using the MailMessage.Body property.

Example

In this example, let us create a simple application that would send an e-mail. Take the following

steps:

 Add three labels, three text boxes and a button control in the form.

 Change the text properties of the labels to - 'From', 'To:' and 'Message:' respectively.

 Change the name properties of the texts to txtFrom, txtTo and txtMessage respectively.

 Change the text property of the button control to 'Send'

 Add the following code in the code editor.

Imports System.Net.Mail

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Try

COPYRIGHT FIMT 2020 Page 243

 Dim Smtp_Server As New SmtpClient

 Dim e_mail As New MailMessage()

 Smtp_Server.UseDefaultCredentials = False

 Smtp_Server.Credentials = New Net.NetworkCredential("username@gmail.com",

"password")

 Smtp_Server.Port = 587

 Smtp_Server.EnableSsl = True

 Smtp_Server.Host = "smtp.gmail.com"

 e_mail = New MailMessage()

 e_mail.From = New MailAddress(txtFrom.Text)

 e_mail.To.Add(txtTo.Text)

 e_mail.Subject = "Email Sending"

 e_mail.IsBodyHtml = False

 e_mail.Body = txtMessage.Text

 Smtp_Server.Send(e_mail)

 MsgBox("Mail Sent")

 Catch error_t As Exception

 MsgBox(error_t.ToString)

 End Try

 End Sub

You must provide your gmail address and real password for credentials.

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window, which you will use to send your e-mails, try it

yourself.

VB.Net - XML Processing

The Extensible Markup Language (XML) is a markup language much like HTML or SGML. This

is recommended by the World Wide Web Consortium and available as an open standard.

COPYRIGHT FIMT 2020 Page 244

The System.Xml namespace in the .Net Framework contains classes for processing XML

documents. Following are some of the commonly used classes in the System.Xml namespace.

S.N Class Description

1 XmlAttribute Represents an attribute. Valid and default values

for the attribute are defined in a document type

definition (DTD) or schema.

2 XmlCDataSection Represents a CDATA section.

3 XmlCharacterData Provides text manipulation methods that are used

by several classes.

4 XmlComment Represents the content of an XML comment.

5 XmlConvert Encodes and decodes XML names and provides

methods for converting between common language

runtime types and XML Schema definition

language (XSD) types. When converting data

types, the values returned are locale independent.

6 XmlDeclaration Represents the XML declaration node <?xml

version='1.0'...?>.

7 XmlDictionary Implements a dictionary used to optimize Windows

Communication Foundation (WCF)'s XML

reader/writer implementations.

8 XmlDictionaryReader An abstract class that the Windows Communication

Foundation (WCF) derives from XmlReader to do

serialization and deserialization.

9 XmlDictionaryWriter Represents an abstract class that Windows

Communication Foundation (WCF) derives from

XmlWriter to do serialization and deserialization.

10 XmlDocument Represents an XML document.

11 XmlDocumentFragment Represents a lightweight object that is useful for

tree insert operations.

12 XmlDocumentType Represents the document type declaration.

13 XmlElement Represents an element.

14 XmlEntity Represents an entity declaration, such as

<!ENTITY... >.

15 XmlEntityReference Represents an entity reference node.

COPYRIGHT FIMT 2020 Page 245

16 XmlException Returns detailed information about the last

exception.

17 XmlImplementation Defines the context for a set of XmlDocument

objects.

18 XmlLinkedNode Gets the node immediately preceding or following

this node.

19 XmlNode Represents a single node in the XML document.

20 XmlNodeList Represents an ordered collection of nodes.

21 XmlNodeReader Represents a reader that provides fast, non-cached

forward only access to XML data in an XmlNode.

22 XmlNotation Represents a notation declaration, such as

<!NOTATION... >.

23 XmlParserContext Provides all the context information required by the

XmlReader to parse an XML fragment.

24 XmlProcessingInstruction Represents a processing instruction, which XML

defines to keep processor-specific information in

the text of the document.

25 XmlQualifiedName Represents an XML qualified name.

26 XmlReader Represents a reader that provides fast, noncached,

forward-only access to XML data.

27 XmlReaderSettings Specifies a set of features to support on the

XmlReader object created by the Create method.

28 XmlResolver Resolves external XML resources named by a

Uniform Resource Identifier (URI).

29 XmlSecureResolver Helps to secure another implementation of

XmlResolver by wrapping the XmlResolver object

and restricting the resources that the underlying

XmlResolver has access to.

30 XmlSignificantWhitespace Represents white space between markup in a mixed

content node or white space within an xml:space=

'preserve' scope. This is also referred to as

significant white space.

31 XmlText Represents the text content of an element or

attribute.

32 XmlTextReader Represents a reader that provides fast, non-cached,

forward-only access to XML data.

33 XmlTextWriter Represents a writer that provides a fast, non-

COPYRIGHT FIMT 2020 Page 246

cached, forward-only way of generating streams or

files containing XML data that conforms to the

W3C Extensible Markup Language (XML) 1.0 and

the Namespaces in XML recommendations.

34 XmlUrlResolver Resolves external XML resources named by a

Uniform Resource Identifier (URI).

35 XmlWhitespace Represents white space in element content.

36 XmlWriter Represents a writer that provides a fast, non-

cached, forward-only means of generating streams

or files containing XML data.

37 XmlWriterSettings Specifies a set of features to support on the

XmlWriter object created by the XmlWriter.Create

method.

XML Parser APIs

The two most basic and broadly used APIs to XML data are the SAX and DOM interfaces.

 Simple API for XML (SAX) : Here, you register callbacks for events of interest and then let the

parser proceed through the document. This is useful when your documents are large or you have

memory limitations, it parses the file as it reads it from disk, and the entire file is never stored in

memory.

 Document Object Model (DOM) API : This is World Wide Web Consortium recommendation

wherein the entire file is read into memory and stored in a hierarchical (tree-based) form to

represent all the features of an XML document.

SAX obviously can't process information as fast as DOM can when working with large files. On

the other hand, using DOM exclusively can really kill your resources, especially if used on a lot of

small files. SAX is read-only, while DOM allows changes to the XML file. Since these two

different APIs literally complement each other there is no reason why you can't use them both for

large projects.

For all our XML code examples, let's use a simple XML file movies.xml as an input:

<?xml version="1.0"?>

<collection shelf="New Arrivals">

<movie title="Enemy Behind">

 <type>War, Thriller</type>

 <format>DVD</format>

 <year>2003</year>

 <rating>PG</rating>

 <stars>10</stars>

COPYRIGHT FIMT 2020 Page 247

 <description>Talk about a US-Japan war</description>

</movie>

<movie title="Transformers">

 <type>Anime, Science Fiction</type>

 <format>DVD</format>

 <year>1989</year>

 <rating>R</rating>

 <stars>8</stars>

 <description>A schientific fiction</description>

</movie>

 <movie title="Trigun">

 <type>Anime, Action</type>

 <format>DVD</format>

 <episodes>4</episodes>

 <rating>PG</rating>

 <stars>10</stars>

 <description>Vash the Stampede!</description>

</movie>

<movie title="Ishtar">

 <type>Comedy</type>

 <format>VHS</format>

 <rating>PG</rating>

 <stars>2</stars>

 <description>Viewable boredom</description>

</movie>

</collection>

Parsing XML with SAX API

In SAX model, you use the XmlReader and XmlWriter classes to work with the XML data.

The XmlReader class is used to read XML data in a fast, forward-only and non-cached manner. It

reads an XML document or a stream.

Example 1

This example demonstrates reading XML data from the file movies.xml.

Take the following steps:

 Add the movies.xml file in the bin\Debug folder of your application.

 Import the System.Xml namespace in Form1.vb file.

COPYRIGHT FIMT 2020 Page 248

 Add a label in the form and change its text to 'Movies Galore'.

 Add three list boxes and three buttons to show the title, type and description of a movie from the

xml file.

 Add the following code using the code editor window.

Imports System.Xml

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 ListBox1().Items.Clear()

 Dim xr As XmlReader = XmlReader.Create("movies.xml")

 Do While xr.Read()

 If xr.NodeType = XmlNodeType.Element AndAlso xr.Name = "movie" Then

 ListBox1.Items.Add(xr.GetAttribute(0))

 End If

 Loop

 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click

 ListBox2().Items.Clear()

 Dim xr As XmlReader = XmlReader.Create("movies.xml")

 Do While xr.Read()

 If xr.NodeType = XmlNodeType.Element AndAlso xr.Name = "type" Then

 ListBox2.Items.Add(xr.ReadElementString)

 Else

 xr.Read()

 End If

 Loop

 End Sub

 Private Sub Button3_Click(sender As Object, e As EventArgs) Handles Button3.Click

 ListBox3().Items.Clear()

 Dim xr As XmlReader = XmlReader.Create("movies.xml")

 Do While xr.Read()

 If xr.NodeType = XmlNodeType.Element AndAlso xr.Name = "description" Then

 ListBox3.Items.Add(xr.ReadElementString)

COPYRIGHT FIMT 2020 Page 249

 Else

 xr.Read()

 End If

 Loop

 End Sub

End Class

Execute and run the above code using Start button available at the Microsoft Visual Studio tool

bar. Clicking on the buttons would display, title, type and description of the movies from the file.

The XmlWriter class is used to write XML data into a stream, a file or a TextWriter object. It also

works in a forward-only, non-cached manner.

Example 2

Let us create an XML file by adding some data at runtime. Take the following steps:

 Add a WebBrowser control and a button control in the form.

 Change the Text property of the button to Show Authors File.

 Add the following code in the code editor.

Imports System.Xml

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim xws As XmlWriterSettings = New XmlWriterSettings()

 xws.Indent = True

 xws.NewLineOnAttributes = True

 Dim xw As XmlWriter = XmlWriter.Create("authors.xml", xws)

 xw.WriteStartDocument()

 xw.WriteStartElement("Authors")

 xw.WriteStartElement("author")

COPYRIGHT FIMT 2020 Page 250

 xw.WriteAttributeString("code", "1")

 xw.WriteElementString("fname", "Zara")

 xw.WriteElementString("lname", "Ali")

 xw.WriteEndElement()

 xw.WriteStartElement("author")

 xw.WriteAttributeString("code", "2")

 xw.WriteElementString("fname", "Priya")

 xw.WriteElementString("lname", "Sharma")

 xw.WriteEndElement()

 xw.WriteStartElement("author")

 xw.WriteAttributeString("code", "3")

 xw.WriteElementString("fname", "Anshuman")

 xw.WriteElementString("lname", "Mohan")

 xw.WriteEndElement()

 xw.WriteStartElement("author")

 xw.WriteAttributeString("code", "4")

 xw.WriteElementString("fname", "Bibhuti")

 xw.WriteElementString("lname", "Banerjee")

 xw.WriteEndElement()

 xw.WriteStartElement("author")

 xw.WriteAttributeString("code", "5")

 xw.WriteElementString("fname", "Riyan")

 xw.WriteElementString("lname", "Sengupta")

 xw.WriteEndElement()

 xw.WriteEndElement()

 xw.WriteEndDocument()

 xw.Flush()

 xw.Close()

 WebBrowser1.Url = New Uri(AppDomain.CurrentDomain.BaseDirectory + "authors.xml")

 End Sub

End Class

Execute and run the above code using Start button available at the Microsoft Visual Studio tool

bar. Clicking on the Show Author File would display the newly created authors.xml file on the web

browser.

COPYRIGHT FIMT 2020 Page 251

Parsing XML with DOM API

According to the Document Object Model (DOM), an XML document consists of nodes and

attributes of the nodes. The XmlDocument class is used to implement the XML DOM parser of the

.Net Framework. It also allows you to modify an existing XML document by inserting, deleting or

updating data in the document.

Following are some of the commonly used methods of the XmlDocument class:

S.N Method Name & Description

1 AppendChild

Adds the specified node to the end of the list of child nodes, of this

node.

2 CreateAttribute(String)
Creates an XmlAttribute with the specified Name.

3 CreateComment
Creates an XmlComment containing the specified data.

4 CreateDefaultAttribute
Creates a default attribute with the specified prefix, local name and

namespace URI.

5 CreateElement(String)

Creates an element with the specified name.

6 CreateNode(String, String, String)

Creates an XmlNode with the specified node type, Name, and

NamespaceURI.

7 CreateNode(XmlNodeType, String, String)

Creates an XmlNode with the specified XmlNodeType, Name, and

NamespaceURI.

8 CreateNode(XmlNodeType, String, String, String)
Creates a XmlNode with the specified XmlNodeType, Prefix,

Name, and NamespaceURI.

9 CreateProcessingInstruction

Creates an XmlProcessingInstruction with the specified name and

COPYRIGHT FIMT 2020 Page 252

data.

10 CreateSignificantWhitespace

Creates an XmlSignificantWhitespace node.

11 CreateTextNode

Creates an XmlText with the specified text.

12 CreateWhitespace

Creates an XmlWhitespace node.

13 CreateXmlDeclaration

Creates an XmlDeclaration node with the specified values.

14 GetElementById

Gets the XmlElement with the specified ID.

15 GetElementsByTagName(String)
Returns an XmlNodeList containing a list of all descendant elements

that match the specified Name.

16 GetElementsByTagName(String, String)

Returns an XmlNodeList containing a list of all descendant elements

that match the specified LocalName and NamespaceURI.

17 InsertAfter
Inserts the specified node immediately after the specified reference

node.

18 InsertBefore

Inserts the specified node immediately before the specified reference

node.

19 Load(Stream)
Loads the XML document from the specified stream.

20 Load(String)
Loads the XML document from the specified URL.

21 Load(TextReader)
Loads the XML document from the specified TextReader.

22 Load(XmlReader)

Loads the XML document from the specified XmlReader.

23 LoadXml

Loads the XML document from the specified string.

24 PrependChild

Adds the specified node to the beginning of the list of child nodes

for this node.

25 ReadNode
Creates an XmlNode object based on the information in the

COPYRIGHT FIMT 2020 Page 253

XmlReader. The reader must be positioned on a node or attribute.

26 RemoveAll

Removes all the child nodes and/or attributes of the current node.

27 RemoveChild

Removes specified child node.

28 ReplaceChild

Replaces the child node oldChild with newChild node.

29 Save(Stream)

Saves the XML document to the specified stream.

30 Save(String)

Saves the XML document to the specified file.

31 Save(TextWriter)
Saves the XML document to the specified TextWriter.

32 Save(XmlWriter)
Saves the XML document to the specified XmlWriter.

Example 3

In this example, let us insert some new nodes in the xml document authors.xml and then show all

the authors' first names in a list box.

Take the following steps:

 Add the authors.xml file in the bin/Debug folder of your application(it should be there if you have

tried the last example)

 Import the System.Xml namespace

 Add a list box and a button control in the form and set the text property of the button control to

Show Authors.

 Add the following code using the code editor.

Imports System.Xml

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 ListBox1.Items.Clear()

 Dim xd As XmlDocument = New XmlDocument()

 xd.Load("authors.xml")

 Dim newAuthor As XmlElement = xd.CreateElement("author")

COPYRIGHT FIMT 2020 Page 254

 newAuthor.SetAttribute("code", "6")

 Dim fn As XmlElement = xd.CreateElement("fname")

 fn.InnerText = "Bikram"

 newAuthor.AppendChild(fn)

 Dim ln As XmlElement = xd.CreateElement("lname")

 ln.InnerText = "Seth"

 newAuthor.AppendChild(ln)

 xd.DocumentElement.AppendChild(newAuthor)

 Dim tr As XmlTextWriter = New XmlTextWriter("movies.xml", Nothing)

 tr.Formatting = Formatting.Indented

 xd.WriteContentTo(tr)

 tr.Close()

 Dim nl As XmlNodeList = xd.GetElementsByTagName("fname")

 For Each node As XmlNode In nl

 ListBox1.Items.Add(node.InnerText)

 Next node

 End Sub

End Class

Execute and run the above code using Start button available at the Microsoft Visual Studio tool

bar. Clicking on the Show Author button would display the first names of all the authors including

the one we have added at runtime.

VB.Net - Web Programming

A dynamic web application consists of either or both of the following two types of programs:

 Server-side scripting - these are programs executed on a web server, written using server-side

scripting languages like ASP (Active Server Pages) or JSP (Java Server Pages).

 Client-side scripting - these are programs executed on the browser, written using scripting

languages like JavaScript, VBScript, etc.

COPYRIGHT FIMT 2020 Page 255

ASP.Net is the .Net version of ASP, introduced by Microsoft, for creating dynamic web pages by

using server-side scripts. ASP.Net applications are compiled codes written using the extensible and

reusable components or objects present in .Net framework. These codes can use the entire

hierarchy of classes in .Net framework.

The ASP.Net application codes could be written in either of the following languages:

 Visual Basic .Net

 C#

 Jscript

 J#

In this chapter, we will give a very brief introduction to writing ASP.Net applications using

VB.Net. For detailed discussion, please consult the ASP.Net Tutorial.

ASP.Net Built-in Objects

ASP.Net has some built-in objects that run on a web server. These objects have methods, properties

and collections that are used in application development.

The following table lists the ASP.Net built-in objects with a brief description:

Object Description

Application Describes the methods, properties, and collections of the object

that stores information related to the entire Web application,

including variables and objects that exist for the lifetime of the

application.

You use this object to store and retrieve information to be

shared among all users of an application. For example, you can

use an Application object to create an e-commerce page.

Request Describes the methods, properties, and collections of the object

that stores information related to the HTTP request. This

includes forms, cookies, server variables, and certificate data.

You use this object to access the information sent in a request

from a browser to the server. For example, you can use a

Request object to access information entered by a user in an

HTML form.

Response Describes the methods, properties, and collections of the object

that stores information related to the server's response. This

includes displaying content, manipulating headers, setting

locales, and redirecting requests.

You use this object to send information to the browser. For

example, you use a Response object to send output from your

scripts to a browser.

Server Describes the methods and properties of the object that

provides methods for various server tasks. With these methods

you can execute code, get error conditions, encode text strings,

create objects for use by the Web page, and map physical paths.

https://www.tutorialspoint.com/asp.net/index.htm

COPYRIGHT FIMT 2020 Page 256

You use this object to access various utility functions on the

server. For example, you may use the Server object to set a

time out for a script.

Session Describes the methods, properties, and collections of the object

that stores information related to the user's session, including

variables and objects that exist for the lifetime of the session.

You use this object to store and retrieve information about

particular user sessions. For example, you can use Session

object to keep information about the user and his preference

and keep track of pending operations.

ASP.Net Programming Model

ASP.Net provides two types of programming models:

 Web Forms - this enables you to create the user interface and the application logic that would be

applied to various components of the user interface.

 WCF Services - this enables you to remote access some server-side functionalities.

For this chapter, you need to use Visual Studio Web Developer, which is free. The IDE is almost

same as you have already used for creating the Windows Applications.

Web Forms

Web forms consists of:

 User interface

 Application logic

User interface consists of static HTML or XML elements and ASP.Net server controls. When you

create a web application, HTML or XML elements and server controls are stored in a file

with .aspx extension. This file is also called the page file.

The application logic consists of code applied to the user interface elements in the page. You write

this code in any of .Net language like, VB.Net, or C#.

The following figure shows a Web Form in Design view:

COPYRIGHT FIMT 2020 Page 257

Example

Let us create a new web site with a web form, which will show the current date and time, when a

user clicks a button. Take the following steps:

 Select File -> New -> Web Site. The New Web Site Dialog Box appears.

 Select the ASP.Net Empty Web Site templates. Type a name for the web site and select a location

for saving the files.

 You need to add a Default page to the site. Right click the web site name in the Solution Explorer

and select Add New Item option from the context menu. The Add New Item dialog box is

displayed:

 Select Web Form option and provide a name for the default page. We have kept it as Default.aspx.

Click the Add button.

 The Default page is shown in Source view

 Set the title for the Default web page by adding a value to the

COPYRIGHT FIMT 2020 Page 258

 To add controls on the web page, go to the design view. Add three labels, a text box and a button

on the form.

 Double-click the button and add the following code to the Click event of the button:

Protected Sub Button1_Click(sender As Object, e As EventArgs) _

Handles Button1.Click

 Label2.Visible = True

 Label2.Text = "Welcome to Tutorials Point: " + TextBox1.Text

 Label3.Text = "You visited us at: " + DateTime.Now.ToString()

End Sub

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, the following page opens in the browser:

Enter your name and click on the Submit button:

Web Services

A web service is a web application, which is basically a class consisting of methods that could be

used by other applications. It also follows a code-behind architecture like the ASP.Net web pages,

although it does not have an user interface.

The previous versions of .Net Framework used this concept of ASP.Net Web Service, which had

.asmx file extension. However, from .Net Framework 4.0 onwards, the Windows Communication

Foundation (WCF) technology has evolved as the new successor of Web Services, .Net Remoting

and some other related technologies. It has rather clubbed all these technologies together. In the

next section, we will provide a brief introduction to Windows Communication Foundation(WCF).

COPYRIGHT FIMT 2020 Page 259

If you are using previous versions of .Net Framework, you can still create traditional web services.

Please consult ASP.Net - Web Services tutorial for detailed description.

Windows Communication Foundation

Windows Communication Foundation or WCF provides an API for creating distributed service-

oriented applications, known as WCF Services.

Like Web services, WCF services also enable communication between applications. However,

unlike web services, the communication here is not limited to HTTP only. WCF can be configured

to be used over HTTP, TCP, IPC, and Message Queues. Another strong point in favour of WCF is,

it provides support for duplex communication, whereas with web services we could achieve

simplex communication only.

From beginners' point of view, writing a WCF service is not altogether so different from writing a

Web Service. To keep the things simple, we will see how to:

 Create a WCF Service

 Create a Service Contract and define the operations

 Implement the contract

 Test the Service

 Utilize the Service

Example

To understand the concept let us create a simplistic service that will provide stock price

information. The clients can query about the name and price of a stock based on the stock symbol.

To keep this example simple, the values are hardcoded in a two-dimensional array. This service

will have two methods:

 GetPrice Method - it will return the price of a stock, based on the symbol provided.

 GetName Method - it will return the name of the stock, based on the symbol provided.

Creating a WCF Service

Take the following steps:

 Open VS Express for Web 2012

 Select New Web Site to open the New Web Site dialog box.

 Select WCF Service template from list of templates:

 Select File System from the Web location drop-down list.

https://www.tutorialspoint.com/asp.net/asp.net_web_services.htm

COPYRIGHT FIMT 2020 Page 260

 Provide a name and location for the WCF Service and click OK.

A new WCF Service is created.

Creating a Service Contract and Defining the Operations

A service contract defines the operation that a service performs. In the WCF Service application,

you will find two files automatically created in the App_Code folder in the Solution Explorer

 IService.vb - this will have the service contract; in simpler words, it will have the interface for the

service, with the definitions of methods the service will provide, which you will implement in your

service.

 Service.vb - this will implement the service contract.

Replace the code of the IService.vb file with the given code:

Public Interface IService

 <OperationContract()>

 Function GetPrice(ByVal symbol As String) As Double

 <OperationContract()>

 Function GetName(ByVal symbol As String) As String

End Interface

Implementing the Contract

In the Service.vb file, you will find a class named Service which will implement the Service

Contract defined in the IService interface.

Replace the code of IService.vb with the following code:

' NOTE: You can use the "Rename" command on the context menu to change the class name

"Service" in code, svc and config file together.

Public Class Service

 Implements IService

 Public Sub New()

 End Sub

 Dim stocks As String(,) =

 {

 {"RELIND", "Reliance Industries", "1060.15"},

 {"ICICI", "ICICI Bank", "911.55"},

 {"JSW", "JSW Steel", "1201.25"},

COPYRIGHT FIMT 2020 Page 261

 {"WIPRO", "Wipro Limited", "1194.65"},

 {"SATYAM", "Satyam Computers", "91.10"}

 }

 Public Function GetPrice(ByVal symbol As String) As Double _

 Implements IService.GetPrice

 Dim i As Integer

 'it takes the symbol as parameter and returns price

 For i = 0 To i = stocks.GetLength(0) - 1

 If (String.Compare(symbol, stocks(i, 0)) = 0) Then

 Return Convert.ToDouble(stocks(i, 2))

 End If

 Next i

 Return 0

 End Function

 Public Function GetName(ByVal symbol As String) As String _

 Implements IService.GetName

 ' It takes the symbol as parameter and

 ' returns name of the stock

 Dim i As Integer

 For i = 0 To i = stocks.GetLength(0) - 1

 If (String.Compare(symbol, stocks(i, 0)) = 0) Then

 Return stocks(i, 1)

 End If

 Next i

 Return "Stock Not Found"

 End Function

End Class

Testing the Service

To run the WCF Service, so created, select the Debug->Start Debugging option from the menu bar.

The output would be:

COPYRIGHT FIMT 2020 Page 262

For testing the service operations, double click the name of the operation from the tree on the left

pane. A new tab will appear on the right pane.

Enter the value of parameters in the Request area of the right pane and click the 'Invoke' button.

The following diagram displays the result of testing the GetPrice operation:

The following diagram displays the result of testing the GetName operation:

Utilizing the Service

Let us add a default page, a ASP.NET web form in the same solution from which we will be using

the WCF Service we have just created.

Take the following steps:

 Right click on the solution name in the Solution Explorer and add a new web form to the solution.

It will be named Default.aspx.

COPYRIGHT FIMT 2020 Page 263

 Add two labels, a text box and a button on the form.

 We need to add a service reference to the WCF service we just created. Right click the website in

the Solution Explorer and select Add Service Reference option. This opens the Add Service

Reference Dialog box.

 Enter the URL(location) of the Service in the Address text box and click the Go button. It creates a

service reference with the default name ServiceReference1. Click the OK button.

Adding the reference does two jobs for your project:

o Creates the Address and Binding for the service in the web.config file.

o Creates a proxy class to access the service.

 Double click the Get Price button in the form, to enter the following code snippet on its Click

event:

Partial Class _Default

 Inherits System.Web.UI.Page

 Protected Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 Dim ser As ServiceReference1.ServiceClient = _

 New ServiceReference1.ServiceClient

 Label2.Text = ser.GetPrice(TextBox1.Text).ToString()

 End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, the following page opens in the browser:

COPYRIGHT FIMT 2020 Page 264

Enter a symbol and click the Get Price button to get the hard-coded price:

ADO.NET

ADO.NET provides a bridge between the front end controls and the back end database. The

ADO.NET objects encapsulate all the data access operations and the controls interact with these

objects to display data, thus hiding the details of movement of data.

The following figure shows the ADO.NET objects at a glance:

The DataSet Class

The dataset represents a subset of the database. It does not have a continuous connection to the

database. To update the database a reconnection is required. The DataSet contains DataTable

objects and DataRelation objects. The DataRelation objects represent the relationship between two

tables.

Following table shows some important properties of the DataSet class:

Properties Description

CaseSensitive Indicates whether string comparisons within the

data tables are case-sensitive.

Container Gets the container for the component.

DataSetName Gets or sets the name of the current data set.

DefaultViewManager Returns a view of data in the data set.

COPYRIGHT FIMT 2020 Page 265

DesignMode Indicates whether the component is currently in

design mode.

EnforceConstraints Indicates whether constraint rules are followed

when attempting any update operation.

Events Gets the list of event handlers that are attached to

this component.

ExtendedProperties Gets the collection of customized user

information associated with the DataSet.

HasErrors Indicates if there are any errors.

IsInitialized Indicates whether the DataSet is initialized.

Locale Gets or sets the locale information used to

compare strings within the table.

Namespace Gets or sets the namespace of the DataSet.

Prefix Gets or sets an XML prefix that aliases the

namespace of the DataSet.

Relations Returns the collection of DataRelation objects.

Tables Returns the collection of DataTable objects.

The following table shows some important methods of the DataSet class:

Methods Description

AcceptChanges Accepts all changes made since the DataSet was

loaded or this method was called.

BeginInit Begins the initialization of the DataSet. The

initialization occurs at run time.

Clear Clears data.

Clone Copies the structure of the DataSet, including all

DataTable schemas, relations, and constraints.

Does not copy any data.

Copy Copies both structure and data.

CreateDataReader() Returns a DataTableReader with one result set per

DataTable, in the same sequence as the tables

appear in the Tables collection.

CreateDataReader(Dat

aTable[])

Returns a DataTableReader with one result set per

DataTable.

EndInit Ends the initialization of the data set.

COPYRIGHT FIMT 2020 Page 266

Equals(Object) Determines whether the specified Object is equal

to the current Object.

Finalize Free resources and perform other cleanups.

GetChanges Returns a copy of the DataSet with all changes

made since it was loaded or the AcceptChanges

method was called.

GetChanges(DataRow

State)

Gets a copy of DataSet with all changes made

since it was loaded or the AcceptChanges method

was called, filtered by DataRowState.

GetDataSetSchema Gets a copy of XmlSchemaSet for the DataSet.

GetObjectData Populates a serialization information object with

the data needed to serialize the DataSet.

GetType Gets the type of the current instance.

GetXML Returns the XML representation of the data.

GetXMLSchema Returns the XSD schema for the XML

representation of the data.

HasChanges() Gets a value indicating whether the DataSet has

changes, including new, deleted, or modified

rows.

HasChanges(DataRow

State)

Gets a value indicating whether the DataSet has

changes, including new, deleted, or modified

rows, filtered by DataRowState.

IsBinarySerialized Inspects the format of the serialized representation

of the DataSet.

Load(IDataReader,

LoadOption,

DataTable[])

Fills a DataSet with values from a data source

using the supplied IDataReader, using an array of

DataTable instances to supply the schema and

namespace information.

Load(IDataReader,

LoadOption, String[])

Fills a DataSet with values from a data source

using the supplied IDataReader, using an array of

strings to supply the names for the tables within

the DataSet.

Merge() Merges the data with data from another DataSet.

This method has different overloaded forms.

ReadXML() Reads an XML schema and data into the DataSet.

This method has different overloaded forms.

ReadXMLSchema(0) Reads an XML schema into the DataSet. This

method has different overloaded forms.

COPYRIGHT FIMT 2020 Page 267

RejectChanges Rolls back all changes made since the last call to

AcceptChanges.

WriteXML() Writes an XML schema and data from the

DataSet. This method has different overloaded

forms.

WriteXMLSchema() Writes the structure of the DataSet as an XML

schema. This method has different overloaded

forms.

The DataTable Class

The DataTable class represents the tables in the database. It has the following important properties;

most of these properties are read only properties except the PrimaryKey property:

Properties Description

ChildRelations Returns the collection of child relationship.

Columns Returns the Columns collection.

Constraints Returns the Constraints collection.

DataSet Returns the parent DataSet.

DefaultView Returns a view of the table.

ParentRelations Returns the ParentRelations collection.

PrimaryKey Gets or sets an array of columns as the primary key

for the table.

Rows Returns the Rows collection.

The following table shows some important methods of the DataTable class:

Methods Description

AcceptChanges Commits all changes since the last AcceptChanges.

Clear Clears all data from the table.

GetChanges Returns a copy of the DataTable with all changes

made since the AcceptChanges method was called.

GetErrors Returns an array of rows with errors.

ImportRows Copies a new row into the table.

LoadDataRow Finds and updates a specific row, or creates a new

one, if not found any.

Merge Merges the table with another DataTable.

COPYRIGHT FIMT 2020 Page 268

NewRow Creates a new DataRow.

RejectChanges Rolls back all changes made since the last call to

AcceptChanges.

Reset Resets the table to its original state.

Select Returns an array of DataRow objects.

The DataRow Class

The DataRow object represents a row in a table. It has the following important properties:

Properties Description

HasErrors Indicates if there are any errors.

Items Gets or sets the data stored in a specific column.

ItemArrays Gets or sets all the values for the row.

Table Returns the parent table.

The following table shows some important methods of the DataRow class:

Methods Description

AcceptChanges Accepts all changes made since this method was

called.

BeginEdit Begins edit operation.

CancelEdit Cancels edit operation.

Delete Deletes the DataRow.

EndEdit Ends the edit operation.

GetChildRows Gets the child rows of this row.

GetParentRow Gets the parent row.

GetParentRows Gets parent rows of DataRow object.

RejectChanges Rolls back all changes made since the last call to

AcceptChanges.

The DataAdapter Object

The DataAdapter object acts as a mediator between the DataSet object and the database. This helps

the Dataset to contain data from multiple databases or other data source.

The DataReader Object

The DataReader object is an alternative to the DataSet and DataAdapter combination. This object

provides a connection oriented access to the data records in the database. These objects are suitable

for read-only access, such as populating a list and then breaking the connection.

COPYRIGHT FIMT 2020 Page 269

DbCommand and DbConnection Objects

The DbConnection object represents a connection to the data source. The connection could be

shared among different command objects.

The DbCommand object represents the command or a stored procedure sent to the database from

retrieving or manipulating data.

Example

So far, we have used tables and databases already existing in our computer. In this example, we

will create a table, add column, rows and data into it and display the table using a GridView object.

The source file code is as given:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="createdatabase._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:GridView ID="GridView1" runat="server">

 </asp:GridView>

 </div>

 </form>

 </body>

 </html>

The code behind file is as given:

namespace createdatabase

{

 public partial class _Default : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

COPYRIGHT FIMT 2020 Page 270

 if (!IsPostBack)

 {

 DataSet ds = CreateDataSet();

 GridView1.DataSource = ds.Tables["Student"];

 GridView1.DataBind();

 }

 }

 private DataSet CreateDataSet()

 {

 //creating a DataSet object for tables

 DataSet dataset = new DataSet();

 // creating the student table

 DataTable Students = CreateStudentTable();

 dataset.Tables.Add(Students);

 return dataset;

 }

 private DataTable CreateStudentTable()

 {

 DataTable Students = new DataTable("Student");

 // adding columns

 AddNewColumn(Students, "System.Int32", "StudentID");

 AddNewColumn(Students, "System.String", "StudentName");

 AddNewColumn(Students, "System.String", "StudentCity");

 // adding rows

 AddNewRow(Students, 1, "M H Kabir", "Kolkata");

 AddNewRow(Students, 1, "Shreya Sharma", "Delhi");

 AddNewRow(Students, 1, "Rini Mukherjee", "Hyderabad");

 AddNewRow(Students, 1, "Sunil Dubey", "Bikaner");

 AddNewRow(Students, 1, "Rajat Mishra", "Patna");

 return Students;

 }

 private void AddNewColumn(DataTable table, string columnType, string columnName)

 {

 DataColumn column = table.Columns.Add(columnName, Type.GetType(columnType));

 }

COPYRIGHT FIMT 2020 Page 271

 //adding data into the table

 private void AddNewRow(DataTable table, int id, string name, string city)

 {

 DataRow newrow = table.NewRow();

 newrow["StudentID"] = id;

 newrow["StudentName"] = name;

 newrow["StudentCity"] = city;

 table.Rows.Add(newrow);

 }

 }

}

When you execute the program, observe the following:

 The application first creates a data set and binds it with the grid view control using the DataBind()

method of the GridView control.

 The Createdataset() method is a user defined function, which creates a new DataSet object and then

calls another user defined method CreateStudentTable() to create the table and add it to the Tables

collection of the data set.

 The CreateStudentTable() method calls the user defined methods AddNewColumn() and

AddNewRow() to create the columns and rows of the table as well as to add data to the rows.

When the page is executed, it returns the rows of the table as shown:

ASP.NET - File Uploading

ASP.NET has two controls that allow users to upload files to the web server. Once the server

receives the posted file data, the application can save it, check it, or ignore it. The following

controls allow the file uploading:

 HtmlInputFile - an HTML server control

 FileUpload - and ASP.NET web control

Both controls allow file uploading, but the FileUpload control automatically sets the encoding of

the form, whereas the HtmlInputFile does not do so.

COPYRIGHT FIMT 2020 Page 272

In this tutorial, we use the FileUpload control. The FileUpload control allows the user to browse

for and select the file to be uploaded, providing a browse button and a text box for entering the

filename.

Once, the user has entered the filename in the text box by typing the name or browsing, the SaveAs

method of the FileUpload control can be called to save the file to the disk.

The basic syntax of FileUpload is:

<asp:FileUpload ID= "Uploader" runat = "server" />

The FileUpload class is derived from the WebControl class, and inherits all its members. Apart

from those, the FileUpload class has the following read-only properties:

Properties Description

FileBytes Returns an array of the bytes in a file to be

uploaded.

FileContent Returns the stream object pointing to the file to be

uploaded.

FileName Returns the name of the file to be uploaded.

HasFile Specifies whether the control has a file to upload.

PostedFile Returns a reference to the uploaded file.

The posted file is encapsulated in an object of type HttpPostedFile, which could be accessed

through the PostedFile property of the FileUpload class.

The HttpPostedFile class has the following frequently used properties:

Properties Description

ContentLength Returns the size of the uploaded file in bytes.

ContentType Returns the MIME type of the uploaded file.

FileName Returns the full filename.

InputStream Returns a stream object pointing to the uploaded

file.

Example

The following example demonstrates the FileUpload control and its properties. The form has a

FileUpload control along with a save button and a label control for displaying the file name, file

type, and file length.

In the design view, the form looks as follows:

COPYRIGHT FIMT 2020 Page 273

The content file code is as given:

<body>

 <form id="form1" runat="server">

 <div>

 <h3> File Upload:</h3>

 <asp:FileUpload ID="FileUpload1" runat="server" />

 <asp:Button ID="btnsave" runat="server" onclick="btnsave_Click" Text="Save"

style="width:85px" />

 <asp:Label ID="lblmessage" runat="server" />

 </div>

 </form>

</body>

The code behind the save button is as given:

protected void btnsave_Click(object sender, EventArgs e)

{

 StringBuilder sb = new StringBuilder();

 if (FileUpload1.HasFile)

 {

 try

 {

 sb.AppendFormat(" Uploading file: {0}", FileUpload1.FileName);

 //saving the file

 FileUpload1.SaveAs("<c:\\SaveDirectory>" + FileUpload1.FileName);

 //Showing the file information

 sb.AppendFormat("
 Save As: {0}", FileUpload1.PostedFile.FileName);

 sb.AppendFormat("
 File type: {0}", FileUpload1.PostedFile.ContentType);

 sb.AppendFormat("
 File length: {0}", FileUpload1.PostedFile.ContentLength);

COPYRIGHT FIMT 2020 Page 274

 sb.AppendFormat("
 File name: {0}", FileUpload1.PostedFile.FileName);

 }catch (Exception ex)

 {

 sb.Append("
 Error
");

 sb.AppendFormat("Unable to save file
 {0}", ex.Message);

 }

 }

 else

 {

 lblmessage.Text = sb.ToString();

 }

}

Note the following:

 The StringBuilder class is derived from System.IO namespace, so it needs to be included.

 The try and catch blocks are used for catching errors, and display the error message.

ASP.NET - Ad Rotator

The AdRotator control randomly selects banner graphics from a list, which is specified in an

external XML schedule file. This external XML schedule file is called the advertisement file.

The AdRotator control allows you to specify the advertisement file and the type of window that the

link should follow in the AdvertisementFile and the Target property respectively.

The basic syntax of adding an AdRotator is as follows:

<asp:AdRotator runat = "server" AdvertisementFile = "adfile.xml" Target = "_blank" />

Before going into the details of the AdRotator control and its properties, let us look into the

construction of the advertisement file.

The Advertisement File

The advertisement file is an XML file, which contains the information about the advertisements to

be displayed.

Extensible Markup Language (XML) is a W3C standard for text document markup. It is a text-

based markup language that enables you to store data in a structured format by using meaningful

tags. The term 'extensible' implies that you can extend your ability to describe a document by

defining meaningful tags for the application.

XML is not a language in itself, like HTML, but a set of rules for creating new markup languages.

It is a meta-markup language. It allows developers to create custom tag sets for special uses. It

structures, stores, and transports the information.

COPYRIGHT FIMT 2020 Page 275

Following is an example of XML file:

<BOOK>

 <NAME> Learn XML </NAME>

 <AUTHOR> Samuel Peterson </AUTHOR>

 <PUBLISHER> NSS Publications </PUBLISHER>

 <PRICE> $30.00</PRICE>

</BOOK>

Like all XML files, the advertisement file needs to be a structured text file with well-defined tags

delineating the data. There are the following standard XML elements that are commonly used in

the advertisement file:

Element Description

Advertisements Encloses the advertisement file.

Ad Delineates separate ad.

ImageUrl The path of image that will be displayed.

NavigateUrl The link that will be followed when the user clicks

the ad.

AlternateText The text that will be displayed instead of the picture

if it cannot be displayed.

Keyword Keyword identifying a group of advertisements.

This is used for filtering.

Impressions The number indicating how often an advertisement

will appear.

Height Height of the image to be displayed.

Width Width of the image to be displayed.

Apart from these tags, customs tags with custom attributes could also be included. The following

code illustrates an advertisement file ads.xml:

<Advertisements>

 <Ad>

 <ImageUrl>rose1.jpg</ImageUrl>

 <NavigateUrl>http://www.1800flowers.com</NavigateUrl>

 <AlternateText>

 Order flowers, roses, gifts and more

 </AlternateText>

 <Impressions>20</Impressions>

COPYRIGHT FIMT 2020 Page 276

 <Keyword>flowers</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>rose2.jpg</ImageUrl>

 <NavigateUrl>http://www.babybouquets.com.au</NavigateUrl>

 <AlternateText>Order roses and flowers</AlternateText>

 <Impressions>20</Impressions>

 <Keyword>gifts</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>rose3.jpg</ImageUrl>

 <NavigateUrl>http://www.flowers2moscow.com</NavigateUrl>

 <AlternateText>Send flowers to Russia</AlternateText>

 <Impressions>20</Impressions>

 <Keyword>russia</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>rose4.jpg</ImageUrl>

 <NavigateUrl>http://www.edibleblooms.com</NavigateUrl>

 <AlternateText>Edible Blooms</AlternateText>

 <Impressions>20</Impressions>

 <Keyword>gifts</Keyword>

 </Ad>

</Advertisements>

Properties and Events of the AdRotator Class

The AdRotator class is derived from the WebControl class and inherits its properties. Apart from

those, the AdRotator class has the following properties:

Properties Description

AdvertisementFile The path to the advertisement file.

AlternateTextFeild The element name of the field where alternate text

is provided. The default value is AlternateText.

DataMember The name of the specific list of data to be bound

when advertisement file is not used.

DataSource Control from where it would retrieve data.

COPYRIGHT FIMT 2020 Page 277

DataSourceID Id of the control from where it would retrieve data.

Font Specifies the font properties associated with the

advertisement banner control.

ImageUrlField The element name of the field where the URL for

the image is provided. The default value is

ImageUrl.

KeywordFilter For displaying the keyword based ads only.

NavigateUrlField The element name of the field where the URL to

navigate to is provided. The default value is

NavigateUrl.

Target The browser window or frame that displays the

content of the page linked.

UniqueID Obtains the unique, hierarchically qualified

identifier for the AdRotator control.

Following are the important events of the AdRotator class:

Events Description

AdCreated It is raised once per round trip to the server after

creation of the control, but before the page is

rendered

DataBinding Occurs when the server control binds to a data

source.

DataBound Occurs after the server control binds to a data

source.

Disposed Occurs when a server control is released from

memory, which is the last stage of the server

control lifecycle when an ASP.NET page is

requested

Init Occurs when the server control is initialized, which

is the first step in its lifecycle.

Load Occurs when the server control is loaded into the

Page object.

PreRender Occurs after the Control object is loaded but prior

to rendering.

Unload Occurs when the server control is unloaded from

memory.

Working with AdRotator Control

Create a new web page and place an AdRotator control on it.

COPYRIGHT FIMT 2020 Page 278

<form id="form1" runat="server">

 <div>

 <asp:AdRotator ID="AdRotator1" runat="server" AdvertisementFile ="~/ads.xml"

onadcreated="AdRotator1_AdCreated" />

 </div>

</form>

The ads.xml file and the image files should be located in the root directory of the web site.

Try to execute the above application and observe that each time the page is reloaded, the ad is

changed.

ASP.NET – Calendars

The calendar control is a functionally rich web control, which provides the following capabilities:

 Displaying one month at a time

 Selecting a day, a week or a month

 Selecting a range of days

 Moving from month to month

 Controlling the display of the days programmatically

The basic syntax of a calendar control is:

<asp:Calender ID = "Calendar1" runat = "server">

</asp:Calender>

Properties and Events of the Calendar Control

The calendar control has many properties and events, using which you can customize the actions

and display of the control. The following table provides some important properties of the Calendar

control:

Properties Description

Caption Gets or sets the caption for the calendar control.

CaptionAlign Gets or sets the alignment for the caption.

CellPadding Gets or sets the number of spaces between the

data and the cell border.

CellSpacing Gets or sets the space between cells.

DayHeaderStyle Gets the style properties for the section that

displays the day of the week.

DayNameFormat Gets or sets format of days of the week.

COPYRIGHT FIMT 2020 Page 279

DayStyle Gets the style properties for the days in the

displayed month.

FirstDayOfWeek Gets or sets the day of week to display in the first

column.

NextMonthText Gets or sets the text for next month navigation

control. The default value is >.

NextPrevFormat Gets or sets the format of the next and previous

month navigation control.

OtherMonthDayStyle Gets the style properties for the days on the

Calendar control that are not in the displayed

month.

PrevMonthText Gets or sets the text for previous month

navigation control. The default value is <.

SelectedDate Gets or sets the selected date.

SelectedDates Gets a collection of DateTime objects

representing the selected dates.

SelectedDayStyle Gets the style properties for the selected dates.

SelectionMode Gets or sets the selection mode that specifies

whether the user can select a single day, a week

or an entire month.

SelectMonthText Gets or sets the text for the month selection

element in the selector column.

SelectorStyle Gets the style properties for the week and month

selector column.

SelectWeekText Gets or sets the text displayed for the week

selection element in the selector column.

ShowDayHeader Gets or sets the value indicating whether the

heading for the days of the week is displayed.

ShowGridLines Gets or sets the value indicating whether the

gridlines would be shown.

ShowNextPrevMonth Gets or sets a value indicating whether next and

previous month navigation elements are shown in

the title section.

ShowTitle Gets or sets a value indicating whether the title

section is displayed.

TitleFormat Gets or sets the format for the title section.

COPYRIGHT FIMT 2020 Page 280

Titlestyle Get the style properties of the title heading for the

Calendar control.

TodayDayStyle Gets the style properties for today's date on the

Calendar control.

TodaysDate Gets or sets the value for today's date.

UseAccessibleHeader Gets or sets a value that indicates whether to

render the table header <th> HTML element for

the day headers instead of the table data <td>

HTML element.

VisibleDate Gets or sets the date that specifies the month to

display.

WeekendDayStyle Gets the style properties for the weekend dates on

the Calendar control.

The Calendar control has the following three most important events that allow the developers to

program the calendar control. They are:

Events Description

SelectionChanged It is raised when a day, a week or an entire

month is selected.

DayRender It is raised when each data cell of the calendar

control is rendered.

VisibleMonthChanged It is raised when user changes a month.

Working with the Calendar Control

Putting a bare-bone calendar control without any code behind file provides a workable calendar to

a site, which shows the months and days of the year. It also allows navigation to next and previous

months.

Calendar controls allow the users to select a single day, a week, or an entire month. This is done by

using the SelectionMode property. This property has the following values:

Properties Description

Day To select a single day.

DayWeek To select a single day or an entire week.

COPYRIGHT FIMT 2020 Page 281

DayWeekMonth To select a single day, a week, or an entire month.

None Nothing can be selected.

The syntax for selecting days:

<asp:Calender ID = "Calendar1" runat = "server" SelectionMode="DayWeekMonth">

</asp:Calender>

When the selection mode is set to the value DayWeekMonth, an extra column with the > symbol

appears for selecting the week, and a >> symbol appears to the left of the days name for selecting

the month.

Example

The following example demonstrates selecting a date and displays the date in a label:

The content file code is as follows:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="calendardemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <h3> Your Birthday:</h3>

 <asp:Calendar ID="Calendar1" runat="server SelectionMode="DayWeekMonth"

onselectionchanged="Calendar1_SelectionChanged">

 </asp:Calendar>

 </div>

COPYRIGHT FIMT 2020 Page 282

 <p>Todays date is:

 <asp:Label ID="lblday" runat="server"></asp:Label>

 </p>

 <p>Your Birday is:

 <asp:Label ID="lblbday" runat="server"></asp:Label>

 </p>

 </form>

 </body>

</html>

The event handler for the event SelectionChanged:

protected void Calendar1_SelectionChanged(object sender, EventArgs e)

{

 lblday.Text = Calendar1.TodaysDate.ToShortDateString();

 lblbday.Text = Calendar1.SelectedDate.ToShortDateString();

}

When the file is run, it should produce the following output:

ASP.NET - Multi Views

MultiView and View controls allow you to divide the content of a page into different groups,

displaying only one group at a time. Each View control manages one group of content and all the

View controls are held together in a MultiView control. The MultiView control is responsible for

displaying one View control at a time. The View displayed is called the active view.

The syntax of MultiView control is:

<asp:MultView ID= "MultiView1" runat= "server">

</asp:MultiView>

The syntax of View control is:

<asp:View ID= "View1" runat= "server">

COPYRIGHT FIMT 2020 Page 283

</asp:View>

However, the View control cannot exist on its own. It would render error if you try to use it stand-

alone. It is always used with a Multiview control as:

<asp:MultView ID= "MultiView1" runat= "server">

 <asp:View ID= "View1" runat= "server"> </asp:View>

</asp:MultiView>

Properties of View and MultiView Controls

Both View and MultiView controls are derived from Control class and inherit all its properties,

methods, and events. The most important property of the View control is Visible property of type

Boolean, which sets the visibility of a view.

The MultiView control has the following important properties:

Properties Description

Views Collection of View controls within the MultiView.

ActiveViewIndex A zero based index that denotes the active view. If

no view is active, then the index is -1.

The CommandName attribute of the button control associated with the navigation of the MultiView

control are associated with some related field of the MultiView control.

For example, if a button control with CommandName value as NextView is associated with the

navigation of the multiview, it automatically navigates to the next view when the button is clicked.

The following table shows the default command names of the above properties:

Properties Description

NextViewCommandName NextView

PreviousViewCommandName PrevView

SwitchViewByIDCommandName SwitchViewByID

SwitchViewByIndexCommandName SwitchViewByIndex

The important methods of the multiview control are:

Methods Description

SetActiveview Sets the active view

GetActiveview Retrieves the active view

Every time a view is changed, the page is posted back to the server and a number of events are

raised. Some important events are:

COPYRIGHT FIMT 2020 Page 284

Events Description

ActiveViewChanged Raised when a view is changed

Activate Raised by the active view

Deactivate Raised by the inactive view

Apart from the above mentioned properties, methods and events, multiview control inherits the

members of the control and object class.

Example

The example page has three views. Each view has two button for navigating through the views.

The content file code is as follows:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="multiviewdemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <h2>MultiView and View Controls</h2>

 <asp:DropDownList ID="DropDownList1" runat="server"

onselectedindexchanged="DropDownList1_SelectedIndexChanged">

 </asp:DropDownList>

 <hr />

 <asp:MultiView ID="MultiView1" runat="server" ActiveViewIndex="2"

onactiveviewchanged="MultiView1_ActiveViewChanged" >

 <asp:View ID="View1" runat="server">

 <h3>This is view 1</h3>

COPYRIGHT FIMT 2020 Page 285

 <asp:Button CommandName="NextView" ID="btnnext1" runat="server" Text = "Go

To Next" />

 <asp:Button CommandArgument="View3" CommandName="SwitchViewByID"

ID="btnlast" runat="server" Text ="Go To Last" />

 </asp:View>

 <asp:View ID="View2" runat="server">

 <h3>This is view 2</h3>

 <asp:Button CommandName="NextView" ID="btnnext2" runat="server" Text = "Go

To Next" />

 <asp:Button CommandName="PrevView" ID="btnprevious2" runat="server" Text =

"Go To Previous View" />

 </asp:View>

 <asp:View ID="View3" runat="server">

 <h3> This is view 3</h3>

 <asp:Calendar ID="Calender1" runat="server"></asp:Calendar>

 <asp:Button CommandArgument="0" CommandName="SwitchViewByIndex"

ID="btnfirst" runat="server" Text = "Go To Next" />

 <asp:Button CommandName="PrevView" ID="btnprevious" runat="server" Text = "Go

To Previous View" />

 </asp:View>

 </asp:MultiView>

 </div>

 </form>

 </body>

</html>

Observe the following:

The MultiView.ActiveViewIndex determines which view will be shown. This is the only view

rendered on the page. The default value for the ActiveViewIndex is -1, when no view is shown.

Since the ActiveViewIndex is defined as 2 in the example, it shows the third view, when executed.

COPYRIGHT FIMT 2020 Page 286

ASP.NET - Panel Controls

The Panel control works as a container for other controls on the page. It controls the appearance

and visibility of the controls it contains. It also allows generating controls programmatically.

The basic syntax of panel control is as follows:

<asp:Panel ID= "Panel1" runat = "server">

</asp:Panel>

The Panel control is derived from the WebControl class. Hence it inherits all the properties,

methods and events of the same. It does not have any method or event of its own. However it has

the following properties of its own:

Properties Description

BackImageUrl URL of the background image of the panel.

DefaultButton Gets or sets the identifier for the default button that

is contained in the Panel control.

Direction Text direction in the panel.

GroupingText Allows grouping of text as a field.

HorizontalAlign Horizontal alignment of the content in the panel.

ScrollBars Specifies visibility and location of scrollbars within

the panel.

Wrap Allows text wrapping.

Working with the Panel Control

Let us start with a simple scrollable panel of specific height and width and a border style. The

ScrollBars property is set to both the scrollbars, hence both the scrollbars are rendered.

The source file has the following code for the panel tag:

<asp:Panel ID="Panel1" runat="server" BorderColor="#990000" BorderStyle="Solid"

 Borderstyle="width:1px" Height="116px" ScrollBars="Both" style="width:278px">

 This is a scrollable panel.

 <asp:Button ID="btnpanel" runat="server" Text="Button" style="width:82px" />

</asp:Panel>

The panel is rendered as follows:

COPYRIGHT FIMT 2020 Page 287

Example

The following example demonstrates dynamic content generation. The user provides the number of

label controls and textboxes to be generated on the panel. The controls are generated

programmatically.

Change the properties of the panel using the properties window. When you select a control on the

design view, the properties window displays the properties of that particular control and allows you

to make changes without typing.

The source file for the example is as follows:

<form id="form1" runat="server">

 <div>

 <asp:Panel ID="pnldynamic" runat="server" BorderColor="#990000"

 BorderStyle="Solid" Borderstyle="width:1px" Height="150px" ScrollBars="Auto"

style="width:60%" BackColor="#CCCCFF" Font-Names="Courier" HorizontalAlign="Center">

 This panel shows dynamic control generation:

 </asp:Panel>

 </div>

 <table style="width: 51%;">

 <tr>

 <td class="style2">No of Labels:</td>

 <td class="style1">

 <asp:DropDownList ID="ddllabels" runat="server">

COPYRIGHT FIMT 2020 Page 288

 <asp:ListItem>0</asp:ListItem>

 <asp:ListItem>1</asp:ListItem>

 <asp:ListItem>2</asp:ListItem>

 <asp:ListItem>3</asp:ListItem>

 <asp:ListItem>4</asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 <tr>

 <td class="style2"> </td>

 <td class="style1"> </td>

 </tr>

 <tr>

 <td class="style2">No of Text Boxes :</td>

 <td class="style1">

 <asp:DropDownList ID="ddltextbox" runat="server">

 <asp:ListItem>0</asp:ListItem>

 <asp:ListItem Value="1"></asp:ListItem>

 <asp:ListItem>2</asp:ListItem>

 <asp:ListItem>3</asp:ListItem>

 <asp:ListItem Value="4"></asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 <tr>

 <td class="style2"> </td>

 <td class="style1"> </td>

 </tr>

 <tr>

 <td class="style2">

 <asp:CheckBox ID="chkvisible" runat="server"

 Text="Make the Panel Visible" />

 </td>

 <td class="style1">

 <asp:Button ID="btnrefresh" runat="server" Text="Refresh Panel"

COPYRIGHT FIMT 2020 Page 289

 style="width:129px" />

 </td>

 </tr>

 </table>

</form>

The code behind the Page_Load event is responsible for generating the controls dynamically:

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 //make the panel visible

 pnldynamic.Visible = chkvisible.Checked;

 //generating the lable controls:

 int n = Int32.Parse(ddllabels.SelectedItem.Value);

 for (int i = 1; i <= n; i++)

 {

 Label lbl = new Label();

 lbl.Text = "Label" + (i).ToString();

 pnldynamic.Controls.Add(lbl);

 pnldynamic.Controls.Add(new LiteralControl("
"));

 }

 //generating the text box controls:

 int m = Int32.Parse(ddltextbox.SelectedItem.Value);

 for (int i = 1; i <= m; i++)

 {

 TextBox txt = new TextBox();

 txt.Text = "Text Box" + (i).ToString();

 pnldynamic.Controls.Add(txt);

 pnldynamic.Controls.Add(new LiteralControl("
"));

 }

 }

}

When executed, the panel is rendered as:

COPYRIGHT FIMT 2020 Page 290

ASP.NET - Ajax Control

AJAX stands for Asynchronous JavaScript and XML. This is a cross platform technology which

speeds up response time. The AJAX server controls add script to the page which is executed and

processed by the browser.

However like other ASP.NET server controls, these AJAX server controls also can have methods

and event handlers associated with them, which are processed on the server side.

The control toolbox in the Visual Studio IDE contains a group of controls called the 'AJAX

Extensions'

The ScriptManager Control

The ScriptManager control is the most important control and must be present on the page for other

controls to work.

It has the basic syntax:

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

If you create an 'Ajax Enabled site' or add an 'AJAX Web Form' from the 'Add Item' dialog box,

the web form automatically contains the script manager control. The ScriptManager control takes

care of the client-side script for all the server side controls.

The UpdatePanel Control

The UpdatePanel control is a container control and derives from the Control class. It acts as a

container for the child controls within it and does not have its own interface. When a control inside

it triggers a post back, the UpdatePanel intervenes to initiate the post asynchronously and update

just that portion of the page. For example, if a button control is inside the update panel and it is

clicked, only the controls within the update panel will be affected, the controls on the other parts of

the page will not be affected. This is called the partial post back or the asynchronous post back.

Example

COPYRIGHT FIMT 2020 Page 291

Add an AJAX web form in your application. It contains the script manager control by default.

Insert an update panel. Place a button control along with a label control within the update panel

control. Place another set of button and label outside the panel.

The design view looks as follows:

The source file is as follows:

<form id="form1" runat="server">

 <div>

 <asp:ScriptManager ID="ScriptManager1" runat="server" />

 </div>

 <asp:UpdatePanel ID="UpdatePanel1" runat="server">

 <ContentTemplate>

 <asp:Button ID="btnpartial" runat="server" onclick="btnpartial_Click" Text="Partial

PostBack"/>

 <asp:Label ID="lblpartial" runat="server"></asp:Label>

 </ContentTemplate>

 </asp:UpdatePanel>

 <p> </p>

 <p>Outside the Update Panel</p>

 <p>

 <asp:Button ID="btntotal" runat="server" onclick="btntotal_Click" Text="Total PostBack" />

 </p>

 <asp:Label ID="lbltotal" runat="server"></asp:Label>

</form>

Both the button controls have same code for the event handler:

string time = DateTime.Now.ToLongTimeString();

lblpartial.Text = "Showing time from panel" + time;

lbltotal.Text = "Showing time from outside" + time;

COPYRIGHT FIMT 2020 Page 292

Observe that when the page is executed, if the total post back button is clicked, it updates time in

both the labels but if the partial post back button is clicked, it only updates the label within the

update panel.

A page can contain multiple update panels with each panel containing other controls like a grid and

displaying different part of data.

When a total post back occurs, the update panel content is updated by default. This default mode

could be changed by changing the UpdateMode property of the control. Let us look at other

properties of the update panel.

Properties of the UpdatePanel Control

The following table shows the properties of the update panel control:

Properties Description

ChildrenAsTriggers This property indicates whether the post

backs are coming from the child controls,

which cause the update panel to refresh.

ContentTemplate It is the content template and defines what

appears in the update panel when it is

rendered.

ContentTemplateContainer Retrieves the dynamically created template

container object and used for adding child

controls programmatically.

IsInPartialRendering Indicates whether the panel is being

updated as part of the partial post back.

RenderMode Shows the render modes. The available

modes are Block and Inline.

UpdateMode Gets or sets the rendering mode by

determining some conditions.

Triggers Defines the collection trigger objects each

corresponding to an event causing the

panel to refresh automatically.

Methods of the UpdatePanel Control

COPYRIGHT FIMT 2020 Page 293

The following table shows the methods of the update panel control:

Methods Description

CreateContentTemplateContainer Creates a Control object that acts as a

container for child controls that define

the UpdatePanel control's content.

CreateControlCollection Returns the collection of all controls

that are contained in the UpdatePanel

control.

Initialize Initializes the UpdatePanel control

trigger collection if partial-page

rendering is enabled.

Update Causes an update of the content of an

UpdatePanel control.

The behavior of the update panel depends upon the values of the UpdateMode property and

ChildrenAsTriggers property.

UpdateMode ChildrenAsTriggers Effect

Always False Illegal parameters.

Always True UpdatePanel refreshes if

whole page refreshes or a

child control on it posts

back.

Conditional False UpdatePanel refreshes if

whole page refreshes or a

triggering control outside it

initiates a refresh.

Conditional True UpdatePanel refreshes if

whole page refreshes or a

child control on it posts

back or a triggering control

outside it initiates a refresh.

The UpdateProgress Control

The UpdateProgress control provides a sort of feedback on the browser while one or more update

panel controls are being updated. For example, while a user logs in or waits for server response

while performing some database oriented job.

It provides a visual acknowledgement like "Loading page...", indicating the work is in progress.

The syntax for the UpdateProgress control is:

<asp:UpdateProgress ID="UpdateProgress1" runat="server" DynamicLayout="true"

AssociatedUpdatePanelID="UpdatePanel1" >

 <ProgressTemplate>

COPYRIGHT FIMT 2020 Page 294

 Loading...

 </ProgressTemplate>

 </asp:UpdateProgress>

The above snippet shows a simple message within the ProgressTemplate tag. However, it could be

an image or other relevant controls. The UpdateProgress control displays for every asynchronous

postback unless it is assigned to a single update panel using the AssociatedUpdatePanelID

property.

Properties of the UpdateProgress Control

The following table shows the properties of the update progress control:

Properties Description

AssociatedUpdatePanelID Gets and sets the ID of the update panel with

which this control is associated.

Attributes Gets or sets the cascading style sheet (CSS)

attributes of the UpdateProgress control.

DisplayAfter Gets and sets the time in milliseconds after

which the progress template is displayed.

The default is 500.

DynamicLayout Indicates whether the progress template is

dynamically rendered.

ProgressTemplate Indicates the template displayed during an

asynchronous post back which takes more

time than the DisplayAfter time.

Methods of the UpdateProgress Control

The following table shows the methods of the update progress control:

Methods Description

GetScriptDescriptors Returns a list of components, behaviors, and

client controls that are required for the

UpdateProgress control's client

functionality.

GetScriptReferences Returns a list of client script library

dependencies for the UpdateProgress

control.

The Timer Control

The timer control is used to initiate the post back automatically. This could be done in two ways:

COPYRIGHT FIMT 2020 Page 295

(1) Setting the Triggers property of the UpdatePanel control:

<Triggers>

 <asp:AsyncPostBackTrigger ControlID="btnpanel2" EventName="Click" />

</Triggers>

(2) Placing a timer control directly inside the UpdatePanel to act as a child control trigger. A single

timer can be the trigger for multiple UpdatePanels.

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Always">

 <ContentTemplate>

 <asp:Timer ID="Timer1" runat="server" Interval="1000">

 </asp:Timer>

 <asp:Label ID="Label1" runat="server" Height="101px" style="width:304px" >

 </asp:Label>

 </ContentTemplate>

 </asp:UpdatePanel>

ASP.NET - Data Sources

A data source control interacts with the data-bound controls and hides the complex data binding

processes. These are the tools that provide data to the data bound controls and support execution of

operations like insertions, deletions, sorting, and updates.

Each data source control wraps a particular data provider-relational databases, XML documents, or

custom classes and helps in:

 Managing connection

 Selecting data

 Managing presentation aspects like paging, caching, etc.

 Manipulating data

There are many data source controls available in ASP.NET for accessing data from SQL Server,

from ODBC or OLE DB servers, from XML files, and from business objects.

Based on type of data, these controls could be divided into two categories:

 Hierarchical data source controls

 Table-based data source controls

The data source controls used for hierarchical data are:

 XMLDataSource - It allows binding to XML files and strings with or without schema information.

 SiteMapDataSource - It allows binding to a provider that supplies site map information.

The data source controls used for tabular data are:

COPYRIGHT FIMT 2020 Page 296

Data source

controls

Description

SqlDataSource It represents a connection to an ADO.NET data

provider that returns SQL data, including data

sources accessible via OLEDB and ODBC.

ObjectDataSource It allows binding to a custom .Net business object

that returns data.

LinqdataSource It allows binding to the results of a Linq-to-SQL

query (supported by ASP.NET 3.5 only).

AccessDataSource It represents connection to a Microsoft Access

database.

Data Source Views

Data source views are objects of the DataSourceView class. Which represent a customized view of

data for different data operations such as sorting, filtering, etc. The DataSourceView class serves as

the base class for all data source view classes, which define the capabilities of data source controls.

The following table provides the properties of the DataSourceView class:

Properties Description

CanDelete Indicates whether deletion is allowed on the

underlying data source.

CanInsert Indicates whether insertion is allowed on the

underlying data source.

CanPage Indicates whether paging is allowed on the

underlying data source.

CanRetrieveTotalRowCount Indicates whether total row count

information is available.

CanSort Indicates whether the data could be sorted.

CanUpdate Indicates whether updates are allowed on

the underlying data source.

Events Gets a list of event-handler delegates for the

data source view.

Name Name of the view.

The following table provides the methods of the DataSourceView class:

Methods Description

CanExecute Determines whether the specified command

can be executed.

COPYRIGHT FIMT 2020 Page 297

ExecuteCommand Executes the specific command.

ExecuteDelete Performs a delete operation on the list of

data that the DataSourceView object

represents.

ExecuteInsert Performs an insert operation on the list of

data that the DataSourceView object

represents.

ExecuteSelect Gets a list of data from the underlying data

storage.

ExecuteUpdate Performs an update operation on the list of

data that the DataSourceView object

represents.

Delete Performs a delete operation on the data

associated with the view.

Insert Performs an insert operation on the data

associated with the view.

Select Returns the queried data.

Update Performs an update operation on the data

associated with the view.

OnDataSourceViewChange

d

Raises the DataSourceViewChanged event.

RaiseUnsupportedCapabiliti

esError

Called by the

RaiseUnsupportedCapabilitiesError method

to compare the capabilities requested for an

ExecuteSelect operation against those that

the view supports.

The SqlDataSource Control

The SqlDataSource control represents a connection to a relational database such as SQL Server or

Oracle database, or data accessible through OLEDB or Open Database Connectivity (ODBC).

Connection to data is made through two important properties ConnectionString and ProviderName.

The following code snippet provides the basic syntax of the control:

<asp:SqlDataSource runat="server" ID="MySqlSource"

 ProviderName='<%$ ConnectionStrings:LocalNWind.ProviderName %>'

 ConnectionString='<%$ ConnectionStrings:LocalNWind %>'

 SelectionCommand= "SELECT * FROM EMPLOYEES" />

<asp:GridView ID="GridView1" runat="server" DataSourceID="MySqlSource" />

COPYRIGHT FIMT 2020 Page 298

Configuring various data operations on the underlying data depends upon the various properties

(property groups) of the data source control.

The following table provides the related sets of properties of the SqlDataSource control, which

provides the programming interface of the control:

Property Group Description

DeleteCommand,

DeleteParameters,

DeleteCommandType

Gets or sets the SQL statement, parameters,

and type for deleting rows in the underlying

data.

FilterExpression,

FilterParameters

Gets or sets the data filtering string and

parameters.

InsertCommand,

InsertParameters,

InsertCommandType

Gets or sets the SQL statement, parameters,

and type for inserting rows in the underlying

database.

SelectCommand,

SelectParameters,

SelectCommandType

Gets or sets the SQL statement, parameters,

and type for retrieving rows from the

underlying database.

SortParameterName Gets or sets the name of an input parameter

that the command's stored procedure will use

to sort data.

UpdateCommand,

UpdateParameters,

UpdateCommandType

Gets or sets the SQL statement, parameters,

and type for updating rows in the underlying

data store.

The following code snippet shows a data source control enabled for data manipulation:

<asp:SqlDataSource runat="server" ID= "MySqlSource"

 ProviderName='<%$ ConnectionStrings:LocalNWind.ProviderName %>'

 ConnectionString=' <%$ ConnectionStrings:LocalNWind %>'

 SelectCommand= "SELECT * FROM EMPLOYEES"

 UpdateCommand= "UPDATE EMPLOYEES SET LASTNAME=@lame"

 DeleteCommand= "DELETE FROM EMPLOYEES WHERE EMPLOYEEID=@eid"

 FilterExpression= "EMPLOYEEID > 10">

</asp:SqlDataSource>

The ObjectDataSource Control

The ObjectDataSource Control enables user-defined classes to associate the output of their

methods to data bound controls. The programming interface of this class is almost same as the

SqlDataSource control.

COPYRIGHT FIMT 2020 Page 299

Following are two important aspects of binding business objects:

 The bindable class should have a default constructor, it should be stateless, and have methods that

can be mapped to select, update, insert, and delete semantics.

 The object must update one item at a time, batch operations are not supported.

Let us go directly to an example to work with this control. The student class is the class to be used

with an object data source. This class has three properties: a student id, name, and city. It has a

default constructor and a GetStudents method for retrieving data.

The student class:

public class Student

{

 public int StudentID { get; set; }

 public string Name { get; set; }

 public string City { get; set; }

 public Student()

 { }

 public DataSet GetStudents()

 {

 DataSet ds = new DataSet();

 DataTable dt = new DataTable("Students");

 dt.Columns.Add("StudentID", typeof(System.Int32));

 dt.Columns.Add("StudentName", typeof(System.String));

 dt.Columns.Add("StudentCity", typeof(System.String));

 dt.Rows.Add(new object[] { 1, "M. H. Kabir", "Calcutta" });

 dt.Rows.Add(new object[] { 2, "Ayan J. Sarkar", "Calcutta" });

 ds.Tables.Add(dt);

 return ds;

 }

}

Take the following steps to bind the object with an object data source and retrieve data:

 Create a new web site.

 Add a class (Students.cs) to it by right clicking the project from the Solution Explorer, adding a

class template, and placing the above code in it.

 Build the solution so that the application can use the reference to the class.

 Place an object data source control in the web form.

COPYRIGHT FIMT 2020 Page 300

 Configure the data source by selecting the object.

 Select a data method(s) for different operations on data. In this example, there is only one method.

 Place a data bound control such as grid view on the page and select the object data source as its

underlying data source.

 At this stage, the design view should look like the following:

 Run the project, it retrieves the hard coded tuples from the students class.

The AccessDataSource Control

The AccessDataSource control represents a connection to an Access database. It is based on the

SqlDataSource control and provides simpler programming interface. The following code snippet

provides the basic syntax for the data source:

<asp:AccessDataSource ID="AccessDataSource1 runat="server"

 DataFile="~/App_Data/ASPDotNetStepByStep.mdb" SelectCommand="SELECT * FROM

[DotNetReferences]">

COPYRIGHT FIMT 2020 Page 301

</asp:AccessDataSource>

The AccessDataSource control opens the database in read-only mode. However, it can also be used

for performing insert, update, or delete operations. This is done using the ADO.NET commands

and parameter collection.

Updates are problematic for Access databases from within an ASP.NET application because an

Access database is a plain file and the default account of the ASP.NET application might not have

the permission to write to the database file.

ASP.NET - Data Binding

Every ASP.NET web form control inherits the DataBind method from its parent Control class,

which gives it an inherent capability to bind data to at least one of its properties. This is known

as simple data binding or inline data binding.

Simple data binding involves attaching any collection (item collection) which implements the

IEnumerable interface, or the DataSet and DataTable classes to the DataSource property of the

control. On the other hand, some controls can bind records, lists, or columns of data into their

structure through a DataSource control. These controls derive from the BaseDataBoundControl

class. This is called declarative data binding.

The data source controls help the data-bound controls implement functionalities such as, sorting,

paging, and editing data collections.

The BaseDataBoundControl is an abstract class, which is inherited by two more abstract classes:

 DataBoundControl

 HierarchicalDataBoundControl

The abstract class DataBoundControl is again inherited by two more abstract classes:

 ListControl

 CompositeDataBoundControl

The controls capable of simple data binding are derived from the ListControl abstract class and

these controls are:

 BulletedList

 CheckBoxList

 DropDownList

 ListBox

 RadioButtonList

The controls capable of declarative data binding (a more complex data binding) are derived from

the abstract class CompositeDataBoundControl. These controls are:

 DetailsView

 FormView

 GridView

COPYRIGHT FIMT 2020 Page 302

 RecordList

Simple Data Binding

Simple data binding involves the read-only selection lists. These controls can bind to an array list

or fields from a database. Selection lists takes two values from the database or the data source; one

value is displayed by the list and the other is considered as the value corresponding to the display.

Let us take up a small example to understand the concept. Create a web site with a bulleted list and

a SqlDataSource control on it. Configure the data source control to retrieve two values from your

database (we use the same DotNetReferences table as in the previous chapter).

Choosing a data source for the bulleted list control involves:

 Selecting the data source control

 Selecting a field to display, which is called the data field

 Selecting a field for the value

When the application is executed, check that the entire title column is bound to the bulleted list and

displayed.

Declarative Data Binding

We have already used declarative data binding in the previous tutorial using GridView control. The

other composite data bound controls capable of displaying and manipulating data in a tabular

manner are the DetailsView, FormView, and RecordList control.

In the next tutorial, we will look into the technology for handling database, i.e, ADO.NET.

However, the data binding involves the following objects:

 A dataset that stores the data retrieved from the database.

 The data provider, which retrieves data from the database by using a command over a connection.

 The data adapter that issues the select statement stored in the command object; it is also capable of

update the data in a database by issuing Insert, Delete, and Update statements.

Relation between the data binding objects:

COPYRIGHT FIMT 2020 Page 303

Example

Let us take the following steps:

Step (1) : Create a new website. Add a class named booklist by right clicking on the solution name

in the Solution Explorer and choosing the item 'Class' from the 'Add Item' dialog box. Name it as

booklist.cs.

using System;

using System.Data;

using System.Configuration;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

namespace databinding

{

 public class booklist

 {

 protected String bookname;

 protected String authorname;

 public booklist(String bname, String aname)

 {

 this.bookname = bname;

 this.authorname = aname;

 }

 public String Book

 {

COPYRIGHT FIMT 2020 Page 304

 get

 {

 return this.bookname;

 }

 set

 {

 this.bookname = value;

 }

 }

 public String Author

 {

 get

 {

 return this.authorname;

 }

 set

 {

 this.authorname = value;

 }

 }

 }

}

Step (2) : Add four list controls on the page a list box control, a radio button list, a check box list,

and a drop down list and four labels along with these list controls. The page should look like this in

design view:

The source file should look as the following:

<form id="form1" runat="server">

 <div>

 <table style="width: 559px">

COPYRIGHT FIMT 2020 Page 305

 <tr>

 <td style="width: 228px; height: 157px;">

 <asp:ListBox ID="ListBox1" runat="server" AutoPostBack="True"

 OnSelectedIndexChanged="ListBox1_SelectedIndexChanged">

 </asp:ListBox>

 </td>

 <td style="height: 157px">

 <asp:DropDownList ID="DropDownList1" runat="server"

 AutoPostBack="True"

OnSelectedIndexChanged="DropDownList1_SelectedIndexChanged">

 </asp:DropDownList>

 </td>

 </tr>

 <tr>

 <td style="width: 228px; height: 40px;">

 <asp:Label ID="lbllistbox" runat="server"></asp:Label>

 </td>

 <td style="height: 40px">

 <asp:Label ID="lbldrpdown" runat="server">

 </asp:Label>

 </td>

 </tr>

 <tr>

 <td style="width: 228px; height: 21px">

 </td>

 <td style="height: 21px">

 </td>

 </tr>

 <tr>

 <td style="width: 228px; height: 21px">

 <asp:RadioButtonList ID="RadioButtonList1" runat="server"

 AutoPostBack="True"

OnSelectedIndexChanged="RadioButtonList1_SelectedIndexChanged">

 </asp:RadioButtonList>

 </td>

 <td style="height: 21px">

COPYRIGHT FIMT 2020 Page 306

 <asp:CheckBoxList ID="CheckBoxList1" runat="server"

 AutoPostBack="True"

OnSelectedIndexChanged="CheckBoxList1_SelectedIndexChanged">

 </asp:CheckBoxList>

 </td>

 </tr>

 <tr>

 <td style="width: 228px; height: 21px">

 <asp:Label ID="lblrdlist" runat="server">

 </asp:Label>

 </td>

 <td style="height: 21px">

 <asp:Label ID="lblchklist" runat="server">

 </asp:Label>

 </td>

 </tr>

 </table>

 </div>

</form>

Step (3) : Finally, write the following code behind routines of the application:

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 IList bklist = createbooklist();

 if (!this.IsPostBack)

 {

 this.ListBox1.DataSource = bklist;

 this.ListBox1.DataTextField = "Book";

 this.ListBox1.DataValueField = "Author";

 this.DropDownList1.DataSource = bklist;

 this.DropDownList1.DataTextField = "Book";

 this.DropDownList1.DataValueField = "Author";

 this.RadioButtonList1.DataSource = bklist;

 this.RadioButtonList1.DataTextField = "Book";

COPYRIGHT FIMT 2020 Page 307

 this.RadioButtonList1.DataValueField = "Author";

 this.CheckBoxList1.DataSource = bklist;

 this.CheckBoxList1.DataTextField = "Book";

 this.CheckBoxList1.DataValueField = "Author";

 this.DataBind();

 }

 }

 protected IList createbooklist()

 {

 ArrayList allbooks = new ArrayList();

 booklist bl;

 bl = new booklist("UNIX CONCEPTS", "SUMITABHA DAS");

 allbooks.Add(bl);

 bl = new booklist("PROGRAMMING IN C", "RICHI KERNIGHAN");

 allbooks.Add(bl);

 bl = new booklist("DATA STRUCTURE", "TANENBAUM");

 allbooks.Add(bl);

 bl = new booklist("NETWORKING CONCEPTS", "FOROUZAN");

 allbooks.Add(bl);

 bl = new booklist("PROGRAMMING IN C++", "B. STROUSTROUP");

 allbooks.Add(bl);

 bl = new booklist("ADVANCED JAVA", "SUMITABHA DAS");

 allbooks.Add(bl);

 return allbooks;

 }

 protected void ListBox1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lbllistbox.Text = this.ListBox1.SelectedValue;

 }

 protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lbldrpdown.Text = this.DropDownList1.SelectedValue;

 }

 protected void RadioButtonList1_SelectedIndexChanged(object sender, EventArgs e)

COPYRIGHT FIMT 2020 Page 308

 {

 this.lblrdlist.Text = this.RadioButtonList1.SelectedValue;

 }

 protected void CheckBoxList1_SelectedIndexChanged(object sender, EventArgs e)

 {

 this.lblchklist.Text = this.CheckBoxList1.SelectedValue;

 }

}

Observe the following:

 The booklist class has two properties: bookname and authorname.

 The createbooklist method is a user defined method that creates an array of booklist objects named

allbooks.

 The Page_Load event handler ensures that a list of books is created. The list is of IList type, which

implements the IEnumerable interface and capable of being bound to the list controls. The page

load event handler binds the IList object 'bklist' with the list controls. The bookname property is to

be displayed and the authorname property is considered as the value.

 When the page is run, if the user selects a book, its name is selected and displayed by the list

controls whereas the corresponding labels display the author name, which is the corresponding

value for the selected index of the list control.

ASP.NET - Custom Controls

ASP.NET allows the users to create controls. These user defined controls are categorized into:

 User controls

 Custom controls

User Controls

User controls behaves like miniature ASP.NET pages or web forms, which could be used by many

other pages. These are derived from the System.Web.UI.UserControl class. These controls have the

following characteristics:

 They have an .ascx extension.

COPYRIGHT FIMT 2020 Page 309

 They may not contain any <html>, <body>, or <form> tags.

 They have a Control directive instead of a Page directive.

To understand the concept, let us create a simple user control, which will work as footer for the

web pages. To create and use the user control, take the following steps:

 Create a new web application.

 Right click on the project folder on the Solution Explorer and choose Add New Item.

 Select Web User Control from the Add New Item dialog box and name it footer.ascx. Initially, the

footer.ascx contains only a Control directive.

 <%@ Control Language="C#" AutoEventWireup="true" CodeBehind="footer.ascx.cs"

 Inherits="customcontroldemo.footer" %>

 Add the following code to the file:

 <table>

 <tr>

 <td align="center"> Copyright ©2010 TutorialPoints Ltd.</td>

 </tr>

 <tr>

 <td align="center"> Location: Hyderabad, A.P </td>

 </tr>

</table>

To add the user control to your web page, you must add the Register directive and an instance of

the user control to the page. The following code shows the content file:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="customcontroldemo._Default" %>

 <%@ Register Src="~/footer.ascx" TagName="footer" TagPrefix="Tfooter" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

COPYRIGHT FIMT 2020 Page 310

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="Label1" runat="server" Text="Welcome to ASP.Net Tutorials

"></asp:Label>

 <asp:Button ID="Button1" runat="server" onclick="Button1_Click" Text="Copyright

Info" />

 </div>

 <Tfooter:footer ID="footer1" runat="server" />

 </form>

 </body>

</html>

When executed, the page shows the footer and this control could be used in all the pages of your

website.

Observe the following:

(1) The Register directive specifies a tag name as well as tag prefix for the control.

<%@ Register Src="~/footer.ascx" TagName="footer" TagPrefix="Tfooter" %>

(2) The following tag name and prefix should be used while adding the user control on the page:

<Tfooter:footer ID="footer1" runat="server" />

Custom Controls

Custom controls are deployed as individual assemblies. They are compiled into a Dynamic Link

Library (DLL) and used as any other ASP.NET server control. They could be created in either of

the following way:

 By deriving a custom control from an existing control

 By composing a new custom control combing two or more existing controls.

COPYRIGHT FIMT 2020 Page 311

 By deriving from the base control class.

To understand the concept, let us create a custom control, which will simply render a text message

on the browser. To create this control, take the following steps:

Create a new website. Right click the solution (not the project) at the top of the tree in the Solution

Explorer.

In the New Project dialog box, select ASP.NET Server Control from the project templates.

The above step adds a new project and creates a complete custom control to the solution, called

ServerControl1. In this example, let us name the project CustomControls. To use this control, this

must be added as a reference to the web site before registering it on a page. To add a reference to

the existing project, right click on the project (not the solution), and click Add Reference. Select

the CustomControls project from the Projects tab of the Add Reference dialog box. The Solution

Explorer should show the reference.

To use the control on a page, add the Register directive just below the @Page directive:

<%@ Register Assembly="CustomControls" Namespace="CustomControls" TagPrefix="ccs"

%>

Further, you can use the control, similar to any other controls.

<form id="form1" runat="server">

 <div>

 <ccs:ServerControl1 runat="server" Text = "I am a Custom Server Control" />

 </div>

COPYRIGHT FIMT 2020 Page 312

</form>

When executed, the Text property of the control is rendered on the browser as shown:

Working with Custom Controls

In the previous example, the value for the Text property of the custom control was set. ASP.NET

added this property by default, when the control was created. The following code behind file of the

control reveals this.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Linq;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace CustomControls

{

 [DefaultProperty("Text")]

 [ToolboxData("<{0}:ServerControl1 runat=server></{0}:ServerControl1 >")]

 public class ServerControl1 : WebControl

 {

 [Bindable(true)]

 [Category("Appearance")]

 [DefaultValue("")]

 [Localizable(true)]

 public string Text

 {

 get

 {

 String s = (String)ViewState["Text"];

 return ((s == null) ? "[" + this.ID + "]" : s);

 }

 set

COPYRIGHT FIMT 2020 Page 313

 {

 ViewState["Text"] = value;

 }

 }

 protected override void RenderContents(HtmlTextWriter output)

 {

 output.Write(Text);

 }

 }

}

The above code is automatically generated for a custom control. Events and methods could be

added to the custom control class.

Example

Let us expand the previous custom control named SeverControl1. Let us give it a method named

checkpalindrome, which gives it a power to check for palindromes. Palindromes are words/literals

that spell the same when reversed. For example, Malayalam, madam, saras, etc.

Extend the code for the custom control, which should look as:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Linq;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace CustomControls

{

 [DefaultProperty("Text")]

 [ToolboxData("<{0}:ServerControl1 runat=server></{0}:ServerControl1 >")]

 public class ServerControl1 : WebControl

 {

 [Bindable(true)]

 [Category("Appearance")]

 [DefaultValue("")]

COPYRIGHT FIMT 2020 Page 314

 [Localizable(true)]

 public string Text

 {

 get

 {

 String s = (String)ViewState["Text"];

 return ((s == null) ? "[" + this.ID + "]" : s);

 }

 set

 {

 ViewState["Text"] = value;

 }

 }

 protected override void RenderContents(HtmlTextWriter output)

 {

 if (this.checkpanlindrome())

 {

 output.Write("This is a palindrome:
");

 output.Write("");

 output.Write("");

 output.Write(Text);

 output.Write("");

 output.Write("");

 }

 else

 {

 output.Write("This is not a palindrome:
");

 output.Write("");

 output.Write("");

 output.Write(Text);

 output.Write("");

 output.Write("");

 }

 }

 protected bool checkpanlindrome()

 {

COPYRIGHT FIMT 2020 Page 315

 if (this.Text != null)

 {

 String str = this.Text;

 String strtoupper = Text.ToUpper();

 char[] rev = strtoupper.ToCharArray();

 Array.Reverse(rev);

 String strrev = new String(rev);

 if (strtoupper == strrev)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 else

 {

 return false;

 }

 }

 }

}

When you change the code for the control, you must build the solution by clicking Build --> Build

Solution, so that the changes are reflected in your project. Add a text box and a button control to

the page, so that the user can provide a text, it is checked for palindrome, when the button is

clicked.

<form id="form1" runat="server">

 <div>

 Enter a word:

 <asp:TextBox ID="TextBox1" runat="server" style="width:198px"> </asp:TextBox>

 <asp:Button ID="Button1" runat="server onclick="Button1_Click" Text="Check

Palindrome" style="width:132px" />

COPYRIGHT FIMT 2020 Page 316

 <ccs:ServerControl1 ID="ServerControl11" runat="server" Text = "" />

 </div>

</form>

The Click event handler for the button simply copies the text from the text box to the text property

of the custom control.

protected void Button1_Click(object sender, EventArgs e)

{

 this.ServerControl11.Text = this.TextBox1.Text;

}

When executed, the control successfully checks palindromes.

Observe the following:

(1) When you add a reference to the custom control, it is added to the toolbox and you can directly

use it from the toolbox similar to any other control.

(2) The RenderContents method of the custom control class is overridden here, as you can add your

own methods and events.

(3) The RenderContents method takes a parameter of HtmlTextWriter type, which is responsible

for rendering on the browser.

ASP.NET - Personalization

Web sites are designed for repeated visits from the users. Personalization allows a site to remember

the user identity and other information details, and it presents an individualistic environment to

each user.

ASP.NET provides services for personalizing a web site to suit a particular client's taste and

preference.

COPYRIGHT FIMT 2020 Page 317

Understanding Profiles

ASP.NET personalization service is based on user profile. User profile defines the kind of

information about the user that the site needs. For example, name, age, address, date of birth, and

phone number.

This information is defined in the web.config file of the application and ASP.NET runtime reads

and uses it. This job is done by the personalization providers.

The user profiles obtained from user data is stored in a default database created by ASP.NET. You

can create your own database for storing profiles. The profile data definition is stored in the

configuration file web.config.

Example

Let us create a sample site, where we want our application to remember user details like name,

address, date of birth etc. Add the profile details in the web.config file within the <system.web>

element.

<configuration>

<system.web>

<profile>

 <properties>

 <add name="Name" type ="String"/>

 <add name="Birthday" type ="System.DateTime"/>

 <group name="Address">

 <add name="Street"/>

 <add name="City"/>

 <add name="State"/>

 <add name="Zipcode"/>

 </group>

 </properties>

</profile>

</system.web>

</configuration>

When the profile is defined in the web.config file, the profile could be used through the Profile

property found in the current HttpContext and also available via page.

Add the text boxes to take the user input as defined in the profile and add a button for submitting

the data:

COPYRIGHT FIMT 2020 Page 318

Update Page_load to display profile information:

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!this.IsPostBack)

 {

 ProfileCommon pc=this.Profile.GetProfile(Profile.UserName);

 if (pc != null)

 {

 this.txtname.Text = pc.Name;

 this.txtaddr.Text = pc.Address.Street;

 this.txtcity.Text = pc.Address.City;

 this.txtstate.Text = pc.Address.State;

 this.txtzip.Text = pc.Address.Zipcode;

 this.Calendar1.SelectedDate = pc.Birthday;

 }

 }

 }

COPYRIGHT FIMT 2020 Page 319

}

Write the following handler for the Submit button, for saving the user data into the profile:

protected void btnsubmit_Click(object sender, EventArgs e)

{

 ProfileCommon pc=this.Profile.GetProfile(Profile.UserName);

 if (pc != null)

 {

 pc.Name = this.txtname.Text;

 pc.Address.Street = this.txtaddr.Text;

 pc.Address.City = this.txtcity.Text;

 pc.Address.State = this.txtstate.Text;

 pc.Address.Zipcode = this.txtzip.Text;

 pc.Birthday = this.Calendar1.SelectedDate;

 pc.Save();

 }

}

When the page is executed for the first time, the user needs to enter the information. However, next

time the user details would be automatically loaded.

Attributes for the <add> Element

Apart from the name and type attributes that we have used, there are other attributes to the <add>

element. Following table illustrates some of these attributes:

Attributes Description

name The name of the property.

type By default the type is string but it allows any fully

qualified class name as data type.

serializeAs The format to use when serializing this value.

readOnly A read only profile value cannot be changed, by

default this property is false.

defaultValue A default value that is used if the profile does not

exist or does not have information.

allowAnonymous A Boolean value indicating whether this property

can be used with the anonymous profiles.

Provider The profiles provider that should be used to manage

just this property.

COPYRIGHT FIMT 2020 Page 320

Anonymous Personalization

Anonymous personalization allows the user to personalize the site before identifying themselves.

For example, Amazon.com allows the user to add items in the shopping cart before they log in. To

enable this feature, the web.config file could be configured as:

<anonymousIdentification enabled ="true" cookieName=".ASPXANONYMOUSUSER"

 cookieTimeout="120000" cookiePath="/" cookieRequiresSSL="false"

 cookieSlidingExpiration="true" cookieprotection="Encryption"

 coolieless="UseDeviceProfile"/>

ASP.NET - Error Handling

Error handling in ASP.NET has three aspects:

 Tracing - tracing the program execution at page level or application level.

 Error handling - handling standard errors or custom errors at page level or application level.

 Debugging - stepping through the program, setting break points to analyze the code

In this chapter, we will discuss tracing and error handling and in this chapter, we will discuss

debugging.

To understand the concepts, create the following sample application. It has a label control, a

dropdown list, and a link. The dropdown list loads an array list of famous quotes and the selected

quote is shown in the label below. It also has a hyperlink which has points to a nonexistent link.

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="errorhandling._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Tracing, debugging and error handling

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="lblheading" runat="server" Text="Tracing, Debuggin and Error

Handling">

 </asp:Label>

COPYRIGHT FIMT 2020 Page 321

 <asp:DropDownList ID="ddlquotes" runat="server" AutoPostBack="True"

onselectedindexchanged="ddlquotes_SelectedIndexChanged">

 </asp:DropDownList>

 <asp:Label ID="lblquotes" runat="server">

 </asp:Label>

 <asp:HyperLink ID="HyperLink1" runat="server"

NavigateUrl="mylink.htm">Link to:</asp:HyperLink>

 </div>

 </form>

 </body>

 </html>

The code behind file:

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 string[,] quotes =

 {

 {"Imagination is more important than Knowledge.", "Albert Einsten"},

 {"Assume a virtue, if you have it not" "Shakespeare"},

 {"A man cannot be comfortable without his own approval", "Mark Twain"},

 {"Beware the young doctor and the old barber", "Benjamin Franklin"},

 {"Whatever begun in anger ends in shame", "Benjamin Franklin"}

 };

 for (int i=0; i<quotes.GetLength(0); i++)

 ddlquotes.Items.Add(new ListItem(quotes[i,0], quotes[i,1]));

 }

 }

 protected void ddlquotes_SelectedIndexChanged(object sender, EventArgs e)

 {

COPYRIGHT FIMT 2020 Page 322

 if (ddlquotes.SelectedIndex != -1)

 {

 lblquotes.Text = String.Format("{0}, Quote: {1}", ddlquotes.SelectedItem.Text,

ddlquotes.SelectedValue);

 }

 }

}

Tracing

To enable page level tracing, you need to modify the Page directive and add a Trace attribute as

shown:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

 Inherits="errorhandling._Default" Trace ="true" %>

Now when you execute the file, you get the tracing information:

It provides the following information at the top:

 Session ID

 Status Code

 Time of Request

 Type of Request

 Request and Response Encoding

The status code sent from the server, each time the page is requested shows the name and time of

error if any. The following table shows the common HTTP status codes:

Number Description

Informational (100 - 199)

100 Continue

101 Switching protocols

Successful (200 - 299)

200 OK

204 No content

COPYRIGHT FIMT 2020 Page 323

Redirection (300 - 399)

301 Moved permanently

305 Use proxy

307 Temporary redirect

Client Errors (400 - 499)

400 Bad request

402 Payment required

404 Not found

408 Request timeout

417 Expectation failed

Server Errors (500 - 599)

500 Internal server error

503 Service unavailable

505 HTTP version not supported

Under the top level information, there is Trace log, which provides details of page life cycle. It

provides elapsed time in seconds since the page was initialized.

The next section is control tree, which lists all controls on the page in a hierarchical manner:

Last in the Session and Application state summaries, cookies, and headers collections followed by

list of all server variables.

The Trace object allows you to add custom information to the trace output. It has two methods to

accomplish this: the Write method and the Warn method.

COPYRIGHT FIMT 2020 Page 324

Change the Page_Load event handler to check the Write method:

protected void Page_Load(object sender, EventArgs e)

{

 Trace.Write("Page Load");

 if (!IsPostBack)

 {

 Trace.Write("Not Post Back, Page Load");

 string[,] quotes =

 }

}

Run to observe the effects:

To check the Warn method, let us forcibly enter some erroneous code in the selected index changed

event handler:

try

{

 int a = 0;

 int b = 9 / a;

}catch (Exception e)

{

 Trace.Warn("UserAction", "processing 9/a", e);

}

Try-Catch is a C# programming construct. The try block holds any code that may or may not

produce error and the catch block catches the error. When the program is run, it sends the warning

in the trace log.

Application level tracing applies to all the pages in the web site. It is implemented by putting the

following code lines in the web.config file:

<system.web>

 <trace enabled="true" />

COPYRIGHT FIMT 2020 Page 325

</system.web>

Error Handling

Although ASP.NET can detect all runtime errors, still some subtle errors may still be there.

Observing the errors by tracing is meant for the developers, not for the users. Hence, to intercept

such occurrence, you can add error handing settings in the web.config file of the application. It is

application-wide error handling. For example, you can add the following lines in the web.config

file:

<configuration>

 <system.web>

 <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">

 <error statusCode="403" redirect="NoAccess.htm" />

 <error statusCode="404" redirect="FileNotFound.htm" />

 </customErrors>

 </system.web>

<configuration>

The <customErrors> section has the possible attributes:

 Mode It enables or disables custom error pages. It has the three possible values:

 On: displays the custom pages.

 Off : displays ASP.NET error pages (yellow pages)

 Remote Only: It displays custom errors to client, display ASP.NET errors locally.

 Default Redirect: It contains the URL of the page to be displayed in case of unhandled errors.

To put different custom error pages for different type of errors, the <error> sub tags are used,

where different error pages are specified, based on the status code of the errors.

To implement page level error handling, the Page directive could be modified:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

 Inherits="errorhandling._Default" Trace ="true" ErrorPage="PageError.htm" %>

Because ASP.NET Debugging is an important subject in itself, so we would discuss it in the next

chapter separately.

ASP.NET - Debugging

Debugging allows the developers to see how the code works in a step-by-step manner, how the

values of the variables change, how the objects are created and destroyed, etc.

When the site is executed for the first time, Visual Studio displays a prompt asking whether it

should be enabled for debugging:

COPYRIGHT FIMT 2020 Page 326

When debugging is enabled, the following lines of codes are shown in the web.config:

<system.web>

 <compilation debug="true">

 <assemblies>

 </assemblies>

 </compilation>

</system.web>

The Debug toolbar provides all the tools available for debugging:

Breakpoints

Breakpoints specifies the runtime to run a specific line of code and then stop execution so that the

code could be examined and perform various debugging jobs such as, changing the value of the

variables, step through the codes, moving in and out of functions and methods etc.

To set a breakpoint, right click on the code and choose insert break point. A red dot appears on the

left margin and the line of code is highlighted as shown:

Next when you execute the code, you can observe its behavior.

At this stage, you can step through the code, observe the execution flow and examine the value of

the variables, properties, objects, etc.

You can modify the properties of the breakpoint from the Properties menu obtained by right

clicking the breakpoint glyph:

COPYRIGHT FIMT 2020 Page 327

The location dialog box shows the location of the file, line number and the character number of the

selected code. The condition menu item allows you to enter a valid expression, which is evaluated

when the program execution reaches the breakpoint:

The Hit Count menu item displays a dialog box that shows the number of times the break point has

been executed.

Clicking on any option presented by the drop down list opens an edit field where a target hit count

is entered. This is particularly helpful in analyzing loop constructs in code.

The Filter menu item allows setting a filter for specifying machines, processes, or threads or any

combination, for which the breakpoint will be effective.

The When Hit menu item allows you to specify what to do when the break point is hit.

COPYRIGHT FIMT 2020 Page 328

The Debug Windows

Visual Studio provides the following debug windows, each of which shows some program

information. The following table lists the windows:

Window Description

Immediate Displays variables and expressions.

Autos Displays all variables in the current and previous

statements.

Locals Displays all variables in the current context.

Watch Displays up to four different sets of variables.

Call Stack Displays all methods in the call stack.

Threads Displays and control threads.

ASP.NET - LINQ

Most applications are data-centric, however most of the data repositories are relational databases.

Over the years, designers and developers have designed applications based on object models.

The objects are responsible for connecting to the data access components - called the Data Access

Layer (DAL). Here we have three points to consider:

 All the data needed in an application are not stored in the same source. The source could be a

relation database, some business object, XML file, or a web service.

 Accessing in-memory object is simpler and less expensive than accessing data from a database or

XML file.

 The data accessed are not used directly, but needs to be sorted, ordered, grouped, altered etc.

Hence if there is one tool that makes all kind of data access easy that allows joining data from such

disparate data sources and perform standard data processing operations, in few lines of codes, it

would be of great help.

COPYRIGHT FIMT 2020 Page 329

LINQ or Language-Integrated Query is such a tool. LINQ is set of extensions to the .Net

Framework 3.5 and its managed languages that set the query as an object. It defines a common

syntax and a programming model to query different types of data using a common language.

The relational operators like Select, Project, Join, Group, Partition, Set operations etc., are

implemented in LINQ and the C# and VB compilers in the .Net framework 3.5, which support the

LINQ syntax makes it possible to work with a configured data store without resorting to

ADO.NET.

For example, querying the Customers table in the Northwind database, using LINQ query in C#,

the code would be:

var data = from c in dataContext.Customers

where c.Country == "Spain"

select c;

Where:

 The 'from' keyword logically loops through the contents of the collection.

 The expression with the 'where' keyword is evaluated for each object in the collection.

 The 'select' statement selects the evaluated object to add to the list being returned.

 The 'var' keyword is for variable declaration. Since the exact type of the returned object is not

known, it indicates that the information will be inferred dynamically.

LINQ query can be applied to any data-bearing class that inherits from IEnumerable<T>, here T is

any data type, for example, List<Book>.

Let us look at an example to understand the concept. The example uses the following class:

Books.cs

public class Books

{

 public string ID {get; set;}

 public string Title { get; set; }

 public decimal Price { get; set; }

 public DateTime DateOfRelease { get; set; }

 public static List<Books> GetBooks()

 {

 List<Books> list = new List<Books>();

 list.Add(new Books { ID = "001",

 Title = "Programming in C#",

 Price = 634.76m,

 DateOfRelease = Convert.ToDateTime("2010-02-05") });

COPYRIGHT FIMT 2020 Page 330

 list.Add(new Books { ID = "002",

 Title = "Learn Java in 30 days",

 Price = 250.76m,

 DateOfRelease = Convert.ToDateTime("2011-08-15") });

 list.Add(new Books { ID = "003",

 Title = "Programming in ASP.Net 4.0",

 Price = 700.00m,

 DateOfRelease = Convert.ToDateTime("2011-02-05") });

 list.Add(new Books { ID = "004",

 Title = "VB.Net Made Easy",

 Price = 500.99m,

 DateOfRelease = Convert.ToDateTime("2011-12-31") });

 list.Add(new Books { ID = "005",

 Title = "Programming in C",

 Price = 314.76m,

 DateOfRelease = Convert.ToDateTime("2010-02-05") });

 list.Add(new Books { ID = "006",

 Title = "Programming in C++",

 Price = 456.76m,

 DateOfRelease = Convert.ToDateTime("2010-02-05") });

 list.Add(new Books { ID = "007",

 Title = "Datebase Developement",

 Price = 1000.76m,

 DateOfRelease = Convert.ToDateTime("2010-02-05") });

 return list;

 }

}

The web page using this class has a simple label control, which displays the titles of the books. The

Page_Load event creates a list of books and returns the titles by using LINQ query:

public partial class simplequery : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 List<Books> books = Books.GetBooks();

 var booktitles = from b in books select b.Title;

COPYRIGHT FIMT 2020 Page 331

 foreach (var title in booktitles)

 lblbooks.Text += String.Format("{0}
", title);

 }

}

When the page is executed, the label displays the results of the query:

The above LINQ expression:

var booktitles =

from b in books

select b.Title;

Is equivalent to the following SQL query:

SELECT Title from Books

LINQ Operators

Apart from the operators used so far, there are several other operators, which implement all query

clauses. Let us look at some of the operators and clauses.

The Join clause

The 'join clause' in SQL is used for joining two data tables and displays a data set containing

columns from both the tables. LINQ is also capable of that. To check this, add another class named

Saledetails.cs in the previous project:

public class Salesdetails

{

 public int sales { get; set; }

 public int pages { get; set; }

 public string ID {get; set;}

 public static IEnumerable<Salesdetails> getsalesdetails()

 {

 Salesdetails[] sd =

 {

COPYRIGHT FIMT 2020 Page 332

 new Salesdetails { ID = "001", pages=678, sales = 110000},

 new Salesdetails { ID = "002", pages=789, sales = 60000},

 new Salesdetails { ID = "003", pages=456, sales = 40000},

 new Salesdetails { ID = "004", pages=900, sales = 80000},

 new Salesdetails { ID = "005", pages=456, sales = 90000},

 new Salesdetails { ID = "006", pages=870, sales = 50000},

 new Salesdetails { ID = "007", pages=675, sales = 40000},

 };

 return sd.OfType<Salesdetails>();

 }

}

Add the codes in the Page_Load event handler to query on both the tables using the join clause:

protected void Page_Load(object sender, EventArgs e)

{

 IEnumerable<Books> books = Books.GetBooks();

 IEnumerable<Salesdetails> sales = Salesdetails.getsalesdetails();

 var booktitles = from b in books join s in sales on b.ID equals s.ID

 select new { Name = b.Title, Pages = s.pages };

 foreach (var title in booktitles)

 lblbooks.Text += String.Format("{0}
", title);

}

The resulting page is as shown:

The Where clause

The 'where clause' allows adding some conditional filters to the query. For example, if you want to

see the books, where the number of pages are more than 500, change the Page_Load event handler

to:

var booktitles = from b in books join s in sales on b.ID equals s.ID

 where s.pages > 500 select new { Name = b.Title, Pages = s.pages };

The query returns only those rows, where the number of pages is more than 500:

COPYRIGHT FIMT 2020 Page 333

Orderby and Orderbydescending Clauses

These clauses allow sorting the query results. To query the titles, number of pages and price of the

book, sorted by the price, write the following code in the Page_Load event handler:

var booktitles = from b in books join s in sales on b.ID equals s.ID

 orderby b.Price select new { Name = b.Title, Pages = s.pages, Price = b.Price};

The returned tuples are:

The Let clause

The let clause allows defining a variable and assigning it a value calculated from the data values.

For example, to calculate the total sale from the above two sales, you need to calculate:

TotalSale = Price of the Book * Sales

To achieve this, add the following code snippets in the Page_Load event handler:

The let clause allows defining a variable and assigning it a value calculated from the data values.

For example, to calculate the total sale from the above two sales, you need to calculate:

var booktitles = from b in book join s in sales on b.ID equals s.ID

 let totalprofit = (b.Price * s.sales)

 select new { Name = b.Title, TotalSale = totalprofit};

The resulting query page is as shown:

COPYRIGHT FIMT 2020 Page 334

ASP.NET - Security

Implementing security in a site has the following aspects:

 Authentication : It is the process of ensuring the user's identity and authenticity. ASP.NET allows

four types of authentications:

o Windows Authentication

o Forms Authentication

o Passport Authentication

o Custom Authentication

 Authorization : It is the process of defining and allotting specific roles to specific users.

 Confidentiality : It involves encrypting the channel between the client browser and the web server.

 Integrity : It involves maintaining the integrity of data. For example, implementing digital

signature.

Forms-Based Authentication

Traditionally, forms-based authentication involves editing the web.config file and adding a login

page with appropriate authentication code.

The web.config file could be edited and the following codes written on it:

<configuration>

<system.web>

 <authentication mode="Forms">

 <forms loginUrl ="login.aspx"/>

 </authentication>

 <authorization>

 <deny users="?"/>

 </authorization>

</system.web>

...

...

</configuration>

The login.aspx page mentioned in the above code snippet could have the following code behind file

with the usernames and passwords for authentication hard coded into it.

protected bool authenticate(String uname, String pass)

{

 if(uname == "Tom")

 {

 if(pass == "tom123")

COPYRIGHT FIMT 2020 Page 335

 return true;

 }

 if(uname == "Dick")

 {

 if(pass == "dick123")

 return true;

 }

 if(uname == "Harry")

 {

 if(pass == "har123")

 return true;

 }

 return false;

}

public void OnLogin(Object src, EventArgs e)

{

 if (authenticate(txtuser.Text, txtpwd.Text))

 {

 FormsAuthentication.RedirectFromLoginPage(txtuser.Text, chkrem.Checked);

 }

 else

 {

 Response.Write("Invalid user name or password");

 }

}

Observe that the FormsAuthentication class is responsible for the process of authentication.

However, Visual Studio allows you to implement user creation, authentication, and authorization

with seamless ease without writing any code, through the Web Site Administration tool. This tool

allows creating users and roles.

Apart from this, ASP.NET comes with readymade login controls set, which has controls

performing all the jobs for you.

Implementing Forms-Based Security

To set up forms-based authentication, you need the following:

 A database of users to support the authentication process

 A website that uses the database

COPYRIGHT FIMT 2020 Page 336

 User accounts

 Roles

 Restriction of users and group activities

 A default page, to display the login status of the users and other information.

 A login page, to allow users to log in, retrieve password, or change password

To create users, take the following steps:

Step (1) : Choose Website -> ASP.NET Configuration to open the Web Application

Administration Tool.

Step (2) : Click on the Security tab.

Step (3) : Select the authentication type to 'Forms based authentication' by selecting the 'From the

Internet' radio button.

Step (4) : Click on 'Create Users' link to create some users. If you already had created roles, you

could assign roles to the user, right at this stage.

Step (5) : Create a web site and add the following pages:

 Welcome.aspx

 Login.aspx

 CreateAccount.aspx

 PasswordRecovery.aspx

 ChangePassword.aspx

Step (6) : Place a LoginStatus control on the Welcome.aspx from the login section of the toolbox.

It has two templates: LoggedIn and LoggedOut.

COPYRIGHT FIMT 2020 Page 337

In LoggedOut template, there is a login link and in the LoggedIn template, there is a logout link on

the control. You can change the login and logout text properties of the control from the Properties

window.

Step (7) : Place a LoginView control from the toolbox below the LoginStatus control. Here, you

can put texts and other controls (hyperlinks, buttons etc.), which are displayed based on whether

the user is logged in or not.

This control has two view templates: Anonymous template and LoggedIn template. Select each

view and write some text for the users to be displayed for each template. The text should be placed

on the area marked red.

Step (8) : The users for the application are created by the developer. You might want to allow a

visitor to create a user account. For this, add a link beneath the LoginView control, which should

link to the CreateAccount.aspx page.

Step (9) : Place a CreateUserWizard control on the create account page. Set the

ContinueDestinationPageUrl property of this control to Welcome.aspx.

Step (10) : Create the Login page. Place a Login control on the page. The LoginStatus control

automatically links to the Login.aspx. To change this default, make the following changes in the

web.config file.

For example, if you want to name your log in page as signup.aspx, add the following lines to the

<authentication> section of the web.config:

<configuration>

 <system.web>

 <authentication mode="Forms">

 <forms loginUrl ="signup.aspx" defaultUrl = â€œWelcome.aspxâ€• />

 </authentication>

 </system.web>

COPYRIGHT FIMT 2020 Page 338

</configuration>

Step (11) : Users often forget passwords. The PasswordRecovery control helps the user gain access

to the account. Select the Login control. Open its smart tag and click 'Convert to Template'.

Customize the UI of the control to place a hyperlink control under the login button, which should

link to the PassWordRecovery.aspx

Step (12) : Place a PasswordRecovery control on the password recovery page. This control needs

an email server to send the passwords to the users.

Step (13) : Create a link to the ChangePassword.aspx page in the LoggedIn template of the

LoginView control in Welcome.aspx.

Step (14) : Place a ChangePassword control on the change password page. This control also has

two views.

Now run the application and observe different security operations.

To create roles, go back to the Web Application Administration Tools and click on the Security

tab. Click on 'Create Roles' and create some roles for the application.

COPYRIGHT FIMT 2020 Page 339

Click on the 'Manage Users' link and assign roles to the users.

IIS Authentication: SSL

The Secure Socket Layer or SSL is the protocol used to ensure a secure connection. With SSL

enabled, the browser encrypts all data sent to the server and decrypts all data coming from the

server. At the same time, the server encrypts and decrypts all data to and from browser.

The URL for a secure connection starts with HTTPS instead of HTTP. A small lock is displayed by

a browser using a secure connection. When a browser makes an initial attempt to communicate

with a server over a secure connection using SSL, the server authenticates itself by sending its

digital certificate.

To use the SSL, you need to buy a digital secure certificate from a trusted Certification Authority

(CA) and install it in the web server. Following are some of the trusted and reputed certification

authorities:

 www.verisign.com

 www.geotrust.com

 www.thawte.com

SSL is built into all major browsers and servers. To enable SSL, you need to install the digital

certificate. The strength of various digital certificates varies depending upon the length of the key

generated during encryption. More the length, more secure is the certificate, hence the connection.

Strength Description

40 bit Supported by most browsers but easy to break.

56 bit Stronger than 40-bit.

COPYRIGHT FIMT 2020 Page 340

128 bit Extremely difficult to break but all the browsers do

not support it.

ASP.NET - Data Caching

What is Caching?

Caching is a technique of storing frequently used data/information in memory, so that, when the

same data/information is needed next time, it could be directly retrieved from the memory instead

of being generated by the application.

Caching is extremely important for performance boosting in ASP.NET, as the pages and controls

are dynamically generated here. It is especially important for data related transactions, as these are

expensive in terms of response time.

Caching places frequently used data in quickly accessed media such as the random access memory

of the computer. The ASP.NET runtime includes a key-value map of CLR objects called cache.

This resides with the application and is available via the HttpContext and System.Web.UI.Page.

In some respect, caching is similar to storing the state objects. However, the storing information in

state objects is deterministic, i.e., you can count on the data being stored there, and caching of data

is nondeterministic.

The data will not be available in the following cases:

 If its lifetime expires,

 If the application releases its memory,

 If caching does not take place for some reason.

You can access items in the cache using an indexer and may control the lifetime of objects in the

cache and set up links between the cached objects and their physical sources.

Caching in ASP.Net

ASP.NET provides the following different types of caching:

 Output Caching : Output cache stores a copy of the finally rendered HTML pages or part of pages

sent to the client. When the next client requests for this page, instead of regenerating the page, a

cached copy of the page is sent, thus saving time.

 Data Caching : Data caching means caching data from a data source. As long as the cache is not

expired, a request for the data will be fulfilled from the cache. When the cache is expired, fresh

data is obtained by the data source and the cache is refilled.

 Object Caching : Object caching is caching the objects on a page, such as data-bound controls.

The cached data is stored in server memory.

 Class Caching : Web pages or web services are compiled into a page class in the assembly, when

run for the first time. Then the assembly is cached in the server. Next time when a request is made

COPYRIGHT FIMT 2020 Page 341

for the page or service, the cached assembly is referred to. When the source code is changed, the

CLR recompiles the assembly.

 Configuration Caching : Application wide configuration information is stored in a configuration

file. Configuration caching stores the configuration information in the server memory.

In this tutorial, we will consider output caching, data caching, and object caching.

Output Caching

Rendering a page may involve some complex processes such as, database access, rendering

complex controls etc. Output caching allows bypassing the round trips to server by caching data in

memory. Even the whole page could be cached.

The OutputCache directive is responsible of output caching. It enables output caching and provides

certain control over its behaviour.

Syntax for OutputCache directive:

<%@ OutputCache Duration="15" VaryByParam="None" %>

Put this directive under the page directive. This tells the environment to cache the page for 15

seconds. The following event handler for page load would help in testing that the page was really

cached.

protected void Page_Load(object sender, EventArgs e)

{

 Thread.Sleep(10000);

 Response.Write("This page was generated and cache at:" +

 DateTime.Now.ToString());

}

The Thread.Sleep() method stops the process thread for the specified time. In this example, the

thread is stopped for 10 seconds, so when the page is loaded for first time, it takes 10 seconds.

However, next time you refresh the page it does not take any time, as the page is retrieved from the

cache without being loaded.

The OutputCache directive has the following attributes, which helps in controlling the behaviour of

the output cache:

Attribute Values Description

DiskCacheable true/false Specifies that output could be written to a

disk based cache.

NoStore true/false Specifies that the "no store" cache control

header is sent or not.

CacheProfile String name Name of a cache profile as to be stored in

web.config.

COPYRIGHT FIMT 2020 Page 342

VaryByParam None

*

Param- name

Semicolon delimited list of string specifies

query string values in a GET request or

variable in a POST request.

VaryByHeader *

Header names

Semicolon delimited list of strings specifies

headers that might be submitted by a client.

VaryByCustom Browser

Custom string

Tells ASP.NET to vary the output cache by

browser name and version or by a custom

string.

Location Any

Client

Downstream

Server

None

Any: page may be cached anywhere.

Client: cached content remains at browser.

Downstream: cached content stored in

downstream and server both.

Server: cached content saved only on

server.

None: disables caching.

Duration Number Number of seconds the page or control is

cached.

Let us add a text box and a button to the previous example and add this event handler for the

button.

protected void btnmagic_Click(object sender, EventArgs e)

{

 Response.Write("

");

 Response.Write("<h2> Hello, " + this.txtname.Text + "</h2>");

}

Change the OutputCache directive:

<%@ OutputCache Duration="60" VaryByParam="txtname" %>

When the program is executed, ASP.NET caches the page on the basis of the name in the text box.

Data Caching

The main aspect of data caching is caching the data source controls. We have already discussed

that the data source controls represent data in a data source, like a database or an XML file. These

controls derive from the abstract class DataSourceControl and have the following inherited

properties for implementing caching:

 CacheDuration - It sets the number of seconds for which the data source will cache data.

 CacheExpirationPolicy - It defines the cache behavior when the data in cache has expired.

 CacheKeyDependency - It identifies a key for the controls that auto-expires the content of its

cache when removed.

 EnableCaching - It specifies whether or not to cache the data.

COPYRIGHT FIMT 2020 Page 343

Example

To demonstrate data caching, create a new website and add a new web form on it. Add a

SqlDataSource control with the database connection already used in the data access tutorials.

For this example, add a label to the page, which would show the response time for the page.

<asp:Label ID="lbltime" runat="server"></asp:Label>

Apart from the label, the content page is same as in the data access tutorial. Add an event handler

for the page load event:

protected void Page_Load(object sender, EventArgs e)

{

 lbltime.Text = String.Format("Page posted at: {0}", DateTime.Now.ToLongTimeString());

}

The designed page should look as shown:

When you execute the page for the first time, nothing different happens, the label shows that, each

time you refresh the page, the page is reloaded and the time shown on the label changes.

Next, set the EnableCaching attribute of the data source control to be 'true' and set the

Cacheduration attribute to '60'. It will implement caching and the cache will expire every 60

seconds. The timestamp changes with every refresh, but if you change the data in the table within

these 60 seconds, it is not shown before the cache expires.

<asp:SqlDataSource ID = "SqlDataSource1" runat = "server"

 ConnectionString = "<%$ ConnectionStrings: ASPDotNetStepByStepConnectionString %>"

 ProviderName = "<%$ ConnectionStrings:

ASPDotNetStepByStepConnectionString.ProviderName %>"

 SelectCommand = "SELECT * FROM [DotNetReferences]"

 EnableCaching = "true" CacheDuration = "60">

</asp:SqlDataSource>

Object Caching

Object caching provides more flexibility than other cache techniques. You can use object caching

to place any object in the cache. The object can be of any type - a data type, a web control, a class,

COPYRIGHT FIMT 2020 Page 344

a dataset object, etc. The item is added to the cache simply by assigning a new key name, shown as

follows Like:

Cache["key"] = item;

ASP.NET also provides the Insert() method for inserting an object to the cache. This method has

four overloaded versions. Let us see them:

Overload Description

Cache.Insert((key, value); Inserts an item into the cache with the key

name and value with default priority and

expiration.

Cache.Insert(key, value,

dependencies);

Inserts an item into the cache with key, value,

default priority, expiration and a

CacheDependency name that links to other

files or items so that when these change the

cache item remains no longer valid.

Cache.Insert(key, value,

dependencies,

absoluteExpiration,

slidingExpiration);

This indicates an expiration policy along with

the above issues.

Cache.Insert(key, value,

dependencies,

absoluteExpiration,

slidingExpiration,

priority,

onRemoveCallback);

This along with the parameters also allows

you to set a priority for the cache item and a

delegate that, points to a method to be invoked

when the item is removed.

Sliding expiration is used to remove an item from the cache when it is not used for the specified

time span. The following code snippet stores an item with a sliding expiration of 10 minutes with

no dependencies.

Cache.Insert("my_item", obj, null, DateTime.MaxValue, TimeSpan.FromMinutes(10));

Example

Create a page with just a button and a label. Write the following code in the page load event:

protected void Page_Load(object sender, EventArgs e)

{

 if (this.IsPostBack)

 {

 lblinfo.Text += "Page Posted Back.
";

 }

 else

COPYRIGHT FIMT 2020 Page 345

 {

 lblinfo.Text += "page Created.
";

 }

 if (Cache["testitem"] == null)

 {

 lblinfo.Text += "Creating test item.
";

 DateTime testItem = DateTime.Now;

 lblinfo.Text += "Storing test item in cache ";

 lblinfo.Text += "for 30 seconds.
";

 Cache.Insert("testitem", testItem, null,

 DateTime.Now.AddSeconds(30), TimeSpan.Zero);

 }

 else

 {

 lblinfo.Text += "Retrieving test item.
";

 DateTime testItem = (DateTime)Cache["testitem"];

 lblinfo.Text += "Test item is: " + testItem.ToString();

 lblinfo.Text += "
";

 }

 lblinfo.Text += "
";

}

When the page is loaded for the first time, it says:

Page Created.

Creating test item.

Storing test item in cache for 30 seconds.

If you click on the button again within 30 seconds, the page is posted back but the label control

gets its information from the cache as shown:

Page Posted Back.

Retrieving test item.

Test item is: 14-07-2010 01:25:04

ASP.NET - Web Services

A web service is a web-based functionality accessed using the protocols of the web to be used by

the web applications. There are three aspects of web service development:

COPYRIGHT FIMT 2020 Page 346

 Creating the web service

 Creating a proxy

 Consuming the web service

Creating a Web Service

A web service is a web application which is basically a class consisting of methods that could be

used by other applications. It also follows a code-behind architecture such as the ASP.NET web

pages, although it does not have a user interface.

To understand the concept let us create a web service to provide stock price information. The

clients can query about the name and price of a stock based on the stock symbol. To keep this

example simple, the values are hardcoded in a two-dimensional array. This web service has three

methods:

 A default HelloWorld method

 A GetName Method

 A GetPrice Method

Take the following steps to create the web service:

Step (1) : Select File -> New -> Web Site in Visual Studio, and then select ASP.NET Web Service.

Step (2) : A web service file called Service.asmx and its code behind file, Service.cs is created in

the App_Code directory of the project.

Step (3) : Change the names of the files to StockService.asmx and StockService.cs.

Step (4) : The .asmx file has simply a WebService directive on it:

<%@ WebService Language="C#" CodeBehind="~/App_Code/StockService.cs"

Class="StockService" %>

Step (5) : Open the StockService.cs file, the code generated in it is the basic Hello World service.

The default web service code behind file looks like the following:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Xml.Linq;

namespace StockService

{

COPYRIGHT FIMT 2020 Page 347

 // <summary>

 // Summary description for Service1

 // <summary>

 [WebService(Namespace = "http://tempuri.org/")]

 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

 [ToolboxItem(false)]

 // To allow this Web Service to be called from script,

 // using ASP.NET AJAX, uncomment the following line.

 // [System.Web.Script.Services.ScriptService]

 public class Service1 : System.Web.Services.WebService

 {

 [WebMethod]

 public string HelloWorld()

 {

 return "Hello World";

 }

 }

}

Step (6) : Change the code behind file to add the two dimensional array of strings for stock symbol,

name and price and two web methods for getting the stock information.

using System;

using System.Linq;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Xml.Linq;

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

// To allow this Web Service to be called from script,

// using ASP.NET AJAX, uncomment the following line.

// [System.Web.Script.Services.ScriptService]

public class StockService : System.Web.Services.WebService

{

 public StockService () {

 //Uncomment the following if using designed components

COPYRIGHT FIMT 2020 Page 348

 //InitializeComponent();

 }

 string[,] stocks =

 {

 {"RELIND", "Reliance Industries", "1060.15"},

 {"ICICI", "ICICI Bank", "911.55"},

 {"JSW", "JSW Steel", "1201.25"},

 {"WIPRO", "Wipro Limited", "1194.65"},

 {"SATYAM", "Satyam Computers", "91.10"}

 };

 [WebMethod]

 public string HelloWorld() {

 return "Hello World";

 }

 [WebMethod]

 public double GetPrice(string symbol)

 {

 //it takes the symbol as parameter and returns price

 for (int i = 0; i < stocks.GetLength(0); i++)

 {

 if (String.Compare(symbol, stocks[i, 0], true) == 0)

 return Convert.ToDouble(stocks[i, 2]);

 }

 return 0;

 }

 [WebMethod]

 public string GetName(string symbol)

 {

 // It takes the symbol as parameter and

 // returns name of the stock

 for (int i = 0; i < stocks.GetLength(0); i++)

 {

 if (String.Compare(symbol, stocks[i, 0], true) == 0)

 return stocks[i, 1];

 }

 return "Stock Not Found";

COPYRIGHT FIMT 2020 Page 349

 }

}

Step (7) : Running the web service application gives a web service test page, which allows testing

the service methods.

Step (8) : Click on a method name, and check whether it runs properly.

Step (9) : For testing the GetName method, provide one of the stock symbols, which are hard

coded, it returns the name of the stock

Consuming the Web Service

For using the web service, create a web site under the same solution. This could be done by right

clicking on the Solution name in the Solution Explorer. The web page calling the web service

should have a label control to display the returned results and two button controls one for post back

and another for calling the service.

The content file for the web application is as follows:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="wsclient._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

 <head runat="server">

 <title>

 Untitled Page

COPYRIGHT FIMT 2020 Page 350

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <h3>Using the Stock Service</h3>

 <asp:Label ID="lblmessage" runat="server"></asp:Label>

 <asp:Button ID="btnpostback" runat="server" onclick="Button1_Click" Text="Post

Back" style="width:132px" />

 <asp:Button ID="btnservice" runat="server" onclick="btnservice_Click"

Text="Get Stock" style="width:99px" />

 </div>

 </form>

 </body>

</html>

The code behind file for the web application is as follows:

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

//this is the proxy

using localhost;

namespace wsclient

{

COPYRIGHT FIMT 2020 Page 351

 public partial class _Default : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 lblmessage.Text = "First Loading Time: " + DateTime.Now.ToLongTimeString

 }

 else

 {

 lblmessage.Text = "PostBack at: " + DateTime.Now.ToLongTimeString();

 }

 }

 protected void btnservice_Click(object sender, EventArgs e)

 {

 StockService proxy = new StockService();

 lblmessage.Text = String.Format("Current SATYAM Price:{0}",

 proxy.GetPrice("SATYAM").ToString());

 }

 }

}

Creating the Proxy

A proxy is a stand-in for the web service codes. Before using the web service, a proxy must be

created. The proxy is registered with the client application. Then the client application makes the

calls to the web service as it were using a local method. The proxy takes the calls, wraps it in

proper format and sends it as a SOAP request to the server. SOAP stands for Simple Object Access

Protocol. This protocol is used for exchanging web service data. When the server returns the SOAP

package to the client, the proxy decodes everything and presents it to the client application. Before

calling the web service using the btnservice_Click, a web reference should be added to the

application. This creates a proxy class transparently, which is used by the btnservice_Click event.

protected void btnservice_Click(object sender, EventArgs e)

{

 StockService proxy = new StockService();

 lblmessage.Text = String.Format("Current SATYAM Price: {0}",

 proxy.GetPrice("SATYAM").ToString());

COPYRIGHT FIMT 2020 Page 352

}

Take the following steps for creating the proxy:

Step (1) : Right click on the web application entry in the Solution Explorer and click on 'Add Web

Reference'.

Step (2) : Select 'Web Services in this solution'. It returns the StockService reference.

Step (3) : Clicking on the service opens the test web page. By default the proxy created is called

'localhost', you can rename it. Click on 'Add Reference' to add the proxy to the client application.

Include the proxy in the code behind file by adding:

 using localhost;

ASP.NET - Multi Threading

A thread is defined as the execution path of a program. Each thread defines a unique flow of

control. If your application involves complicated and time consuming operations such as database

access or some intense I/O operations, then it is often helpful to set different execution paths or

threads, with each thread performing a particular job.

COPYRIGHT FIMT 2020 Page 353

Threads are lightweight processes. One common example of use of thread is implementation of

concurrent programming by modern operating systems. Use of threads saves wastage of CPU cycle

and increases efficiency of an application.

So far we compiled programs where a single thread runs as a single process which is the running

instance of the application. However, this way the application can perform one job at a time. To

make it execute multiple tasks at a time, it could be divided into smaller threads.

In .Net, the threading is handled through the 'System.Threading' namespace. Creating a variable of

the System.Threading.Thread type allows you to create a new thread to start working with. It

allows you to create and access individual threads in a program.

Creating Thread

A thread is created by creating a Thread object, giving its constructor a ThreadStart reference.

ThreadStart childthreat = new ThreadStart(childthreadcall);

Thread Life Cycle

The life cycle of a thread starts when an object of the System.Threading.Thread class is created and

ends when the thread is terminated or completes execution.

Following are the various states in the life cycle of a thread:

 The Unstarted State : It is the situation when the instance of the thread is created but the Start

method is not called.

 The Ready State : It is the situation when the thread is ready to execute and waiting CPU cycle.

 The Not Runnable State : a thread is not runnable, when:

o Sleep method has been called

o Wait method has been called

o Blocked by I/O operations

 The Dead State : It is the situation when the thread has completed execution or has been aborted.

Thread Priority

The Priority property of the Thread class specifies the priority of one thread with respect to other.

The .Net runtime selects the ready thread with the highest priority.

The priorities could be categorized as:

 Above normal

 Below normal

 Highest

 Lowest

 Normal

Once a thread is created, its priority is set using the Priority property of the thread class.

NewThread.Priority = ThreadPriority.Highest;

COPYRIGHT FIMT 2020 Page 354

Thread Properties & Methods

The Thread class has the following important properties:

Property Description

CurrentContext Gets the current context in which the thread is

executing.

CurrentCulture Gets or sets the culture for the current thread.

CurrentPrinciple Gets or sets the thread's current principal for role-

based security.

CurrentThread Gets the currently running thread.

CurrentUICulture Gets or sets the current culture used by the

Resource Manager to look up culture-specific

resources at run time.

ExecutionContext Gets an ExecutionContext object that contains

information about the various contexts of the

current thread.

IsAlive Gets a value indicating the execution status of the

current thread.

IsBackground Gets or sets a value indicating whether or not a

thread is a background thread.

IsThreadPoolThread Gets a value indicating whether or not a thread

belongs to the managed thread pool.

ManagedThreadId Gets a unique identifier for the current managed

thread.

Name Gets or sets the name of the thread.

Priority Gets or sets a value indicating the scheduling

priority of a thread.

ThreadState Gets a value containing the states of the current

thread.

The Thread class has the following important methods:

Methods Description

Abort Raises a ThreadAbortException in the thread on

which it is invoked, to begin the process of

terminating the thread. Calling this method

usually terminates the thread.

AllocateDataSlot Allocates an unnamed data slot on all the

threads. For better performance, use fields that

are marked with the ThreadStaticAttribute

COPYRIGHT FIMT 2020 Page 355

attribute instead.

AllocateNamedDataSlot Allocates a named data slot on all threads. For

better performance, use fields that are marked

with the ThreadStaticAttribute attribute instead.

BeginCriticalRegion Notifies a host that execution is about to enter a

region of code in which the effects of a thread

abort or unhandled exception might endanger

other tasks in the application domain.

BeginThreadAffinity Notifies a host that managed code is about to

execute instructions that depend on the identity

of the current physical operating system thread.

EndCriticalRegion Notifies a host that execution is about to enter a

region of code in which the effects of a thread

abort or unhandled exception are limited to the

current task.

EndThreadAffinity Notifies a host that managed code has finished

executing instructions that depend on the

identity of the current physical operating system

thread.

FreeNamedDataSlot Eliminates the association between a name and a

slot, for all threads in the process. For better

performance, use fields that are marked with the

ThreadStaticAttribute attribute instead.

GetData Retrieves the value from the specified slot on

the current thread, within the current thread's

current domain. For better performance, use

fields that are marked with the

ThreadStaticAttribute attribute instead.

GetDomain Returns the current domain in which the current

thread is running.

GetDomainID Returns a unique application domain identifier.

GetNamedDataSlot Looks up a named data slot. For better

performance, use fields that are marked with the

ThreadStaticAttribute attribute instead.

Interrupt Interrupts a thread that is in the WaitSleepJoin

thread state.

Join Blocks the calling thread until a thread

terminates, while continuing to perform

standard COM and SendMessage pumping. This

method has different overloaded forms.

MemoryBarrier Synchronizes memory access as follows: The

COPYRIGHT FIMT 2020 Page 356

processor executing the current thread cannot

reorder instructions in such a way that memory

accesses prior to the call to MemoryBarrier

execute after memory accesses that follow the

call to MemoryBarrier.

ResetAbort Cancels an Abort requested for the current

thread.

SetData Sets the data in the specified slot on the

currently running thread, for that thread's current

domain. For better performance, use fields

marked with the ThreadStaticAttribute attribute

instead.

Start Starts a thread.

Sleep Makes the thread pause for a period of time.

SpinWait Causes a thread to wait the number of times

defined by the iterations parameter.

VolatileRead() Reads the value of a field. The value is the latest

written by any processor in a computer,

regardless of the number of processors or the

state of processor cache. This method has

different overloaded forms.

VolatileWrite() Writes a value to a field immediately, so that the

value is visible to all processors in the computer.

This method has different overloaded forms.

Yield Causes the calling thread to yield execution to

another thread that is ready to run on the current

processor. The operating system selects the

thread to yield to.

Example

The following example illustrates the uses of the Thread class. The page has a label control for

displaying messages from the child thread. The messages from the main program are directly

displayed using the Response.Write() method. Hence they appear on the top of the page.

The source file is as follows:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="threaddemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

COPYRIGHT FIMT 2020 Page 357

 <head runat="server">

 <title>

 Untitled Page

 </title>

 </head>

 <body>

 <form id="form1" runat="server">

 <div>

 <h3>Thread Example</h3>

 </div>

 <asp:Label ID="lblmessage" runat="server" Text="Label">

 </asp:Label>

 </form>

 </body>

 </html>

The code behind file is as follows:

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

using System.Threading;

namespace threaddemo

{

 public partial class _Default : System.Web.UI.Page

 {

COPYRIGHT FIMT 2020 Page 358

 protected void Page_Load(object sender, EventArgs e)

 {

 ThreadStart childthreat = new ThreadStart(childthreadcall);

 Response.Write("Child Thread Started
");

 Thread child = new Thread(childthreat);

 child.Start();

 Response.Write("Main sleeping for 2 seconds.......
");

 Thread.Sleep(2000);

 Response.Write("
Main aborting child thread
");

 child.Abort();

 }

 public void childthreadcall()

 {

 try{

 lblmessage.Text = "
Child thread started
";

 lblmessage.Text += "Child Thread: Coiunting to 10";

 for(int i =0; i<10; i++)

 {

 Thread.Sleep(500);

 lblmessage.Text += "
 in Child thread </br>";

 }

 lblmessage.Text += "
 child thread finished";

 }catch(ThreadAbortException e){

 lblmessage.Text += "
 child thread - exception";

 }finally{

 lblmessage.Text += "
 child thread - unable to catch the exception";

 }

 }

 }

}

Observe the following

 When the page is loaded, a new thread is started with the reference of the method childthreadcall().

The main thread activities are displayed directly on the web page.

 The second thread runs and sends messages to the label control.

COPYRIGHT FIMT 2020 Page 359

 The main thread sleeps for 2000 ms, during which the child thread executes.

 The child thread runs till it is aborted by the main thread. It raises the ThreadAbortException and is

terminated.

 Control returns to the main thread.

When executed the program sends the following messages:

ASP.NET - Configuration

The behavior of an ASP.NET application is affected by different settings in the configuration files:

 machine.config

 web.config

The machine.config file contains default and the machine-specific value for all supported settings.

The machine settings are controlled by the system administrator and applications are generally not

given access to this file. An application however, can override the default values by creating

web.config files in its roots folder. The web.config file is a subset of the machine.config file. If the

application contains child directories, it can define a web.config file for each folder. Scope of each

configuration file is determined in a hierarchical top-down manner.

Any web.config file can locally extend, restrict, or override any settings defined on the upper level.

Visual Studio generates a default web.config file for each project. An application can execute

without a web.config file, however, you cannot debug an application without a web.config file.

The following figure shows the Solution Explorer for the sample example used in the web services

tutorial:

COPYRIGHT FIMT 2020 Page 360

In this application, there are two web.config files for two projects i.e., the web service and the web

site calling the web service. The web.config file has the configuration element as the root node.

Information inside this element is grouped into two main areas: the configuration section-handler

declaration area, and the configuration section settings area.

The following code snippet shows the basic syntax of a configuration file:

<configuration>

 <!-- Configuration section-handler declaration area. -->

 <configSections>

 <section name="section1" type="section1Handler" />

 <section name="section2" type="section2Handler" />

 </configSections>

 <!-- Configuration section settings area. -->

 <section1>

 <s1Setting1 attribute1="attr1" />

 </section1>

 <section2>

 <s2Setting1 attribute1="attr1" />

 </section2>

 <system.web>

 <authentication mode="Windows" />

 </system.web>

 </configuration>

Configuration Section Handler declarations

The configuration section handlers are contained within the <configSections> tags. Each

configuration handler specifies name of a configuration section, contained within the file, which

provides some configuration data. It has the following basic syntax:

<configSections>

 <section />

 <sectionGroup />

 <remove />

 <clear/>

</configSections>

It has the following elements:

 Clear - It removes all references to inherited sections and section groups.

 Remove - It removes a reference to an inherited section and section group.

COPYRIGHT FIMT 2020 Page 361

 Section - It defines an association between a configuration section handler and a configuration

element.

 Section group - It defines an association between a configuration section handler and a

configuration section.

Application Settings

The application settings allow storing application-wide name-value pairs for read-only access. For

example, you can define a custom application setting as:

<configuration>

 <appSettings>

 <add key="Application Name" value="MyApplication" />

 </appSettings>

</configuration>

For example, you can also store the name of a book and its ISBN number:

<configuration>

 <appSettings>

 <add key="appISBN" value="0-273-68726-3" />

 <add key="appBook" value="Corporate Finance" />

 </appSettings>

</configuration>

Connection Strings

The connection strings show which database connection strings are available to the website. For

example:

<connectionStrings>

 <add name="ASPDotNetStepByStepConnectionString"

 connectionString="Provider=Microsoft.Jet.OLEDB.4.0;

 Data Source=E:\\projects\datacaching\ /

 datacaching\App_Data\ASPDotNetStepByStep.mdb"

 providerName="System.Data.OleDb" />

 <add name="booksConnectionString"

 connectionString="Provider=Microsoft.Jet.OLEDB.4.0;

 Data Source=C:\ \databinding\App_Data\books.mdb"

 providerName="System.Data.OleDb" />

</connectionStrings>

COPYRIGHT FIMT 2020 Page 362

System.Web Element

The system.web element specifies the root element for the ASP.NET configuration section and

contains configuration elements that configure ASP.NET Web applications and control how the

applications behave.

It holds most of the configuration elements needed to be adjusted in common applications. The

basic syntax for the element is as given:

<system.web>

 <anonymousIdentification>

 <authentication>

 <authorization>

 <browserCaps>

 <caching>

 <clientTarget>

 <compilation>

 <customErrors>

 <deployment>

 <deviceFilters>

 <globalization>

 <healthMonitoring>

 <hostingEnvironment>

 <httpCookies>

 <httpHandlers>

 <httpModules>

 <httpRuntime>

 <identity>

 <machineKey>

 <membership>

 <mobileControls>

 <pages>

 <processModel>

 <profile>

 <roleManager>

 <securityPolicy>

 <sessionPageState>

COPYRIGHT FIMT 2020 Page 363

 <sessionState>

 <siteMap>

 <trace>

 <trust>

 <urlMappings>

 <webControls>

 <webParts>

 <webServices>

 <xhtmlConformance>

</system.web>

The following table provides brief description of some of common sub elements of

the system.web element:

AnonymousIdentification

This is required to identify users who are not authenticated when authorization is required.

Authentication

It configures the authentication support. The basic syntax is as given:

<authentication mode="[Windows|Forms|Passport|None]">

 <forms>...</forms>

 <passport/>

</authentication>

Authorization

It configures the authorization support. The basic syntax is as given:

<authorization>

 <allow .../>

 <deny .../>

</authorization>

Caching

It Configures the cache settings. The basic syntax is as given:

<caching>

COPYRIGHT FIMT 2020 Page 364

 <cache>...</cache>

 <outputCache>...</outputCache>

 <outputCacheSettings>...</outputCacheSettings>

 <sqlCacheDependency>...</sqlCacheDependency>

</caching>

CustomErrors

It defines custom error messages. The basic syntax is as given:

<customErrors defaultRedirect="url" mode="On|Off|RemoteOnly">

 <error. . ./>

</customErrors>

Deployment

It defines configuration settings used for deployment. The basic syntax is as follows:

<deployment retail="true|false" />

HostingEnvironment

It defines configuration settings for hosting environment. The basic syntax is as follows:

<hostingEnvironment idleTimeout="HH:MM:SS" shadowCopyBinAssemblies="true|false"

 shutdownTimeout="number" urlMetadataSlidingExpiration="HH:MM:SS" />

Identity

It configures the identity of the application. The basic syntax is as given:

<identity impersonate="true|false" userName="domain\username"

 password="<secure password>"/>

MachineKey

It configures keys to use for encryption and decryption of Forms authentication cookie data.

It also allows configuring a validation key that performs message authentication checks on view-

state data and forms authentication tickets. The basic syntax is:

<machineKey validationKey="AutoGenerate,IsolateApps" [String]

 decryptionKey="AutoGenerate,IsolateApps" [String]

COPYRIGHT FIMT 2020 Page 365

 validation="HMACSHA256" [SHA1 | MD5 | 3DES | AES | HMACSHA256 |

 HMACSHA384 | HMACSHA512 | alg:algorithm_name]

 decryption="Auto" [Auto | DES | 3DES | AES | alg:algorithm_name]

/>

Membership

This configures parameters of managing and authenticating user accounts. The basic syntax is:

<membership defaultProvider="provider name"

 userIsOnlineTimeWindow="number of minutes" hashAlgorithmType="SHA1">

 <providers>...</providers>

</membership>

Pages

It provides page-specific configurations. The basic syntax is:

<pages asyncTimeout="number" autoEventWireup="[True|False]"

 buffer="[True|False]" clientIDMode="[AutoID|Predictable|Static]"

 compilationMode="[Always|Auto|Never]"

 controlRenderingCompatibilityVersion="[3.5|4.0]"

 enableEventValidation="[True|False]"

 enableSessionState="[True|False|ReadOnly]"

 enableViewState="[True|False]"

 enableViewStateMac="[True|False]"

 maintainScrollPositionOnPostBack="[True|False]"

 masterPageFile="file path"

 maxPageStateFieldLength="number"

 pageBaseType="typename, assembly"

 pageParserFilterType="string"

 smartNavigation="[True|False]"

 styleSheetTheme="string"

 theme="string"

 userControlBaseType="typename"

 validateRequest="[True|False]"

 viewStateEncryptionMode="[Always|Auto|Never]" >

 <controls>...</controls>

COPYRIGHT FIMT 2020 Page 366

 <namespaces>...</namespaces>

 <tagMapping>...</tagMapping>

 <ignoreDeviceFilters>...</ignoreDeviceFilters>

</pages>

Profile

It configures user profile parameters. The basic syntax is:

<profile enabled="true|false" inherits="fully qualified type reference"

 automaticSaveEnabled="true|false" defaultProvider="provider name">

 <properties>...</properties>

 <providers>...</providers>

 </profile>

RoleManager

It configures settings for user roles. The basic syntax is:

<roleManager cacheRolesInCookie="true|false" cookieName="name"

 cookiePath="/" cookieProtection="All|Encryption|Validation|None"

 cookieRequireSSL="true|false " cookieSlidingExpiration="true|false "

 cookieTimeout="number of minutes" createPersistentCookie="true|false"

 defaultProvider="provider name" domain="cookie domain">

 enabled="true|false"

 maxCachedResults="maximum number of role names cached"

 <providers>...</providers>

</roleManager>

SecurityPolicy

It configures the security policy. The basic syntax is:

<securityPolicy>

 <trustLevel />

</securityPolicy>

UrlMappings

COPYRIGHT FIMT 2020 Page 367

It defines mappings to hide the original URL and provide a more user friendly URL. The basic

syntax is:

<urlMappings enabled="true|false">

 <add.../>

 <clear />

 <remove.../>

</urlMappings>

WebControls

It provides the name of shared location for client scripts. The basic syntax is:

<webControls clientScriptsLocation="String" />

WebServices

This configures the web services.

ASP.NET - Deployment

There are two categories of ASP.NET deployment:

 Local deployment : In this case, the entire application is contained within a virtual directory and

all the contents and assemblies are contained within it and available to the application.

 Global deployment : In this case, assemblies are available to every application running on the

server.

There are different techniques used for deployment, however, we will discuss the following most

common and easiest ways of deployment:

 XCOPY deployment

 Copying a Website

 Creating a set up project

XCOPY Deployment

XCOPY deployment means making recursive copies of all the files to the target folder on the target

machine. You can use any of the commonly used techniques:

 FTP transfer

 Using Server management tools that provide replication on a remote site

 MSI installer application

COPYRIGHT FIMT 2020 Page 368

XCOPY deployment simply copies the application file to the production server and sets a virtual

directory there. You need to set a virtual directory using the Internet Information Manager

Microsoft Management Console (MMC snap-in).

Copying a Website

The Copy Web Site option is available in Visual Studio. It is available from the Website -> Copy

Web Site menu option. This menu item allows copying the current web site to another local or

remote location. It is a sort of integrated FTP tool.

Using this option, you connect to the target destination, select the desired copy mode:

 Overwrite

 Source to Target Files

 Sync UP Source And Target Projects

Then proceed with copying the files physically. Unlike the XCOPY deployment, this process of

deployment is done from Visual Studio environment. However, there are following problems with

both the above deployment methods:

 You pass on your source code.

 There is no pre-compilation and related error checking for the files.

 The initial page load will be slow.

Creating a Setup Project

In this method, you use Windows Installer and package your web applications so it is ready to

deploy on the production server. Visual Studio allows you to build deployment packages. Let us

test this on one of our existing project, say the data binding project.

Open the project and take the following steps:

Step (1) : Select File -> Add -> New Project with the website root directory highlighted in the

Solution Explorer.

Step (2) : Select Setup and Deployment, under Other Project Types. Select Setup Wizard.

Step (3) : Choosing the default location ensures that the set up project will be located in its own

folder under the root directory of the site. Click on okay to get the first splash screen of the wizard.

Step (4) : Choose a project type. Select 'Create a setup for a web application'.

COPYRIGHT FIMT 2020 Page 369

Step (5) : Next, the third screen asks to choose project outputs from all the projects in the solution.

Check the check box next to 'Content Files from...'

Step (6) : The fourth screen allows including other files like ReadMe. However, in our case there is

no such file. Click on finish.

Step (7) : The final screen displays a summary of settings for the set up project.

Step (8) : The Set up project is added to the Solution Explorer and the main design window shows

a file system editor.

Step (9) : Next step is to build the setup project. Right click on the project name in the Solution

Explorer and select Build.

COPYRIGHT FIMT 2020 Page 370

Step (10) : When build is completed, you get the following message in the Output window:

Two files are created by the build process:

 Setup.exe

 Setup-databinding.msi

You need to copy these files to the server. Double-click the setup file to install the content of the

.msi file on the local machin

PRINCIPAL OF ACCOUNTING (207)

MEANING AND SCOPE OF ACCOUNTING

DEFINITION

Financial accountancy (or financial accounting) is the field of accountancy concerned with the

preparation of financial statements for decision makers, such as stockholders, suppliers, banks,

employees, government agencies, owners and other stakeholders. In 1966, American accounting

Association (AAA) defined accounting as “Accounting is the process of identifying, measuring and

communicating economic information to permit the informed judgements ands decisions by the

users of the information.”

In 1941, American Institute of Certified public Accountants (AICPA) defined accounting as

“Accounting is the art of recording, classifying and summarizing in significant manner and in terms

of money, transactions and events which are, in part, at least of a financial character and

interpreting the results thereof.” Financial capital maintenance can be measured in either nominal

monetary units or units of constant purchasing power. The central need for financial accounting is

to reduce the various principal-agent problems, by measuring and monitoring the agents'

performance and thereafter reporting the results to interested users.

SCOPE OF ACCOUNTING:

COPYRIGHT FIMT 2020 Page 371

Accounting as compared to book-keeping has a very wide and huge role to play in the businesses

whether there is a small firm engaged in few transactions to a large MNC with multiple transactions

daily, Accounting is required everywhere. Accounting not only maintains the records but also

analyzes and interprets the results also. Accounting is being done in any nature and size of the firm,

example: schools, hospitals, banks, retail shops. Nowadays Accountants are serving the accounting

requirements of various businesses and organizations for which they require expertise in the same

field. Accounting has grown in its importance today as a discipline that provides results online in a

quick and accessible form that can be used by the management for decision-making. It has been

recognized as a tool for mastering the economic problems that a business organization may have to

face.

There are several parties now connected with the accounting information they are as follows: ·

 Proprietors

· Managers · Suppliers · Investors

· Government · Public

Thus accounting is being used anywhere and everywhere as it is the need of an hour to give rise to

any business event that occurs daily many times as it accounts for the profitability and returns of

the business.

NATURE OF ACCOUNTING:

Accounting as a discipline has been originated to serve the purpose of the organization in

maintaining and updating the records and transactions of the various business events on a day-to-

day basis.

It functions as a means from which various parties connected to the business can get the accounting

information and the management is able to do the decision-making for various business plans and

policies. The accountants are hired for maintaining and preparing the records and financial

statements, provide the results and also conduct analysis and conclusions drawn from them.

From the above on e can derive the basic nature as follows:

1. It keeps and maintains the record of the business.

2. It also helps to analyze and interpret the financial data.

3. It is useful in decision-making.

4. It is useful in preparation and compilation of financial results.

5. It also serves as a means to depict the financial position of the business.

COPYRIGHT FIMT 2020 Page 372

6. It ignores the qualitatitive aspects of the business.

7. The information provided in accounting is based on estimates.

FUNCTIONS OF ACCOUNTING

1. Record Keeping

2. Protecting of properties

 3. Communication of results

4. Meeting legal requirements

OBJECTIVES OF ACCOUNTING ARE

1. To keep systematic records: Its main objective is to keep complete record of Business

transactions. It avoids the possibility of omission and fraud.

2. To calculate profit or loss: Accounting helps to ascertain the net profit earned or loss suffered on

account of business transactions during a particular period. To ascertain profit or loss at the end of

each accounting period Trading and Profit& Loss is prepared.

3. To facilitate decision making: The information collected from various financial statements is

useful in decision-making and is of use to the parties connected to the business.

4. To ascertain the financial position of the business:

The businessman is able to know the financial position of the firm through the profits made or

losses incurred by the firm during the accounting period as well as the balance-sheet serve as a

basis of serving the financial status of the firm at a particular date.

RELATIONSHIP OF ACCOUNTING WITH ECONOMICS

Prof. Robbins has defined term ‘economics’ as follows-

“Economics is the science, which studies human behavior as a relationship between ends and

scarce means which have alternatives uses.”However when a person is to take any economical

decision, he has to depend mainly on the accounting information. Generally an accountant is

concerned with the economic problems of an only one enterprise only, but an economist is

concerned with the problems of an industry as a whole. Micro levels data, arranged by the

accounting system, is summed up to get macro level data base. Thus at the macro level,

accounting provides the basic data, upon which the economic models are developed.

However, there exists a wide gulf between economists’ and accountants’ concept of income and

capital For example, the profit according to an economist is not same thing as the profit

according to an accountant. No doubt, accountants have derived the ideas of value, income and

capital maintenance from economists, but suitably modified to make them usable in practical

circumstances. Thus, Economics and Accounting are close related subjects.

COPYRIGHT FIMT 2020 Page 373

Relationship of Accounting with Mathematics

Knowledge of arithmetic and algebra is a pre-requisite for accounting computations and

measurements. Calculations of interest and annuity etc. are some examples of fundamental uses

of mathematics in accounting.

Presently graphs and charts are being widely used for communicating accounting information to

the users. Thus the knowledge in geometry and trigonometry has become essential to have a

better understanding about the accounting communication system.

Relationship of Accounting with Statistics

Collection, Tabulation, Analysis and presentation of data are some primary functions, which are

performed by both Accountants and statisticians.The accountant is mainly concerned with the

monetary data, although to some extent, he is also concerned with the quantitative data. But a

statistician is concerned equally with the monetary and quantitative data.The use of statistics is

accounting can be appreciated better in the context of the nature of accounting records.

Accounting information is very precise; it is exact to the last paisa. But for decision-making

purposes, such precision is not necessary and hence the statistical approximations are sought.

Accounting records generally confined to one year, while statistical analysis is more useful if a

longer period is taken. For example, a longer period will be required to fit the trend line.

Statistical methods are helpful in developing accounting data and in their interrelation. Therefore

the study and application of statistical methods will add extra edge to the accounting data.

Relationship of Accounting with Law

Every business house has to work within legal environment. All the transactions with suppliers

and customers are governed by the Contract Act, Sale of Goods Act, Negotiable Instruments Act,

etc. The entity, itself, created and controlled by laws. For example a partnership business is

controlled by Partnership Act, a company is created and controlled by the Companies Act. Very

often the accounting system to be followed has been prescribed by the law. For example the

Companies Act has prescribed the format of financial statements. However legal prescription

about the accounting system is the product of development in accounting knowledge. That is to

say legislation about accounting system cannot be enacted unless there is a corresponding

development in the accounting discipline. In what way, accounting influences law and is also

influenced by law.

Relationship of Accounting with Management

Management is a broad occupational field, which comprises many functions and application of

COPYRIGHT FIMT 2020 Page 374

many disciplines including statistics, mathematics, economics, etc. Accountants are well placed in

the management and play a key role in the management them. A large portion of accounting

information is prepared for management decision-making. In the management team, an

accountant is in a better position to understand and use such data. In other words, since an

accountant plays an active role in management, he understands the data requirement. So,

accounting system can be molded to serve the management purpose.

Advantages of Financial Accounting:

• It provides legal information to stakeholders such as financial accounts in the form of trading,

profit and loss account and balance sheet.

• It shows the mode of investment for shareholders. • It provides business trade credit for suppliers.

• It notifies the risks of loan in business for banks and lenders.

Limitations of Financial Accounting:

One of the major limitations of financial accounting is that it does not take into

Account the non-monetary facts of the business like the competition in the market, change in the

value for money etc.

The following limitations of financial accounting have led to the development of cost Accounting:

1. No clear idea of operating efficiency: You will agree that, at times, profits may be more

or less, not because of efficiency or inefficiency but because of inflation or trade

depression. Financial accounting will not give you a clear picture of operating efficiency

when prices are rising or decreasing because of inflation or trade depression.

2. Weakness not spotted out by collective results: Financial accounting discloses only the

net result of the collective activities of a business as a whole. It does not indicate profit or

loss of each department, job, process or contract. It does not disclose the exact cause of

inefficiency i.e.it does not tell where the weakness is because it discloses the net profit of

all the activities of a business as a whole. Say, for instance, it can be compared with a

reading on a thermometer. A reading of more than 98.4° or less than 98.4º discloses that

something is wrong with the human body but the exact disease is not disclosed. Similarly,

loss or less profit disclosed by the profit and loss account is a signal of bad performance

of the business in whole, but the exact cause of such performance is not identified.

3. Not helpful in price fixation: In financial accounting, costs are not available as an aid in

determining prices of the products, services, production order and lines of products.

4. No classification of expenses and accounts: In financial accounting, there is no such

COPYRIGHT FIMT 2020 Page 375

system by which accounts are classified so as to give relevant data regarding costs by

departments, processes, products in the manufacturing divisions, by units of product lines

and sales territories, by departments, services and functions in the administrative division.

Further expenses are not attributed as to direct and indirect items. They are not assigned to

the products at each stage of production to show the controllable and uncontrollable

items of overhead costs.

5. No data for comparison and decision-making: It will not provide you with useful data

for comparison with a previous period. It also does not facilitate taking various financial

decisions like introduction of new products, replacement of labour by machines, price in

normal or special circumstances, producing a part in the factory or sourcing it from the

market, production of a product to be continued or given up, priority accorded to different

products and whether investment should be made in new products etc.

6. No control on cost: It does not provide for a proper control of materials and supplies,

wages, labour and overheads.

7. No standards to assess the performance: In financial accounting, there is no such well

developed system of standards, which would enable you to appraise the efficiency of the

organization in using materials, labour and overhead costs. Again, it does not provide you any

such information, which would help you to assess the performance of various persons and

departments in order that costs do not exceed a reasonable limit for a given quantum of work of

the requisite quality.

Basis of Accounting:

There are basically two systems of accounting: 1. Cash System of Accounting.

2. Accrual System of Accounting.

Cash system of Accounting:

It is a system in which accounting entries are made only when cash is received or paid. No entry is

made when a payment or receipt is merely due. For example, the rent for December 2009 has not

been paid till January 10the 2010. Under cash basis, rent expense for the month of December will

not be recorded as payment has not been made. Government system of accounting is mostly on the

cash system.

Accrual System of Accounting:

It is a system in which accounting entries are made on the basis of amount having become due

COPYRIGHT FIMT 2020 Page 376

for payment or receipt. This system recognizes the fact that if a transaction or an event occurred,

its consequences cannot be avoided and therefore, should be brought into book in order to

present a meaningful picture of profit earned or loss suffered.

Accounting Principles-Concepts and Conventions

Meaning of Accounting Principles:

Financial accounting is information that must be processed and reported objectively. Third

parties, who must rely on such information, have a right to be assured that the data is free from

bias and inconsistency, whether deliberate or not. For this reason, financial accounting relies on

certain standards or guides that are called 'Generally Accepted Accounting Principles' (GAAP).

Principles derived from tradition, such as the concept of matching. In any report of

financial statements (audit, compilation, review, etc.), the preparer/auditor must indicate to the

reader whether or not the information contained within the statements complies with GAAP.

ACCOUNTING PRINCIPLES

• Principle of regularity: Regularity can be defined as conformity to enforced rules and laws.

• Principle of consistency: This principle states that when a business has fixed a specific method

for the accounting treatment of an item, it will enter all similar items that follow, in exactly the

same way.

• Principle of sincerity: According to this principle, the accounting unit should reflect in good

faith the reality of the company's financial status.

• Principle of the permanence of methods: This principle aims at maintaining the coherence

and comparison of the financial information published by the company.

Principle of non-compensation: One should show the full details of the financial information and

not seek to compensate a debt with an asset, revenue with an expense etc.

• Principle of prudence: This principle aims at showing the reality 'as is': one should not try to

make things look rosier than they are. Typically, revenue should be recorded only when it is

certain and a provision should be entered for an expense, which is probable.

• Principle of continuity: When stating financial information, one assumes that business will not

be interrupted. This principle mitigates the principle of prudence: assets do not have to be

accounted at their disposable value, but it is accepted that they are at their historical value.

• Principle of periodicity: Each accounting entry should be allocated to a given period and split

accordingly if it covers several periods. If a client pre-pays a subscription (or lease, etc.), the

COPYRIGHT FIMT 2020 Page 377

given revenue should be split to the entire time-span and not accounted for entirely on the date of

the transaction.

• Principle of full disclosure/materiality: All information and values pertaining to the financial

position of a business must be disclosed in the records.

Accounting Concepts and Conventions:

An accounting convention is a modus operandi of universally accepted system of recording and

presenting accounting information to the concerned parties. They are followed judiciously and

rarely ignored. Accounting conventions are evolved through the regular and consistent practice

over the years to aid unvarying recording in the books of accounts. Accounting conventions help in

comparing accounting data of different business units or of the same unit for different periods.

These have been developed over the years.

1. Convention of relevance: The convention of relevance emphasizes the fact that only such

information should be made available by accounting that is pertinent and helpful for achieving its

objectives. The relevance of the items to be recorded depends on its nature and the amount

involved. It includes information, which will influence the decision of its client. This is also

known as convention of materiality.

For example, business is interested in knowing as to what has been the total labor cost. It is

neither interested in knowing the amount employees spend nor what they save.

2. Convention of feasibility: The convention of feasibility emphasizes that the time, labor and

cost of analyzing accounting information should be comparable to the benefits arising out of

it. For example, the cost of 'oiling and greasing' the machinery is so small that its break-up per

unit produced will be meaningless and will amount to wastage of labor and time of the

accounting staff.

3. Convention of consistency: The convention of consistency means that the same

accounting principles should be used for preparing financial statements year on year. An

evocative conclusion can be drawn from financial statements of the same enterprise when there is

similarity between them over a period of time. However, these are possible only when

accounting policies and practices followed by the enterprise are uniform and consistent over

a period. If dissimilar accounting procedures and practices are followed for preparing financial

statements of different accounting years, then the result will not be analogous. Generally, a

businessman follows the above-mentioned general practices or methods year after year. For

example, while charging depreciation on fixed assets or valuing unsold stock, if a particular

method is used it should be followed year after year, so that the financial statements can be

COPYRIGHT FIMT 2020 Page 378

analyzed and a comparison made.

4. Convention of objectivity: The convention of objectivity highlights that accounting

information should be measured and expressed by the standards which are universally

acceptable. For example, unsold stock of goods at the end of the year should be valued at cost

price or market price, whichever is less and not at a higher price even if it is likely to be sold at a

higher price in the future.

5. Convention of full disclosure: Convention of full disclosure states that all material and

relevant facts concerning financial statements should be fully disclosed. Full disclosure means

that there should be complete, reasonable and sufficient disclosure of accounting information.

Full refers to complete and detailed presentation of information. Thus, the convention of full

disclosure suggests that every financial statement should disclose all pertinent information. For

example, the business provides financial information to all interested parties like investors,

lenders, creditors, shareholders etc. The shareholder would like to know the profitability of the

firm while the creditors would like to know the solvency of the business. This is only possible if

the financial statement discloses all relevant information in a complete, fair and an unprejudiced

manner.

6. Convention of conservatism: This concept accentuates that profits should never be

overstated or anticipated. However, if the business anticipates any loss in the near future, provision

should be made for it in the books of accounts, for the same. For example, creating provision

for doubtful debts, discount on debtors, writing off intangible assets like goodwill, patent and

so on should be taken in to consideration. Traditionally, accounting follows the rule

'anticipate no profit and provide for all possible losses. ‘For example, the closing stock is valued

at cost price or market price, whichever is lower. The effect of the above is that in case market

price has come down then provides for the 'anticipated loss', but if the market price has

increased then ignore 'anticipated profits'. The convention of conservatism is a valuable tool in

situation of ambiguity and qualms.

Introduction To Accounting Standards: ACCOUNTING STANDARDS ISSUED BY ICAI

AS-1 DISCLOSURE OF ACCOUNTING POLICIES

AS-2 VALUATION OF INVENTORIES

AS-3 CASH FLOW STATEMENTS

AS-4 CONTINGECIES AND EVENTS OCCURING AFTER THE BALANCE SHEET DATE

AS-5 NET PROFIT OR LOSS FOR THE PERIOD, PRIOR PERIOD ITEMS AND CHANGES IN

ACCOUNTING POLICIES

COPYRIGHT FIMT 2020 Page 379

AS-6 DEPRECIATION ACCOUNTING

AS-7 ACCOUNTING FOR CONSTRUCTION CONTRACTS

AS-8 ACCOUNTING FOR RESEARCH AND DEVELOPMENT

AS-9 REVENUE RECOGNITION

AS-10 ACCOUNTING FOR FIXED ASSETS

AS-11 ACCOUNTING FOR THE EFFECTS OF CHANGES IN FOREIGN EXCHANGE RATES

AS-12 ACCOUNTING FOR GOVERNMENT GRANTS

AS-13 ACCOUNTING FOR INVESTMENTS

AS-14 ACCOUNTING FOR AMALGAMATIONS

AS-15 ACCOUNTING FOR RETIREMENT BENEFITS IN THE FINANCIAL STATEMENTS

OF EMPLOYERS

AS-16 BORROWING COSTS

Basic Concepts of Accounting Standards:

Basic concepts of (GAAP) Accounting Standards :

In order to achieve the aforesaid objectives of GAAP and implement fundamental qualities, the

set accounting standards feature four basic assumptions as listed below:

· Going concern

This assumption of GAAP accounting standards presumes that the business stays in operation

indefinitely thus validating the techniques of asset capitalization, amortization, and depreciation.

This assumption is, however, not applicable in case of liquidation. The business is believed to

continue in the unforeseeable future.

· Monetary Unit Principle

This assumption presumes a stable currency going to be the unit of record.

· Accounting Entity

This assumption presumes the business to individually exist from its owners or other business

entities. Also, revenue and expense need to be kept separate from personal expenses.

· Time-period principle

This assumption states that an entity’s economic activities can be divided into simulated time-

periods.

Benefits of Accounting Standards:

COPYRIGHT FIMT 2020 Page 380

As per the accounting standards presented by GAAP, the financial reports should provide info

which is:

· Useful in being presented to potential creditors and investors in addition to other

users in making cogent investment, credit, and similar financial decisions.

· Helpful for the potential creditors and investors in addition to other users in

evaluating the timing, amounts, and uncertainty of probable cash receipts.

· Related to economic resources, the claims to these resources, and the changes

occurring in them.

· Helpful in taking financial decisions. · Helpful in taking long-term decisions.

· Helpful in improving the business’ performance. · Useful in maintaining records.

Procedure for Issuing Accounting Standards in India

A summarized extract of the text of the “Preface to the Statements of Accounting Standards

(Revised 2004),” issued by the council of the Institute of Chartered Accountants of India,

explains the procedure of issuing Accounting Standards. They are:

1. The ASB determines the broad areas requiring formulation of Accounting Standards and

lists them according to priority.

2. In the preparation of Accounting Standards, the ASB is assisted by a Study Group,

constituted for this purpose. Views of government, public sector undertakings, industry and other

organizations are obtained before formulating the Exposure Draft.

3. The Exposure Draft comprises the following:

· Objective and scope of the standard.

· Definition of the terms used in the standard.

· The manner in which the accounting principles have been applied for

formulating the standard.

· The presentations and disclosure requirements of it comply with the standard. ·

 Class of enterprises to which the standard will apply.

· Date from which the standard will be effective.

Need and Significance of IFRS:

International Financial Reporting Standards (IFRS) are principles-based Standards,

Interpretations and the Framework adopted by the International Accounting Standards Board

(IASB). IFRS represent a set of internationally accepted accounting principles used by

COPYRIGHT FIMT 2020 Page 381

companies to prepare financial statements.

The goal with IFRS is to make international comparisons as easy as possible. More than 100

countries around the world currently require or permit IFRS reporting. Approximately 85 of

those countries require IFRS reporting for all domestic, listed companies. All member states of

the EU are required to use IFRS as adopted by the EU for listed companies since 2005. The US is

also gearing towards IFRS. While some countries require all companies to adhere to IFRS,

others merely allow it or try to coordinate their own country’s standards to be similar.

IFRS include the following Standards:

IFRS 1 First-time Adoption of International Financial Reporting Standards. ·

IFRS 2 Share-based Payment.

IFRS 3 Business Combinations. ·

IFRS 4 Insurance Contracts.

IFRS 5 Non-current Assets Held for Sale and Discontinued Operations. ·

IFRS 6 Exploration for and Evaluation of Mineral Resources.

IFRS 7 Financial Instruments: Disclosures. ·

IFRS 8 Operating Segments.

IFRS 9 Financial Instruments.

IAS 1 Presentation of Financial Statements.

IAS 2 Inventories.

IAS 7 Statement of Cash Flows.

IAS 8 Accounting Policies, Changes in Accounting Estimates and Errors. ·

IAS 10 Events after the Reporting Period.

IAS 11 Construction Contracts. ·

IAS 12 Income Taxes.

IAS 16 Properties, Plant and Equipment.

IAS 17 Leases.

IAS 18 Revenue.

IAS 19 Employee Benefits.

IAS 20 Accounting for Government Grants and Disclosure of Government

Assistance.

IAS 21 The Effects of Changes in Foreign Exchange Rates.

IAS 23 Borrowing Costs.

COPYRIGHT FIMT 2020 Page 382

IAS 24 Related Party Disclosures.

IAS 26 Accounting and Reporting by Retirement Benefit Plans. ·

IAS 27 Consolidated and Separate Financial Statements.

IAS 28 Investments in Associates.

·IAS 29 Financial Reporting in Hyperinflationary Economies. ·

IAS 31 Interests in Joint Ventures.

IAS 32 Financial Instruments: Presentation. ·

IAS 33 Earnings Per Share.

IAS 34 Interim Financial Reporting. ·

IAS 36 Impairment of Assets.

IAS 37 Provisions, Contingent Liabilities and Contingent Assets. ·

IAS 38 Intangible Assets.

IAS 39 Financial Instruments: Recognition and Measurement.

IAS 40 Investment Property.

IAS 41 Agriculture.

International Accounting Standards (IAS) are the older standards that IFRS are gradually

replacing (IAS were issued from 1973 to 2000).

XBRL: XBRL(Extensive Business Reporting Language) is a freely available and global

standard for exchanging business information. XBRL allows the expression of semantic meaning

commonly required in business reporting. The language is XML-based and uses the XML syntax

and related XML technologies such as XML Schema, XLink, XPath, and Namespaces. One use of

XBRL is to define and exchange financial information, such as a financial statement. The

XBRL Specification is developed and published by XBRL International, Inc. (XII).

XBRL is a standards-based way to communicate and exchange business information between

business systems. These communications are defined by metadata set out in taxonomies, which

capture the definition of individual reporting concepts as well as the relationships between

concepts and other semantic meaning. Information being communicated or exchanged is

provided within an XBRL instance. Early users of XBRL included regulators such as the

U.S. Federal Deposit Insurance Corporation
.

and the Committee of European Banking

Supervisors (CEBS)
.

Common functions in many countries that make use of XBRL include

regulators of stock exchanges and securities, banking regulators, business registrars, revenue

COPYRIGHT FIMT 2020 Page 383

reporting and tax-filing agencies, and national statistical agencies.

UNIT-2 JOURNALISING TRANSACTIONS

Rules of Debit and Credit

Any account that obtains a benefit is Debit. OR

Anything that will provide benefit to the business is Debit.

Both these statements may look different but in fact if we consider that whenever an account

benefits as a result of a transaction, it will have to return that benefit to the business then both the

statements will look like different sides of the same picture. For credit, Any account that provides a

benefit is Credit.

OR

Anything to which the business has a responsibility to return a benefit in future is credit. As

explained in the case of Debit, whenever an account provides benefit to the business the business

will have a responsibility to return that benefit at some time in future and so it is Credit.

*Rules of Debit and Credit for Assets

Similarly we have established that whenever a business transfers a value / benefit to an account and

as a result creates something that will provide future benefit; the `thing' is termed as Asset.

By combining both these rules we can devise following rules of Debit and Credit for Assets: When

an asset is created or purchased, value / benefit is transferred to that account, so it is debited.

I. Increase in Asset is Debit

Reversing the above situation if the asset is sold, which is termed as disposing off, for say cash, the

asset account provides benefit to the cash account. Therefore, the asset account is credited.

II. Decrease in Asset is Credit

*Rules of Debit and Credit for Liabilities

Anything that transfers value to the business, and in turn creates a responsibility on part of the

business to return a benefit, is a Liability. Therefore, liabilities are the exact opposite of the

assets.

When a liability is created the benefit is provided to business by that account so it is Credited

III. Increase in Liability is Credit

When the business returns the benefit or repays the liability, the liability account benefits from the

business. So it is debited

IV. Decrease in Liability is Debit

*Rules of Debit and Credit for Expenses

Just like assets, we have to pay for expenses. From assets, we draw benefit for a long time

COPYRIGHT FIMT 2020 Page 384

whereas the benefit from expenses is for a short run. Therefore, Expenditure is just like Asset but

for a short run. Using our rule for Debit and Credit, when we pay cash for any expense that

expense account benefits from cash, therefore, it is debited. Now we can lay down our rule for

Expenditure:

V. Increase in Expenditure is Debit

Reversing the above situation, if we return any item that we had purchased, we will receive cash in

return. Cash account will receive benefit from that Expenditure account. Therefore, Expenditure

account will be credited

VI. Decrease in Expenditure is Credit *Rules of Debit and Credit for Income

Income accounts are exactly opposite to expense accounts just as liabilities are opposite to that of

assets.

Therefore, using the same principle we can draw our rules of Debit and Credit for Income.

VII. Increase in Income is Credit VIII. Decrease in Income is Debit

\Posting and Preparation of Trial Balance:

Trial Balance:

Trial Balance is a list of closing balances of ledger accounts on a certain date and is the first step

towards the preparation of financial statements. It is usually prepared at the end of an accounting

period to assist in the drafting of financial statements. Ledger balances are segregated into debit

balances and credit balances. Asset and expense accounts appear on the debit side of the trial

balance whereas liabilities, capital and income accounts appear on the credit side. If all

accounting entries are recorded correctly and all the ledger balances are accurately extracted, the

total of all debit balances appearing in the trial balance must equal to the sum of all credit

balances.

How to prepare a Trial Balance:

Following Steps are involved in the preparation of a Trial Balance:

1. All Ledger Accounts are closed at the end of an accounting period.

2. Ledger balances are posted into the trial balance.

3. Trial Balance is cast and errors are identified.

4. Suspense account is created to agree the trial balance totals temporarily until corrections

COPYRIGHT FIMT 2020 Page 385

are accounted for.

5. Errors identified earlier are rectified by posting corrective entries.

6. Any adjustments required at the period end not previously accounted for are incorporated

into the trial balance.

Closing Ledger Accounts:

Ledger accounts are closed at the end of each accounting period by calculating the totals of debit

and credit sides of a ledger. The difference between the sum of debits and credits is known as the

closing balance. This is the amount which is posted in the trial balance.

How closing balances are presented in the ledger depends on whether the account is related to

income statement (income and expenses) or balance sheet (assets, liabilities and equity). Balance

sheet ledger accounts are closed by writing 'Balance c/d' next to the balancing figure since these

are to be rolled forward in the next accounting period. Income statement ledger accounts on the

other hand are closed by writing 'Income Statement' next to the residual amount because it is

being transferred to the income statement as revenue or expense incurred for the period.

The steps involved in closing a ledger account may be summarized as below:

1. Add the totals of both sides of a ledger

2. The higher of the totals among the debit side and credit side must be inserted at the end of

BOTH sides. Closing balance is the balancing figure on the side with the lower balance.

3. In case of ledger accounts of assets, liabilities and equity, 'balance c/d' is written next to

the closing balance whereas in case of income and expenses ledger accounts, 'Income

Statement' is written next to the closing balance.

4. The closing balances of all ledger accounts are posted into the trial balance.

Closing Balance of all ledger accounts are posted into the trial balance. It is important to

remember that a debit closing balance in the ledger account appears on the credit side but in the

trial balance it is presented in the debit column and vice versa.

Posting of closing balances should be done carefully as many errors may occur during the

posting process such as Posting Error, Transposition Errors and Slide error.

Following is an example of a trial balance prepared from the closing balances of the ledgers

detailed above.

ABC LTD

Trial Balance as at 31 December 2011

COPYRIGHT FIMT 2020 Page 386

Account Title

Debit (in rupees)

Credit (in rupees)

Share Capital

10,000

Bank Loan

10,000

Cash

30,000

Salaries Expense

5,000

Sales Revenue

15,000

Total

35,000

35,000

Capital and Revenue:

Capital: The amount invested in the firm by the owner is referred to as the Capital. The

expenditure borne/incurred in purchase of fixed assets, investments is known as Capital

Expenditure.

Revenue: The profit/gain arising from the business from the sale proceeds is referred to as the

revenue. Revenue includes the total cost/expenses (whether direct or indirect) and the total

income earned during the accounting period by the firm.

Classification of Income:

 Gain on sale of Investments. ·

 Capital Income.

 Dividends Received

 Interest Received.

 Commission Received.

Classification of Expenditure:

in Fixed Assets.

· Purchase of Land & Building.

COPYRIGHT FIMT 2020 Page 387

· Repairs and Installation of Tools & Equipments. · Payment of direct and indirect

expenses.

· Deferred Revenue Expenditure. · Depreciation on Fixed Assets.

Capital and Revenue Expenditure

Expenditure on fixed assets may be classified into Capital Expenditure and Revenue

Expenditure. The distinction between the nature of capital and revenue expenditure is

important as only capital expenditure is included in the cost of fixed asset.

Capital Expenditure:

Capital expenditure includes costs incurred on the acquisition of a fixed asset and any subsequent

expenditure that increases the earning capacity of an existing fixed asset. The cost of acquisition

not only includes the cost of purchases but also any additional costs incurred in bringing the

fixed asset into its present location and condition (e.g. delivery costs).

Capital expenditure, as opposed to revenue expenditure, is generally of a one-off kind and its

benefit is derived over several accounting periods. Capital Expenditure may include the

following:

_ Purchase costs (less any discount received)

 Delivery costs

_ Legal charges

_ Installation costs

_ Up gradation costs

_ Replacement costs

Revenue Expenditure

Revenue expenditure incurred on fixed assets include costs that are aimed at 'maintaining' rather

than enhancing the earning capacity of the assets. These are costs that are incurred on a regular

basis and the benefit from these costs is obtained over a relatively short period of time. For

example, a company buys a machine for the production of biscuits. Whereas the initial purchase

and installation costs would be classified as capital expenditure, any subsequent repair and

maintenance charges incurred in the future will be classified as revenue expenditure. This is so

because repair and maintenance costs do not increase the earning capacity of the machine but

only maintains it (i.e. machine will produce the same quantity of biscuits as it did when it was

first put to use).

Revenue costs therefore comprise of the following:

_ Repair costs

COPYRIGHT FIMT 2020 Page 388

_ Maintenance charges

_ Repainting costs

_ Renewal expenses

As revenue costs do not form part of the fixed asset cost, they are expensed in the income

statement in the period in which they are incurred.

Journal and subsidiary Books: JOURNAL

The word ‘Journal’ has been derived from the French word ‘JOUR’ means daily records.

Journal is a book of original entry in which transactions are recorded as and when they occur in

chronological order (in order of date) from source documents. Recording in journal is made

showing the accounts to be debited and credited in a systematic manner. Thus, the journal

provides a date-wise record of all the transactions with details of the accounts and amounts

debited and credited for each transaction with a short explanation, which is known as narration.

Firms having limited number of transactions record those in journal and from there post these to

the concerned ledger accounts. Firms having large number of transactions, maintain some special

purpose journals such as, Purchase Book, Sales Books, Returns books, Bills Book, Cash Book,

Journal proper etc.

COMPOUND JOURNAL ENTRY

A compound journal entry is an accounting entry which effects more than two account heads. A

simple journal entry has one debit and one credit whereas a compound journal entries includes

one or more debits and/or credits than a simple journal entry. A compound journal entry may

combine two or more debits and a credit, or a debit and two or more credits, or two or more of

both debits and credits.

OPENING ENTRY

In the case of continuing business we are required to pass an entry in the journal for bringing in

the new books all assets and liabilities as appearing in the books on the last day of the previous

year. This entry is known as 'opening entry'. Rule of passing opening entry is to debit each asset

account; credit each liability account; excess of debits over credits represents capital balance.

SUB DIVISION OF JOURNAL

CASH JOURNAL

The number of cash transactions in a firm is generally larger, therefore, it becomes inconvenient to

record all cash transactions in the journal. Since all cash transactions are recorded for the

first time in the cash book, it is therefore called a book of original entry. Only cash transactions

COPYRIGHT FIMT 2020 Page 389

are recorded in the cash book.

PETTY CASH BOOK

It saves the time of chief cashier. Maintenance of petty cash book does not require any specialized

knowledge of accounting. It provides control over small payments. It minimizes the chances of

fraud.

PURCHASE JOURNAL

It is a subsidiary book which records transactions of credit purchases of goods. Cash purchases

are not recorded in the purchases book since they are recorded in the cash book.

SALES JOURNAL

It is a subsidiary book which records transactions of credit sales of goods. Cash sales will be

recorded in the cash book and not in the sales book. Sale of assets is not recorded in the sales

books.

SALES RETURN JOURNAL

Sales returns journal is a subsidiary book in which seller records all the sales that have been

returned to him by his customers. Sales returns journal is also known as returns inwards book

and sales returns day book.

VOUCHER SYSTEM

Type of internal system used to control the cash (checks) being spent (written). The voucher

system consists of vouchers, voucher files (paid and unpaid), voucher register that takes the place

of the purchase journal, cash register that takes the place of the cash disbursement journal, and

the general journal.

Unit-3 Depreciation

Depreciation is systematic allocation the cost of a fixed asset over its useful life. It is a way of

matching the cost of a fixed asset with the revenue (or other economic benefits) it generates over

its useful life. Without depreciation accounting, the entire cost of a fixed asset will be recognized in

the year of purchase. Depreciation is the measure of wearing out of a fixed asset. All fixed

assets are

expected to be less efficient as time goes on.

Depreciation is calculated as the estimate of this measure of wearing out and is charged to the

Profit & Loss account either on a monthly or annual basis. The cost of the asset less the total

depreciation will give you the Net Book Value of the asset. This will give a misleading view of

the profitability of the entity. The observation may be explained by way of an example.

COPYRIGHT FIMT 2020 Page 390

Example

ABC LTD purchased a machine costing $1000 on 1st January 2001. It had a useful life of three

years over which it generated annual sales of $800. ABC LTD's annual costs during the three

years were $300.

Causes for Depreciation:

The major causes of depreciation are as follows:

1. Wear And Tear wear and tear refer to a decline in the efficiency of

asset

due to its constant use. When an asset losses its efficiency, its value goes down and depreciation

arises. This is true in case of tangible assets like plant and machinery, building, furniture, tools

and equipment used in the factory.

2. Effusion of Time The value of asset may decrease due to the passage

of

time even if it is not in use. There are some intangible fixed assets like copyright, patent right,

and lease hold premises which decrease its value as

time elapse.

3. Exhaustion An asset may loss its value because of exhaustion too. This is the case

with wasting assets such as mines, quarries, oil-wells and forest-stand. On account of continuous

extraction, a stage will come where mines and oil-wells get completely exhausted.

Objectives for providing Depreciation:

1. Ascertainment of True Profits

When an asset is purchased, it is nothing more than a payment in advance for for the use of asset.

Depreciation is the cost of using a fixed asset. To determine true and correct amount of profit or

loss, depreciation must be treated as revenue expenses and debited to profit and loss account.

2. Reporting of True And Fair Financial Position Of A Business

The value of assets decrease over a period of time on account of various factors. In order to

present a true state of affairs of the business, the assets should be shown in the balance sheet, at

their true and fair values. If the depreciation is not provided then the asset will appear in the

balance sheet at the original value. So, in order to show the true financial position of a business,

depreciation is required to be charged on the assets.

3.Replacement of Assets Assets used in the business need to be replaced after the expiry of

COPYRIGHT FIMT 2020 Page 391

their useful life. Depreciation can be taken as a source of fund for replacing worn out asset by a

new asset. Thus, depreciation charges help in accumulating funds for the

 replacement of an asset.

4. Saving In Taxes

The profit and loss account will show more profits if depreciation is not charged on asset. So, the

business needs to pay more income tax to the government. Depreciation charges on assets save

the amount of tax equivalent to tax rate. Since it is shown as expense in the profit and loss

account, it reduces the amount of the profit.

4. Obsolescence

Changes in fashion are external factors which are responsible for throwing out of assets even if

those are in good condition. For example black and white televisions have become obsolete with

the introduction of color TVs, the users have discarded black and white TVs although they are in

good condition. Such as loss on account of new invention or changed fashions is termed as

obsolescence.

Methods of Calculating Depreciation:

There are two basic methods of depreciation to choose from when depreciating an asset. These

methods include

 Straight-line and Written Down Value Method..

The Straight-Line method is generally the most commonly used method due to its simplicity

and consistency of allocating depreciation evenly over the useful life of the asset. To calculate

depreciation under this method, the Cost of the Asset is reduced by the salvage or residual value to

arrive at the depreciable basis. The resulting depreciable basis is then divided by the

estimated useful life.

Straight Line Method (SLM)

This is the simple method of depreciation.

It charges equal amount of depreciation each year over useful life of asset.

It first add up all the costs incurred to bring the asset in use and then it divides that by the useful

life of asset in years to calculate the depreciation expense.

E.g.: Say a Computer costs Rs. 30,000 and Rs. 11,000 (as additional set-

up/installation/maintenance expenses) = Rs 41,000 and it is anticipated that its scrap value will

COPYRIGHT FIMT 2020 Page 392

be Rs. 1,000 at the end of its useful life, of say, 5 yrs.

Total Cost = Cost of Computer + Installation Exp. + Other Direct Costs

Depreciable Amount over No. of years = Total Cost - Salvage Value (At end of useful life)

30,000 +11,000 =41,000 (Total cost)

41,000 – 1,000 = 40,000 as the Depreciable Amount

Depreciable Amount = Rs. 40,000, Spread out over 5 years = Rs. 40,000/5(Yrs) = Rs. 8000/-

depreciation per annum

Advantages:

· The straight-line method offers simplicity

· Write off the same amount each year and don’t have to keep recalculating.

· Easy to determine profits for future years easily; at least as far as how much you will save

because of depreciation. In other words, as your profits grow, your depreciation costs stay the

same.

· This allows you to make financial forecasts for several years.

· You receive the benefit of depreciation evenly over the life of the asset.

Disadvantages:

· Assets tend to lose value more quickly in their early years.

· Straight-line depreciation does not take this fact into account. If you use assets

as collateral for loans, the lender will assume your assets lose more of their value in their first

years, so your straight-line method will make the asset look more valuable on your books than it

really is for the lender.

· The efficiency of a machine declines in its later years and you will be writing off the

same value in a later year as you did in the first year. The machine actually will have less value for

you than your depreciation amount indicates.

Written Down Value Method (WDV)

_ This method involves applying the depreciation rate on the Net Book Value (NBV) of

asset. In this method, depreciation of the asset is done at a constant rate.

_ In this method depreciation charges reduces each successive period.

_ This method should be used in those assets, where high depreciation should be

charged in initial years.

_Assume the price of a depreciable asset i.e. computer is Rs. 40,000 and its salvage value after 10

COPYRIGHT FIMT 2020 Page 393

years is 0. In this method NBV will never be zero.

Depreciation Per year = (1/N) Previous year's value, Where N= No. of years

So in our example, the depreciation amount during the first year is

 [Rs. 40,000*1/10] =Rs. 4,000

NBV of computer after 1
st

year= Rs 40,000- 4,000 = Rs. 36,000

Depreciation for 2
nd

year is

[Rs. 36,000*1/10] =Rs. 3,600

Advantages:

1. Since under this method higher depreciation is charged in early years it takes into account that

asset is more efficient in early years and therefore it is more realistic way of depreciation.

2. Since in early years machines requires less repairs and as the year passes by repair cost began to

rise, therefore this method by charging more depreciation in early years and less in later years

make sure that total cost of repairs and depreciation is same every year.

Disadvantages:

1. Since the rate of depreciation is fixed by not following formula chances of subjectivity in

fixing rate of depreciation becomes high.

2. The value of asset will never be zero in books of account under this even if asset is of no use to

company.

Change in method of charging Depreciation:

CHOICE OF DEPRECIATION METHOD

Depreciation expenses differ from method to method. Choice of selecting a suitable depreciation

method is not easy. The decision is based on the inherent characteristic features of an asset.

Accelerated depreciation methods may be of much use in case of the following: Quality of the

asset decreases with its age years roll, assets may loose its effective working capacity –

Maintenance costs grow.

· Introduction of new equipment due to Research and Development may adversely

affect the effective usage of existing equipment.

· The other Straight Line Method may be suitable for assets like buildings,

furniture, patents, leases, etc. and for assets which do not warrant frequent repairs and renewals.

· Choice of a method of depreciation affects the amount of net income because

quite often the management employs depreciation as an instrument of financial policy of the

entity. Hence, selection of a method depends on the management too.

Change in depreciation amount due to change in method is to be given retrospective effect

but in all other cases (like Change in Cost, Life, Revaluation etc.) Change in depreciation

COPYRIGHT FIMT 2020 Page 394

is given prospective effect

1. The depreciation method selected should be applied consistently from period to period.

2. A change from one method of providing depreciation to another should be made only

if the adoption of the new method is required by statute or for compliance with

an accounting standard or if it is considered that the change would result in a

more appropriate preparation or presentation of the financial statements of the

enterprise.

3. When a change in the method of depreciation is made, depreciation should

be recalculated in accordance with the new method from the date of the asset coming

into use. The deficiency or surplus arising from the retrospective

recomputation of depreciation in accordance with the new method would be adjusted

in the accounts in the year in which the method of depreciation is changed.

4. In case the change in the method results in deficiency in depreciation in respect of

past years, the deficiency should be charged to the profit and loss account.

In case the change in the method results in surplus, it is recommended that the surplus be

initially transferred to the 'Appropriations' part of the profit and loss account and

thence to General Reserve through the same part of the profit and loss account. Such a

change should be treated as a change in accounting policy and its effects should be

quantified and disclosed.

Salient Features of Accounting Standards(AS-6)(ICAI)Revised:

The Institute of Chartered Accountants of India, keeping in view with international

accounting principles, revised (AS)–6.This standard AS–6 deals with the concept: Depreciation

is defined as “a measure of the wearing out, consumption or other loss of value of a depreciable

asset arising from use, effusion of time or obsolescence through technology and market

changes. Depreciation is allocated so as to charge a fair proportion of the depreciable

amount in each accounting period during the Expected Useful Life of the Asset.

Depreciation includes amortization of assets whose useful life is predetermined”.

Salient features of AS–6 (Revised) Accounting for Depreciation:

i. Existing Assets: The depreciable amount of existing assets = Cost of the

asset (historical not market value) – salvage (scrap value) value.

COPYRIGHT FIMT 2020 Page 395

ii. Revision of estimate useful life of an asset: In case, if there is a necessity to revise

the estimated life of an asset, the unamortized depreciable amount will have to be charged

over the remaining useful life.

Addition (or) extension to an existing asset of capital nature: In such cases, two factors will have to

be considered:

a) such an addition should retain separate identity,

b) It can still be used after the disposal of existing assets.

Then, depreciation is to be determined independently on the basis of an estimate of its

own useful life. In other cases, the depreciation has to be determined on the basis of

remaining useful life of the existing asset plus addition or extension as an integral part.

INVENTORIES:

The raw materials, work-in-process goods and completely finished goods that are considered to

be the portion of a business's assets that is ready or will be ready for sale. Inventory

represents one of the most important assets that most businesses possess, because the turnover of

inventory represents one of the primary sources of revenue generation and subsequent

earnings for the company's shareholders/owners.

Inventories are assets:

(a) held for sale in the ordinary course of business; (b) In the process of production for such sale; or

(c) In the form of materials or supplies to be consumed in the production process or in the

rendering of services.

 Inventories encompass goods purchased and held for resale, for example, merchandise

purchased by a retailer and held for resale, computer software held for resale, or land and other

property held for resale. Inventories also encompass finished goods produced, or work in

progress being produced, by the enterprise and include materials, maintenance supplies,

consumables and loose tools awaiting use in the production process. Inventories do notinclude

machinery spares which can be used only in connection with an item of fixed asset and whose

use is expected to be irregular; such machinery spares are accounted for in accordance with

Accounting Standard (AS) 10, Accounting for Fixed Assets.

Valuation of Inventories:

Inventory is valued on the basis of the following factors:

1. Measurement

Inventories should be valued at the lower of cost and net realizable value.

COPYRIGHT FIMT 2020 Page 396

The cost of inventories should comprise all costs of purchase, costs of conversion and other

costs incurred in bringing the inventories to their present location and condition.

2. Costs of Purchase

The costs of purchase consist of the purchase price including duties and taxes (other than those

subsequently recoverable by the enterprise from the taxing authorities), freight inwards and other

expenditure directly attributable to the acquisition. Trade discounts, rebates, duty drawbacks and

other similar items are deducted in determining the costs of purchase.

3. Costs of Conversion

The costs of conversion of inventories include costs directly related to the units of production,

such as direct labour. They also include a systematic allocation of fixed and variable production

overheads that are incurred in converting materials into finished goods. Fixed production

overheads are those indirect costs of production that remain relatively constant regardless of the

volume of production, such as depreciation and maintenance of factory buildings and the cost of

factory management and administration. Variable production overheads are those indirect costs

of production that vary directly, or nearly directly, with the volume of production, such as

indirect materials.

4. Other Costs

Other costs are included in the cost of inventories only to the extent that they are incurred in

bringing the inventories to their present location and condition. For example, it may be

appropriate to include overheads other than production overheads or the costs of designing

products for specific customers in the cost of inventories. Interest and other borrowing costs are

usually considered as not relating to bringing the inventories to their present location and

condition and are, therefore, usually not included in the cost of inventories.

Method of valuation of Inventories:

There are three basis approaches to valuing inventory that are allowed by GAAP -

(a) First-in, First-out (FIFO): Under FIFO, the cost of goods sold is based upon the cost of

material bought earliest in the period, while the cost of inventory is based upon the cost of

material bought later in the year. This results in inventory being valued close to current

replacement cost. During periods of inflation, the use of FIFO will result in the lowest estimate

of cost of goods sold among the three approaches, and the highest net income.

 (b) Last-in, First-out (LIFO): Under LIFO, the cost of goods sold is based upon the cost of

material bought towards the end of the period, resulting in costs that closely approximate current

COPYRIGHT FIMT 2020 Page 397

costs. The inventory, however, is valued on the basis of the cost of materials bought earlier in the

year. During periods of inflation, the use of LIFO will result in the highest estimate of cost of

goods sold among the three approaches, and the lowest net income.

 (c) Weighted Average: Under the weighted average approach, both inventory and the cost of

goods sold are based upon the average cost of all units bought during the period. When inventory

turns over rapidly this approach will more closely resemble FIFO than LIFO.

Firms often adopt the LIFO approach for the tax benefits during periods of high inflation, and

studies indicate that firms with the following characteristics are more likely to adopt LIFO -

rising prices for raw materials and labor, more variable inventory growth, an absence of other tax

loss carry forwards, and large size. When firms switch from FIFO to LIFO in valuing inventory,

there is likely to be a drop in net income and a concurrent increase in cash flows (because of the

tax savings). The reverse will apply when firms switch from LIFO to FIFO.

Given the income and cash flow effects of inventory valuation methods, it is often difficult to

compare firms that use different methods. There is, however, one way of adjusting for these

differences.

Firms that choose to use the LIFO approach to value inventories have to specify in a footnote the

difference in inventory valuation between FIFO and LIFO, and this difference is termed the

LIFO reserve. This can be used to adjust the beginning and ending inventories, and consequently

the cost of goods sold, and to restate income based upon FIFO valuation.

Periodic Inventory System:

Periodic inventory is a system of inventory in which updates are made on a periodic basis. This

differs from perpetual inventory systems, where updates are made as seen fit.In a periodic

inventory system no effort is made to keep up-to-date records of either the inventory or the cost

of goods sold. Instead, these amounts are determined only periodically - usually at the end of

each year. This physical count determines the amount of inventory appearing in the balance

sheet. The cost of goods sold for the entire year then is determined by a short computation.

Perpetual Inventory System:

Under perpetual inventory system, inventory and cost of goods sold are updated for each

sale/purchase and return transaction. We have already discussed the basic concept of perpetual

inventory system in the comparison of perpetual-periodic inventory.

The perpetual inventory system is intended as an aid to material control. It is a system of stock

COPYRIGHT FIMT 2020 Page 398

control followed by stores department. The system follows a method of recording stores by

which information about each receipt, issue and current balance of stock is always available.

Perpetual inventory system may be defined as a method of recording stores balances after

every receipt and issue to facilitate regular checking and to obviate closing down for stock

taking." So perpetual inventory system implies continuous maintenance of stock records and in

its broad sense it covers both continuous stock taking as well as up to date recording of stores

books. The balance of the same item of store in bin card should correspond with that shown in

the materials or store ledger card and a frequent checking of these two records should be made

and compared with the actual or physical quantity of materials in stock.

Final Accounts:

The financial statements of an organization made up at the end of an accounting period, usually

the fiscal year. For a manufacturer, the final accounts consist of (1) manufacturing account, (2)

trading account, (3) profit and loss account, and (4) profit and loss appropriation account. A

commercial company's final accounts will include all of the above except the manufacturing

account. Together, these accounts show the gross profit, net income, and distribution of net

income figures of the company.

Form of Final Accounts: There is a standard format of final accounts only in the case of a limited

company. There is no fixed prescribed format of financial accounts in the case of a proprietary

concern and partnership firm.

· Transactions · Journal

· Ledger

· Trial Balance

· Trading & Profit & Loss Account · Balance Sheet

MEANING

The Trading and Profit & loss account and Balance Sheet prepared at the end of a year is known

as Final accounts. While preparing the final accounts, there may be some items so far not

adjusted. These items are to be adjusted in the final accounts for calculating the correct profit or

loss of the business. The usual adjustments in the final accounts are:-

a. Expenses owing: - These are the expenses incurred during the year but not paid in cash. This

amount will be paid in the near future (next year). The owing expense is to be added with the

amount of same expense already paid given in the trial balance and it should be shown in the

balance sheet as a current liability.

COPYRIGHT FIMT 2020 Page 399

The double entry for recording the expenses owing is

Debit Expenses account

Credit Expenses owing account

This expense is also known as outstanding expenses, expenses payable or expense payable.

b. Prepaid expense. :- This is the expense paid during the year for the benefit of the next year.

The portion of the expense which is prepaid is to be deducted from the total expenses already

paid during the year (given in the trial balance) and shown as current asset in the balance sheet.

The double entry for recording the prepaid expense is

Debit Prepaid expense account and

Credit Expense account

This expense is also known as expense paid in advance or unexpired expense

c. Accrued income: - The income earned during the year but not received in cash is known as

accrued income. The amount of accrued income is to be considered as current year’s income and

added

With the concerned income received during the year (given in the trial balance) and shown as a

current asset in the balance sheet.

The double entry for recording the accrued income is:

Debit Accrued income account and

Credit Income account

The accrued income is also known as outstanding income.

d. Income received in advance: - This is the income received during the year for the services to

be rendered during the next year. Since this income is not related to the current year, it should be

deducted from the concerned income (given in the trial balance) and shown as a current liability

in the balance sheet.

The double entry for recording the income received in advance is:

Debit Income account and

Credit Income received in advance

This is also known as unexpired income.

e. Depreciation: - The part of the cost of a fixed asset that is consumed by a business during the

period of its use is known as depreciation. It is considered as an expense in the business therefore

shown as an expense in the profit & loss account and deducted from the cost price of the

concerned fixed asset in the balance sheet.

COPYRIGHT FIMT 2020 Page 400

The double entry for recording depreciation is:

Debit Profit & loss account and

Credit Depreciation account

f. Bad debt: - The part of the amount of debtors which cannot be recovered is known as bad

debt. It is an expense to be shown in the profit & loss account. If the bad debt appears in the trial

balance, it is known as bad debt written off and shown in the profit & loss account only. If bad

debt information appears among the adjustment points below the trial balance, then it should be

shown as an expense in the profit & loss account and shown as a deduction from the debtors in

the balance sheet under the heading “current assets”.

The double entry for recording the bad debt is:

Debit Bad debt account and

Credit Debtors account

g. Goods drawings by the owner for his personal use:-

The amount of goods withdrawn by the owner for his personal use is to be considered as

drawing. The double entry for recording the goods drawings is:

Debit Drawings account and

Credit Purchase account or sales account

The amount of goods drawings should be deducted from purchases and capital in the Balance

Sheet.

From the following Trial Balance and additional information, you are required to prepare profit

and loss account and Balance Sheet.

TRIAL BALANCE as on 31
st

March 2012

Particulars

Debit

Credit

 Capital

 2,90,000

Sundry Debtors

65,000

Drawings

7,600

Building

2,20,000

Sundry Creditors

 12,000

Wages

8,000

Purchases

89,000

Opening Stock

12,000

Cash in Hand

1,900

Cash at Bank

12,000

Carriage Charges

20,000

Salaries 8,000

COPYRIGHT FIMT 2020 Page 401

Rent, Taxes & Insurance

1300

Sales

 1,50,000

Purchase Returns

 4,500

Sales Returns

2,800

Bills Receivable

15,000

Bils Payable

 7,000

Interest

 3,500

Advertisement

2,400

Trade Expenses

2,000

 4,67,000

4,67,000

Additional Information:

i. Closing Stock as on 31
st

March2012 was Rs.15,000.

ii. Prepaid Insurance Rs.400

iii. Outstanding Salaries Rs.2,000;Outstanding Rent & Taxes Rs.1,300 iv. Depreciation

charged on Building @2%p.a.

Solution:

Dr. Trading and Profit & Loss Account as on 31
st

March2012 Cr.

Particulars

Amount

Particulars

Amount

To Opening Stock

12,000

By Closing Stock

15,000

To Purchases 89,000

(-)Returns 4,500

84,500

By Sales 1,50,000

(-)Returns 2,800

147200

To Wages

8,000

To Carriage

20,000

To Gross profit c/d

37,700

 1,62,200

 1,62,200

To Trade Expenses

2,000

By Gross Profit b/d

37,700

To Advertisement

2,400

By Interest

3,500

To Salaries 8,000

10,000

(+)Outstanding 2,000

To Rent,Taxes & Insurance

1,300

(-)Prepaid 400

(+)Outstanding1,300

2,200

To Depreciation on Building

4,400

To Net Profit transferred to

Capital A/C

20,200

COPYRIGHT FIMT 2020 Page 402

 41,200

 41,200

 Balance-Sheet as on 31
st

March2012

Liabilities

Amount

Assets

Amount

Capital 2,90,000

(+)Net Profit 20,200 (-

)Drawings 7,600

3,02,600

Building 2,20,000

(-)Depreciation 4,400

2,15,600

Creditors

12,000

Cash at Bank

12,000

Bills Payable

7,000

Cash in Hand

1,900

Outstanding Rent & Taxes

1,300

Debtors

65,000

Outstanding Salaries

2,000

Bills Receivable

15,000

 Prepaid Insurance

400

 Closing Stock

15,000

 3,24,900

 3,24,900

PREPARATION OF FINAL ACCOUNTS OF NON-PROFIT ORGANIZATION

By preparing Receipts & Payments Account, Income and Expenditure Account and a Balance

sheet. Being a "non-profit" organization does not mean it doesn’t make any profit, but rather that

the profits are not distributed to investors as dividends. Many non-profit organizations make

billions of dollars of profits per year, and often donate these corporate profits to charitable causes.

BANK RECONCILIATION STATEMENT

A Bank reconciliation is a process that explains the difference between the bank balance shown in

an organisation's bank statement, as supplied by the bank, and the corresponding amount

shown in the organization's own accounting records at a particular point in time. Such differences

may occur, for example, because a cheque or a list of cheques issued by the organization has

not been presented to the bank, a banking transaction, such as a credit received, or a charge made

by the bank, has not yet been recorded in the organisation's books, or either the bank or the

organization itself has made an error. It may be easy to reconcile the difference by looking at

very recent transactions in either the bank statement or the organisation's own accounting

records (cash book) and seeing if some combination of them tallies with the difference to be

explained. Otherwise it may be necessary to go through and match every single transaction in both

sets of records since the last reconciliation, and see what transactions remain unmatched. The

necessary adjustments should then be made in the cash book, or any timing differences recorded to

assist with future reconciliations. A bank reconciliation statement is prepared to reconcile the two

balances of Cash Book and Pass Book. So, when you will prepare a bank reconciliation

statement you will start it with one balance make adjustments and then you will reach to the

COPYRIGHT FIMT 2020 Page 403

other balance. This way both the balances will agree.

Unit-IV

CONSIGNMENT:

An arrangement whereby goods are left in the possession of another party to sell. Typically, the

consignor receives a percentage of the sale (sometimes a very large percentage). Consignment

deals are made on a variety of products - from artwork, to clothing, to books. In recent years,

consignment shops have become rather trendy, especially those offering specialty products,

infant wear and high-end fashion items. It is also defined as a quantity of goods that are sent to a

person or place to be sold the act or process of sending goods to a person or place to be sold.

Features of consignment are:

· The relation between the two parties is that of consignor and consignee and not that of

buyer and seller

· The consignor is entitled to receive all the expenses in connection with consignment ·

 The consignee is not responsible for damage of goods during transport or any other

procedure

·

Goods are sold at the risk of consignor. The profit or loss belongs to consignor only

A consignor who consigns goods to a consignee transfers possession but not ownership of the

goods to the consignee. The consignor retains title to the goods. The consignee takes possession

of the goods subject to a trust. If the consignee converts the goods to a use not contemplated in

the consignment agreement, for example selling them and keeping the proceeds of the sale for

himself, then the consignee commits the crime of embezzlement.

Accounting Entries in the Books of Consignor: (1) On dispatch of goods:-

Consignment account

To Goods sent on consignment account (With the cost of goods)

(2)On payment of expenses on dispatch:-

Consignment account

To Bank account (With the amount spent as expenses)

(3) On receiving advance:

Cash or bills receivable account

COPYRIGHT FIMT 2020 Page 404

To Consignee's personal account (With the amount cash or bill)

(4)On the consignee reporting sale (as per A/S):-

Consignee's personal account

To Consignment account (With gross proceeds of sales)

(5) For expenses incurred by the consignee (as per A/S):-

Consignment account

To Consignee's personal account (With the amount of expenses)

(6) For commission payable to the consignee:-

Consignment account

To Consignee's personal account (With the amount of expenses)

Difference between Consignment and Joint Venture

The main differences between joint venture and consignment are as under:

1. Nature

Joint venture: It is a temporary partnership business without a firm name. Consignment: It is an

extension of business by principal through agent.

2. Parties

Joint venture: The parties involving in joint venture are known as co-ventures. Consignment:

Consignor and consignee are involving parties in the consignment.

3. Relation

Joint venture: The relation between co-ventures is just like the partners in partnership firm.

Consignment: The relation between the consignor and consignee is 'principal and agent'.

4. Sharing Profit

Joint venture: The profits ans losses of joint venture are shared among the co-ventures in their

agreed proportion.

Consignment: The profits and losses are not shared between the consignor and consignee.

Consignee gets only the commission.

COPYRIGHT FIMT 2020 Page 405

5. Rights

Joint venture: The co-ventures in a joint venture have equal rights.

Consignment: In consignment, the consignor enjoys principal's right whereas consignee enjoys

the right of agent.

6. Exchange Of Information

Joint venture: The co-ventures exchange the required information among them regularly.

Consignment: The consignee prepares an account sale which contains a details of business

activities carried on and is being sent to the consignor.

7. Ownership

Joint Venture: All the co-ventures are the owners of the joint venture. Consignment: The

consignor is the owner of the business.

8. Method Of Maintaining Accounts

Joint venture: There are different methods of maintaining accounts in joint venture.As per

agreement the co-ventures maintain their account.

Consignment: In consignment, there is only one method of maintaining account.

9. Basis of Account

Joint venture: Cash basis of accounting is applicable in joint venture. Consignment: Actual basis

is adopted in consignment.

10. Continuity

Joint venture: As soon as the particular venture is completed, the joint venture is terminated.

Consignment: The continuity of business exists according to the willingness of both consignor

and consignee.

Loss of Goods on Consignment

The goods are consigned from one place to another. After receiving the goods by consignee, the

goods are stored by the consignee before selling them to customers. It is natural that some loss to

the goods may take place within that period. The goods may be lost, destroyed or damaged either in

transit or in consignee's store. Such loss can be divided into two parts.

1. Normal Loss

The loss which is caused by unavoidable reasons is known as normal loss. For examples

shrinkage, evaporation, leakage and pilferage. Such losses form part of cost of goods and no

additional adjustment is required for this purpose. The normal loss is borne by goods units. The

COPYRIGHT FIMT 2020 Page 406

quantity of such loss is to be deducted from the total quantity sent by the consignor. The

following formula may be used for the valuation of unsold stock.

Value of closing stock= (Total value of goods sent/Net quantity received by consignee) X

unsold quantity

Net quantity received = Goods consigned quantity - Normal loss quantity.

2. Abnormal Loss

The loss which could be avoided by proper planning and care are abnormal loss. They are like

theft, riots, accidents, fire, earthquake etc. These losses could occur in transit or in consignee's

store and solely to be borne by consignor. The abnormal loss should be adjusted before

ascertaining the result of the consignment. The valuation of abnormal loss is done on the same

basis as the unsold stock is valued. The journal entries for abnormal loss in different cases are as

under:

If goods are not insured For recording abnormal loss:

Abnormal loss A/CDr. To consignment A/C

For abnormal loss transferred: Profit and loss A/C........Dr.

To abnormal loss A/C

If goods are insured and claim admitted in full Bank/Consignee's/Insurance company

A/C...........Dr.

To consignment A/C

If goods are insured and claim admitted in partial Profit and loss A/C...........Dr. (Net loss

amount)

Insurance Co./bank/consignee's A/c.......Dr. (Claim admitted) To consignment A/c (total loss

amount)

The following method should be followed while valuing abnormal loss:
A) Goods sent on consignment (at cost price)…............$ XXX B) Add: Non-recurring expenses:

Consignor’s expenses…..$ XXX Consignee’s

expenses…..$ XXX Total cost before abnormal loss

A+B…..........................$ XXX

Value of abnormal loss = (Total cost/Total units consigned) X abnormal loss units.

Question: A& Co. of Kolkata sent on consignment account goods to B& Co. of Mumbai at an

invoice price of Rs.29675 and paid for freight Rs.762,Cartage rs.232 and insurance rs.700.Half

the goods were sold by agents for Rs.17,500,subject to the agent’s commission of Rs.875,storage

expenses of Rs.200 and other selling expenses of Rs.350.One-fourth of the consignment was lost

by fire and a claim of Rs.5000 was recovered. Draw up the necessary accounts in the books of A

& Co. and ascertain the profit or loss made on the consignment. The consignor received a two

months bill of exchange from the agents in satisfaction of the dues.

Solution:

COPYRIGHT FIMT 2020 Page 407

Consignment of Mumbai Account

Particulars

Amount

Particulars

Amount

 To Goods sent on

consignment

29,675

By B& Co.(Sale proceeds)

17500

To Cash:

Freight 762

Cartage 232

Insurance 700

1694

By Abnormal Loss A/C

7843

To B & Co.

Commission 875

Storage Expenses 200

1425

By Consignment Stock A/C

7843

Other Selling

Expenses 350

To Net Profit (transferred to P&L

A/C)

392

 33186

 33186

B & Co. Mumbai

Particulars

Amount

Particulars

Amount

 To Consignment to Mumbai sale

proceeds)

17500

By Consignment to

Mumbai(expense and

commission)

1425

 By Bills Receiveble A/C

16075

 17500

 17500

 Abnormal Loss Account

Particulars

Amount

Particulars

Amount

 To Consignment A/C

7843

By Bank(received from

Insurance Co.)

5000

 By P&L A/C

2843

 7843

 7843

 Working Notes:

COPYRIGHT FIMT 2020 Page 408

Calculation of Abnormal Loss

Particulars

Rupees

 ¼ of invoice Price of goods

7419(approx)

 Add :¼ of Freight, Cartage and Insurance

424

 Total Abnormal Loss

7843

 Less: Recovered from insurance Co.

5000

 Net Abnormal Loss

2843

Joint Venture:

An association of two or more individuals or companies engaged in a solitary business enterprise

for profit without actual partnership or incorporation; also called a joint adventure. A joint venture

is a contractual business undertaking between two or more parties. It is similar to a business

partnership, with one key difference: a partnership generally involves an ongoing, long-term

business relationship, whereas a joint venture is based on a single business transaction.

 Individuals or companies choose to enter joint ventures in order to share strengths, minimize

risks, and increase competitive advantages in the marketplace. Joint ventures can be distinct

business units (a new business entity may be created for the joint venture) or collaborations

between businesses. In a collaboration, for example, a high-technology firm may contract with a

manufacturer to bring its idea for a product to market; the former provides the know-how, the

latter the means.

Difference between a Joint venture and Partnership

Partnership

A partnership is a legal arrangement where two or more people own a business together. This

means that the entire business is shared for as long as the business exists. Both partners

contribute money, time and expertise to making a profitable enterprise, and that enterprise lasts

until the partnership is dissolved.

Joint Venture

You enter a joint venture for a specific project. There is a time limit on joint ventures, and they

have clearly stated limits on their purposes. You might enter a joint venture in order to make a

product that neither partner can afford to make on her own. An example is developing new

software. You do not give up half of your business in a joint venture; you share the profits and

COPYRIGHT FIMT 2020 Page 409

expenses for a particular venture.

Difference between Consignment and Joint Venture

The main differences between joint venture and consignment are as under:

1. Nature

Joint venture: It is a temporary partnership business without a firm name. Consignment: It is an

extension of business by principal through agent.

2. Parties

Joint venture: The parties involving in joint venture are known as co-ventures. Consignment:

Consignor and consignee are involving parties in the consignment.

3. Relation

Joint venture: The relation between co-ventures is just like the partners in partnership firm.

Consignment: The relation between the consignor and consignee is 'principal and agent'.

4. Sharing Profit

Joint venture: The profits ans losses of joint venture are shared among the co-ventures in their

agreed proportion.

Consignment: The profits and losses are not shared between the consignor and consignee.

Consignee gets only the commission.

5. Rights

Joint venture: The co-ventures in a joint venture have equal rights.

Consignment: In consignment, the consignor enjoys principal's right whereas consignee enjoys

the right of agent.

6. Exchange Of Information

Joint venture: The co-ventures exchange the required information among them regularly.

Consignment: The consignee prepares an account sale which contains a details of business

activities carried on and is being sent to the consignor.

7. Ownership

Joint Venture: All the co-ventures are the owners of the joint venture. Consignment: The

consignor is the owner of the business.

8. Method Of Maintaining Accounts

Joint venture: There are different methods of maintaining accounts in joint venture.As per

agreement the co-ventures maintain their account.

Consignment: In consignment, there is only one method of maintaining account.

COPYRIGHT FIMT 2020 Page 410

9. Basis of Account

Joint venture: Cash basis of accounting is applicable in joint venture. Consignment: Actual basis

is adopted in consignment.

10. Continuity

Joint venture: As soon as the particular venture is completed, the joint venture is terminated.

Consignment: The continuity of business exists according to the willingness of both consignor

and consignee.

FEATURES OF A JOINT VENTURE

The main features of a joint venture are specifically made clear. Two or more person are needed.

·It is an agreement to execute a particular venture or a project. · The joint venture business may

not have a specific name.

· It is of temporary nature. So the agreement regarding the venture automatically stands

terminated as soon as the venture is complete.

·The co-ventures share profit and loss in an agreed ratio. The profits and losses are to be shared

equally if not agreed otherwise.

·

 The co-ventures are free to continue with their own business unless agreed otherwise during

the life of joint venture.

Accounting Entries in a Joint Venture

Transactions

Debit

Credit

(1)When venture contributes cash to joint

funds

Joint Bank A/C

(total Amount)

Venturer’s A/C(individual

contribution)

 (2) When amount is spent on account of

expenses, for purchasing goods for the

venture

Joint venture A/C

Joint Bank A/C

(3)If any expenses are paid by the

venturers

Joint Venture A/C

Venturer’s A/C

(4)For Sales:

i. Cash ii. Credit

Joint Bank A/C

Sundry Debtors A/C

Joint Venture A/C

Joint Venture A/C

 (7) Balance of the Joint venture A/C will

be either profit or Loss.

Joint Venture A/C(if

profit)

Venturer’s A/C

COPYRIGHT FIMT 2020 Page 411

(8)Joint Bank Account and personal

account of the Venturer’s A/C will be

automatically closed by the introduction

and the withdrawal of cash.

Hire Purchase:

Hire Purchase is defined asa system for purchasing merchandise, such as cars or furniture, in

which the buyer takes possession of the merchandise on payment of a deposit and completes the

purchase by paying a series of regular installments while the seller retains ownership until the

final installment is paid

A method of buying goods through making installment payments over time. The term hire

purchase originated in the U.K., and is similar to what are called "rent-to-own" arrangements in

the United States. Under a hire purchase contract, the buyer is leasing the goods and does not

obtain ownership until the full amount of the contract is paid.

Parties in a Hire-Purchase System:

1. Hirer-who buy the goods at any time by giving notice to the owner and

paying the balance of the HP price less a rebate (each jurisdiction has a

different formula for calculating the amount of this rebate).

He also to pay the hire installments and to take reasonable care of the goods (if the hirer

damages the goods by using them in a non-standard way, he or she must continue to pay

the installments and, if appropriate, recompense the owner for any loss in asset value).

Seller- a person who has the resources and the legal right to sell the goods on credit (which

usually depends on a licensing system in most countries), the seller and the owner will be the

same person. But most sellers prefer to receive a cash payment immediately He also has the

right to terminate the agreement where the hirer defaults in paying the installments or breaches

any of the other terms in the agreement. Hire Purchase agreements must be in writing and signed

by both [parties].They must clearly lay out the following information in a print that all can read

without effort:

1. A clear description of the goods 2. The cash price for the goods

3. The Hire Purchase price, i.e., the total sum that must be paid to hire and then purchase the

goods

4. The deposit

5. The monthly installments (most states require that the applicable interest rate is disclosed

COPYRIGHT FIMT 2020 Page 412

and regulate the rates and charges that can be applied in HP transactions) and

6. A reasonably comprehensive statement of the parties' rights (sometimes including the

right to cancel the agreement during a "cooling-off" period).

7. The right of the hirer to terminate the contract when he feels like doing so with a valid

reason.

Characteristics of Hire-Purchase System

The characteristics of hire-purchase system are as under

· Hire-purchase is a credit purchase.

· The price under hire-purchase system is paid in installments.

· The goods are delivered in the possession of the purchaser at the time of commencement

of the agreement.

· Hire vendor continues to be the owner of the goods till the payment of last installment. ·

 The hire-purchaser has a right to use the goods as a bailer.

· The hire-purchaser has a right to terminate the agreement at any time in the capacity of a

hirer.

· The hire-purchaser becomes the owner of the goods after the payment of all installments

as per the agreement.

· If there is a default in the payment of any installment, the hire vendor will take away the

goods from the possession of the purchaser without refunding him any amount.

Thus," hire- purchase agreement" means an agreement under which goods are let on

hire and under which the hirer has an option to purchase them in accordance with the

terms of the agreement and includes an agreement under which-

· possession of goods is delivered by the owner thereof to a person on condition that such

person pays the agreed amount in periodical installments, and

· the property in the goods is to pass to such person on the payment of the last of such

installments, and (iii) such person has a right to terminate the agreement at any time before

the property so passes;

· " hirer" means the person who obtains or has obtained possession of goods from an

owner under a hire- purchase agreement, and includes a person to whom the hirer' s rights or

liabilities under the agreement have passed by assignment or by operation of law;

· “owner" means the person who lets or has let, delivers or has delivered possession of

COPYRIGHT FIMT 2020 Page 413

goods, to a hirer under a hire- purchase agreement and includes a person to whom the owner' s

property in the goods or any of the owner' s rights or liabilities under the agreement has

passed by assignment or by operation of law.

Difference between Hire-Purchase System and Installment System

Installment Payment System is system of purchase and sale of goods in which title of goods is

immediately transferred to the purchaser at the time of sale of goods and the sale price of the

goods is paid in installments. In the event of default in payment of any installment, the seller has

no right to take back goods from the possession of the purchaser. He can file a suit for the

recovery of the outstanding balance of the price of goods sold.

The followings are the differences between Hire-purchase system and Installment payment

system:

· In Hire-purchase system, the transfer of ownership takes place after the payment of all

installments while in case of Installment payment system, the ownership is transferred

immediately at the time of agreement.

·

In Hire-purchase system, the hire-purchase agreement is like a contract of hire though later

on it may become a purchase after the payment of last installment while in

Installment payment system, the agreement is like a contract of credit purchase.

· In case of default in payment, in Hire-purchase system the vendor has a right to back

goods from the possession of the hire-purchaser while in case of Installment payment

system, the vendor has no right to take back the goods from the possession of the

purchaser; he can simply sue for the balance due.

· In Hire-purchase system, if the purchaser sells the goods to a third party before the

payment of last installment, the third party does not get a better title on the goods

purchased. But in case of Installment payment system, the third party gets a better title on the

goods purchased.

· In Hire-purchase system the provisions of the Hire-purchase Act apply to the

transaction while in case of Installment payment system, the provisions of Sale of Goods

Act apply to the transaction.

Accounting Entries in the Books of Hire purchaser

COPYRIGHT FIMT 2020 Page 414

Journal Entries in the Books Of Hire Purchaser

There are two methods of recording hire purchase transactions in the books of the hire purchaser: i.

When the asset is recorded in full cash price-full cash price method

ii. When the asset is recorded at cash price actually paid in each installment-: Actual cash price

method.

1. For the purchase of asset: First Method

Asset A/C (full cash price)...........Dr. To vendor A/C

Second Method

No entry

2. For the payment made for 'down payment' First Method

Vendor A/C.............Dr. To bank A/C

Second Method Asset A/C............Dr. To Bank A/C

3. For installment due

First Method

Interest A/C............Dr. To vendor A/C

Second Method

Asset A/C (part of cash value)............Dr. To Interest A/C

4. For the payment of installment (both method) Vendor A/C............Dr.

To Bank A/C

5. For charging depreciation(on the basis of cash value) (both methods) Depreciation

A/C...................Dr.

To Asset A/C

6. For transfer of interest and depreciation (both methods) Profit and loss A/C............Dr.

To depreciation A/C To interest A/C

Journal Entries In The Books Of Vendor

1. For selling goods on hire purchase

Hire purchase A/C...........Dr. (full cash price) To sales/hire purchase sales A/C

2. For receiving down payment Cash/bank A/C.................Dr.

To hire purchaser A/C

3. For installment due

Hire purchaser A/C............Dr. To Interest A/C

4. For receiving the installment Cash/bank A/CDr.

To hire purchaser A/C

COPYRIGHT FIMT 2020 Page 415

5. For transferring interest Interest A/C............Dr.

To profit and loss A/C

Posting in Ledger Accounts: After passing journal entries under any of the methods discussed

above, the following ledger accounts are opened in the ledger and the postings are made

accordingly.

 (i) Asset A/c. (e.g. Trucks A/c, Machinery A/c. etc.) (ii) Vendor's A/c. (iii)Interest A/c.

(iv)Depreciation A/c.

Note: Before recording the entries the amounts of interest and depreciation will be calculated in

two separate tables showing the calculations of interest and depreciation.

Calculation of Interest

The total payment made under hire-purchase system is more than cash price. In fact, this excess

of payment over the cash price is interest. It is very essential to calculate interest because the

amount paid for interest is charged to revenue and the asset is capitalized at cash price. Thus

normally all installments will include a part of cash price and a part of interest on the outstanding

balance. However the amount paid at the time of agreement (down payment) will not include any

interest.

The calculation of interest is made under two conditions:

 (a) When interest is included in amount of installment: Where the hire-purchase price i.e.

payment made in the form of down payment and all installments is more than the cash price, it is

regarded that the interest is included in installments.

Illustration: On Ist April, 2005 Mr. X purchased from M/s Y & Co. one 'Motor Truck' under

hire-purchase system, Rs. 5,000 being paid on delivery and the balance in five annual

installments of Rs. 7,500 each payable on 31st March each year. The cash price of the motor truck

is Rs. 37,500 and vendors charge interest at the rate of 5 per cent per annum on yearly balances.

Find out the amounts of principal and interest included in each installment.

(b) When interest is not included in installments: Where the total amount paid in the form of

down payment and all installments is exactly equal to the cash price, it is regarded that the interest

is not included in installments. It means that interest is payable in addition to the agreed amount of

installment.

Question: On April 1,2005, A Transport Company purchased a Motor Lorry from Motor

Supply Co. Ltd. on hire-purchase basis, the cash price being Rs. 60,000. Rs. 15,000 on

signing of the contract and balance in three annual installments of Rs. 15,000 each on 31st

COPYRIGHT FIMT 2020 Page 416

March every year. In addition to it, interest at 5 per cent per annum was also payable to

vendors on outstanding balances.

Branch Accounting

An accounting system in which separate accounts are maintained for each branch of a corporate

entity or organization. The primary objectives of branch accounting are better accountability and

control, since profitability and efficiency can be closely tracked at the branch level. Branch

accounting may involve added expenses for an organization in terms of accounting and

infrastructure. This is because it may be necessary to appoint branch accountants to ensure

accurate financial reporting and compliance with head office procedures and processes.

Types of Branches

The branches opened in the different parts of the nation, where the original undertaking being

registered are called inland branches. These types of branches are also called home branches or

national branches. There are two types of inland branches, which are:

a) Dependent branch b) Independent branch

a) Dependent Branch:

Dependent branches are the branches that do not keep their records but all the records are

maintained by head office. They are not authorized to act solely without the prior permission of

the head office. All the plans, policies, rules and regulations of these branches are totally

formulated and executed by the head office. In other words, all the functions of dependent

branch are totally controlled by head office.

b). Independent Branch:

The branches that can keep their accounts themselves and sell goods that are sent by the head

office as well as those purchased by themselves are known as independent branches. These are

the branches which can sell the goods to head office too. They can pay their own expenses and

can deposit their collection in their own name in the bank. These branches record separately and

independently all the transactions which are even recorded by the head office.

Systems of Accounting:

Stock and Debtors system is generally used when the goods are sent to the branch at pro-forma

invoice price and the size of the branch is large. Under this system, the branch maintains a few

central accounts to exercise greater control over the branch stock and other related expenses.

COPYRIGHT FIMT 2020 Page 417

These accounts are as follows:

1.Branch Stock Account

2.Branch Debtors Account

3.Branch Expenses Account

4.Branch Adjustment Account

5.Goods Sent to Branch Account

6.Branch Stock Reserve Account

Branch Stock Account

This account is on the pattern of a stock account. The account helps the Head Office in

maintaining an effective control over the Branch Stock and tells about shortage and surplus in

the branch stock because of the difference between the pro-forma invoice price and the selling

price. Unlike traditional accounting practice, branch stock a/c is always maintained on the selling

price or pro-forma invoice price. Selling price is used to record the goods sold by the branch to

its customer and goods returned by the branch customers.

Branch Debtors Account

Branch debtors' a/c is maintained in the traditional manner to record transactions in between branch

and its credit customers

Branch Expense Account

The purpose of maintaining this account is nothing but the compile all branch expenses at one

place. This will include all types of expenses i.e. cash based expenses and receivables based

expenses

Branch Adjustment Account

Branch adjustment a/c replaces the branch income statement (profit & loss a/c). This is the

account in which all expenses and losses are closed along with the margin that is a difference

between cost and the selling price. This difference is split into two; one is termed as "surplus"

that comes from the branch stock a/c representing the difference between selling price and pro-

forma invoice price, the second is termed as "loading" that represents the difference between pro-

forma invoice price and cost. This loading is calculated on opening and closing stock balances

and also on the net of the goods sent branch.

Goods Sent to Branch Account

This is a supporting account, which is maintained to show second effects of the goods sent to

branch and the goods returned from branch at pro-forma invoice price. Although the goods sent to

and returned form the branch should be adjusted in the purchases a/c of the head office, but as we

COPYRIGHT FIMT 2020 Page 418

know that the branch stock a/c is not maintained at cost price, therefore, second effect of goods sent

to and returned from branch is not recorded directly into the purchases a/c instead this second effect

is recorded into the goods sent to branch a/c which after adjustment of the loading is finally closed

into the purchases a/c.

Branch Stock Reserve Account

This is contra to branch stock account. In this account opening and closing balance of loading on

branch stock is maintained.

Accounting Entries in books of head office under Debtors system of Branch Accounting

1) For Goods sent by Head Office to the Branch

Branch A/C Dr.

To Goods sent to the Branch A/C

2) For Goods returned by the Branch to H.O.

Goods sent to the Branch A/C Dr.

To Branch A/C

3) For Goods sent by the Branch to another Branch at instructions from the H.O.

Goods sent to Branch A/C Dr.

To Branch A/C

4) For Goods returned by the Branch Debtors to H.O. directly

Goods sent to Branch A/C Dr.

To Branch A/C

5) For Expenses at the Branch met by the H.O.

Branch A/C Dr.

To Bank A/C

6) For Assets at the Branch at end of accounting period

Branch Assets A/C Dr.

To Branch A/C

7) For Liabilities at the end of the accounting period

Branch A/C Dr.

To Branch Liabilities/C

8) For Profit/Loss

If Profit: Branch A/C Dr.

To General P&L A/C

If Loss: General P&L A/c

COPYRIGHT FIMT 2020 Page 419

To Branch A/C

9) For transfer of Balance in Goods sent to Branch account

Goods sent to Branch A/C Dr.

To Purchases/Trading A/C

10) For remittance of cash or cheque to the branch

Branch A/C Dr.

To Cash/Bank A/C

Question: Excellent Garments of Multan has a branch at Lahore. Goods are supplied to the

branch at cost. The expenses of the branch are paid from Multan and the branch keeps a sales

journal and the debtors' ledger only. From the following information supplied by the branch,

prepare a Branch Account in the books of the head office. Goods are sent to branch at pro-forma

invoice price which is cost plus 20%.(All figures in rupees).

Opening Stock (at Pro-forma invoice) 28,800, Closing Debtors9,150

Closing Stock (at Pro-forma invoice) 21,600

Opening Debtors 6200

Goods received from HO(at Pro-forma invoice)

Bad Debt 140

Credit Sales 41,000

Expenses paid by Head office 10,400

Cash Sales 17,500

Cash received from Debtors 37,900

Pilferage of goods by the employees(Normal Loss) 2,000

Solution:

(Debtors System)

In the books of H.O. (Multan)

Lahore Branch Account

Particulars

Amount

Particulars

Amount

 Opening Stock

24,000

Cash Recd.fromBranch

17500

 Opening Debtors

6200

Cash Recd. From Debtors

37900

 Cash sent to Branch

10400

Goods sent to Branch

6720

 Goods sent to Branch

40,320

Closing Stock

18000

COPYRIGHT FIMT 2020 Page 420

To general P&L A/C

8360

Closing Debtors

9160

 89280

 89280

 Debtors Account

Particulars

Amount

Particulars

Amount

 Opening

Debtors(bal.fig.6200)

 Cash recd.from

Debtors

37900

Credit Sales

41000

Bad Debt

140

 Closing Debtors (c/.f.)

9160

 47200

 47200

Question: On 1st January, 2008 goods costing Rs. 132,000 were invoiced by Multan head office

to its new branch at Lahore and charged at selling price to produce a gross profit of 25% on the

selling price. At the end of the year, the return from Lahore Branch showed that the credit sales

were Rs. 150,000. Goods invoiced at Rs. 2,000 to Lahore branch have been returned to Multan

head office. The closing stock at Lahore branch was Rs. 24,000 at selling price. Record the

above transactions in the books of

(i)Lahore Branch Stock Account; (ii) Goods Sent to Lahore Branch Account;

(iii)Lahore Branch Adjustment Account; and (iv) Lahore Branch Debtors Account in

the head office book and close the said accounts on 31st December 2008.

In the Books of the Head Office, Multan

Lahore Branch Stock Account

Particulars

Amount

Particulars

Amount

 To Goods sent to Lahore

Branch

176000

By goods sent to Lahore

Branch

2000

 By a/c returns

150000

 By Branch

Debtors(Cr.Sales)

24,000

 176000

 176000

 Goods Sent to Lahore Branch Account

Particulars

Amount

Particulars

Amount

COPYRIGHT FIMT 2020 Page 421

To Lahore Branch

Stock A/c(Returns)

2000

By Lahore Branch

stock a/c

176000

To Lahore branch

adj.a/c

43500

Topurchases(bal.fig.)

130500

 176000

 176000

Lahore Branch Debtors Account

Particulars

Amount

Particulars

Amount

To Lahore Branch

Stock a/c

150000

By balance c/d

150000

 150000 150000

Lahore Branch adjustment Account

Particulars

Amount

Particulars

Amount

To Stock Reserve

6000

By goods sent to

Delhi Branch

43500

To general P&L a/c

37500

 43500

 43500

Independent Branch Accounting:

Accounting Entries under Independent Branch:

A. For goods supplied by head office to branch:

Branch book:

Goods supplied by head office A/C.........Dr. To Head office A/C

COPYRIGHT FIMT 2020 Page 422

(Being receipt of goods)

Head office book: Branch A/C..............Dr.

To goods supplied to branch A/C (Being goods sent to branch)

B. For cash remitted by head office to branch: Branch book:

Cash A/C..............Dr. To head office A/C

(Being cash received)

Head office book: Branch A/CDr. To cash A/C

(Being cash sent to branch)

C. For goods returned by branch: Branch book:

Head office A/C............Dr.

To goods supplied to head office A/C (Being goods return to head office)

Head office book:

Goods supplied from branch A/C............Dr. To Branch A/C

(Being goods returned from branch)

D. For cash remitted by branch to head office: Branch book:

Head office A/C.............Dr. To cash

(Being cash sent to head office)

Head office book: Cash A/C.................Dr. To Branch A/C

(Being cash received from branch)

E. For assets purchased by branch on behalf of head office: Branch book:

Head office A/CDr. To cash A/C

(Being purchase of assets)

Head office book:

Branch assets A/C.............Dr. To branch A/C

(Being assets purchased by branch)

F. For depreciation charged: Branch book:

Depreciation A/CDr.

To Head office A/C

(Being depreciation on branch fixed assets)

Adjustment in Profit sharing Ratio

When a new partner is admitted he/she acquires his/her share in profit from the existing partners.

COPYRIGHT FIMT 2020 Page 423

As a result, the profit sharing ratio in the new firm is decided mutually between the existing

partners and the new partner. The incoming partner acquires his/her share of future profits either

incoming from one or more existing partner. The existing partners sacrifice a share of their profit in

the favour of new partner, hence the calculation of new profit sharing ratio becomes necessary.

Sacrificing Ratio

At the time of admission of a partner, existing partners have to surrender some of their share in

favour of the new partner. The ratio in which they agree to sacrifice their share of profits in favour

of incoming partner is called sacrificing ratio. Some amount is paid to the existing partners for their

sacrifice. The amount of compensation is paid by the new partner to the existing partner for

acquiring the share of profit which they have surrendered in the favour of the new partner.

Sacrificing Ratio is calculated as follows:

Sacrificing Ratio = Existing Ratio – New Ratio

Following cases may arise for the calculation of new profit sharing ratio and sacrificing ratio:

Only the new partner’s share is given

In this case, it is presumed that the existing partners continue to share the remaining profit in the

same ratio in which they were sharing before the admission of the new partner. Then, existing

partner’s new ratio is calculated by dividing remaining share of the profit in their existing ratio.

Sacrificing ratio is calculated by deducting new ratio from the existing ratio.

Question:

Deepak and Vivek are partners sharing profit in the ratio of 3 : 2. They admit Ashu as a new

partner for 1/5 share in profit. Calculate the new profit

sharing ratio and sacrificing ratio. Solution:

Calculation of new profit sharing ratio: Let total Profit = 1

New partner’s share = 1/5 Remaining share = 1 – 1/5 = 4/5

Deepak’s new share = 3/5 of 4/5 i.e. 12/25

Vivek’s new share = 2/5 of 4/5 i.e. 8/25 Ashu’s Share = 1/5

The new profit sharing ratio of Deepak, Vivek and Ashu is : = 12/25 : 8/25 : 1/5 = 12 : 8 : 5/25 = 12

: 8 : 5

So Deepak Sacrificed = 3/5 – 12/25 = 15 – 12/25 = 3/25 Vivek Sacrificed = 2/5 – 8/25 = 10 – 8/25

= 2/25 Sacrificing Ratio = 3 : 2

Sacrificing ratio of the existing partners is same as their existing ratio.

COPYRIGHT FIMT 2020 Page 424

(ii) The new partner purchases his/her share of the profit from the Existing partner in a

particular ratio.

In this case : the new profit sharing ratio of the existing partners is to be ascertained after deducting

the sacrifice agreed from his share. It means the incoming partner has purchased some share of

profit in a particular ratio from the existing partners.

Only the new partner’s share is given

In this case, it is presumed that the existing partners continue to share the remaining profit in the

same ratio in which they were sharing before the admission of the new partner. Then, existing

partner’s new ratio is calculated by dividing remaining share of the profit in their existing ratio.

Sacrificing ratio is calculated by deducting new ratio from the existing ratio.

When a new partner is admitted in the firm, the existing/old partners have to sacrifice, what is

given to the new partner, from their future profits, the reputation they have gained in their past

efforts and the side of capital they have taken before. The new partner when admitted, has to

compensate for all these sacrifices made by the old ones. The compensation for such sacrifice

can be termed as 'goodwill'. Hence, at the time of admission of the new partner, it is necessary to

account the valuation of goodwill in the firm. If the new partner brings in cash for his share of

goodwill, in addition to his capital, it is known as premium method. When the new partner brings

nothing but only the capital, and the value of goodwill is erected or raised, this method of

treatment is called Revaluation Method.

However, once creating the value of goodwill and writing of the same after admission is done,

it can be said to be Memorandum Revaluation Method. Thus, keeping in mind, all these

methods, the various ways of treating goodwill in the books of the firm at the time of admission

of the new partner, are as follows:

1. Share of goodwill brought by the new partner in cash. 2. Share of goodwill brought by the new

partner in kind.

3. Nothing is brought by the new partner as his share of goodwill.

4. Share of goodwill brought by the new partner in cash only a portion not as a whole. 5. Hidden

goodwill

1. When the new partner brings his share of goodwill in cash

When the new partner brings his share of goodwill in cash, the payment ma be made to the old

partners, as if outside/private transaction. It may be retained in the business or after recording the

same in the firm, the old partners may withdraw the whole amount or some portion only,

a. When the amount of goodwill brought by the new partner is not recorded in the books and the

COPYRIGHT FIMT 2020 Page 425

payment is made to the old partners as outside or private transaction, it does not affect in the

transaction of the firm and hence no entry is passed in the books of the firm

b.When the amount of goodwill brought in by the new partner is retained in the business to

increase cash resources, and if there exists already no-goodwill:

i) Cash/Bank A/C.......................Dr. To Goodwill A/c

(Being goodwill brought in by the new partner) ii) Goodwill A/C...........................Dr.

To old partners' capital A/C

(Being goodwill credited to old partners in the sacrificing ratio)

c. When there is no-goodwill already appeared in the books and the amount of goodwill brought in

by the new partner, is fully or partially withdrawn by the old partners:

i) Cash A/C.......................Dr. To Goodwill A/C

(Being goodwill brought by the new partner)

ii) Goodwill A/C................Dr. To old partners' capital A/C

(Being goodwill divided among old partners) iii) Old partners' capital A/C...............Dr.

To Cash/Bank A/C

(Being the amount withdrawn)

d. When there is goodwill already appeared in the books and even then if the new partner brings

his share of goodwill in cash, the amount may be retained or withdrawn by the old partners. If

the amount of goodwill brought in by the new partner is retained in the business:

i) Old partners' capital A/C..............................Dr. To Goodwill A/C

(Being goodwill appearing in the book written off in the old ratio) ii) Cash/Bank

A/C.......................Dr.

To Goodwill A/C

(Being goodwill brought in by the new partner) iii) Goodwill A/C.......................Dr.

To old partners' capital A/C

(Being goodwill brought in by new partner shared by the old partners)

If the goodwill amount brought by the new partner is withdrawn by the old partners, the

following extra entry should also be passed:

Old partners' capital A/C.............Dr. To Cash/Bank

(Being amount withdrawn)

COPYRIGHT FIMT 2020 Page 426

If they agree to show the original value of goodwill in the books, it is raised by passing the entry:

Goodwill A/CDr.

To All partners capital A/C (Being goodwill raised)

2. When the new partner brings his share of goodwill in kind

The new partner may bring his share of goodwill and capital in kind i.e. the form of assets

instead of cash. Again, new partner may have an established name in the market among the

customers. In such case, he may be recognized for his goodwill. As a result he will bring a lesser

amount of assets than the amount of credited to him. This requires two journal entries:

i) All assets A/C............................Dr. Goodwill A/C/New partner's capital A/C

(Being goodwill brought in kind by the new partner)

ii) Goodwill A/C/New partner's capital A/C................Dr. To old partners' capital A/C

(Being goodwill shared by the old partners)

3. When the new partner is unable to bring his share of goodwill in cash or kind

When the new partner cannot bring anything for his share of goodwill, first of all we have to see if

there exists goodwill already or not. If there is no-goodwill already appearing in the books of the

firm, goodwill is raised at its full value. If goodwill already appears in the books, it is

compared to the full value of goodwill raised or created and the adjustment is done accordingly. a.

When the new partner is unable to bring his share of goodwill and if there is no-goodwill

already appearing in the books, goodwill is raised at its full value:

i) Goodwill A/C.................Dr. To old partners' capital A/C

(Being goodwill is created at its full value and credited to the old partners in old ratio) * By this

entry, goodwill A/C then appears as an asset in the balance sheet of the firm.

b. If the new partner cannot bring his share of goodwill and there appears goodwill already in the

books, even then goodwill is raised at its full value. If the raised value of goodwill is equal to the

existing value of goodwill, no entry what so ever is needed. If the raised goodwill is more than

the existing goodwill, then goodwill will be credited to the old partner's capital A/C by the

excess amount only:

Goodwill A/C......................Dr. (excess value) To old partners' capital A/C

(Being the value of goodwill increased to..../increased by......)

* Goodwill then appears at its full value in the balance sheet of the firm

c. If the raised value of goodwill is less than the existing value of goodwill, then excess over

COPYRIGHT FIMT 2020 Page 427

raised value of goodwill is written off:

Old partners' capital A/C................Dr. To Goodwill A/C

(Being the goodwill written off by the reduction in value)

d. Whatever the case may be stated in a,b,c, the partners may not wish goodwill in the books for

an indefinite period after the admission of new one, as the value of goodwill changes constantly.

They may write off the whole or some portion of the value of goodwill. For writing off the

goodwill:

All partners' capital A/C.............Dr. To Goodwill A/C

(Being goodwill written off)

4. When the new partner can bring only a portion of his share of goodwill

When the new partner cannot bring the entire amount of his share of goodwill and he brings only a

part of this, it is shared by the old partners in sacrificing ratio. Then goodwill A/C is raised in the

books for the portion not brought by the new partner which is also credited to the old partners in

their sacrificing ratio. Goodwill raised for the part of goodwill not brought in by the new

partner is calculated as under:

= (Full value of goodwill/share of goodwill of new partner) X goodwill not brought in

But it should be remembered that , if there exists any goodwill in the books, first it should be

written off by crediting to the old partners in old ratio. Therefore, the entries are:

i) Old partners' capital A/C..................Dr. To Goodwill A/C

 (Being goodwill written off)

ii Cash/Bank A/C........................Dr. To Goodwill A/C

(Being the portion of goodwill brought in by new partner) iii) Goodwill A/C.......................Dr.

To old partners' capital A/C

(Being the goodwill brought in by new partner credited to old partners)

iv) When the goodwill is raised for the part of goodwill not brought in by the new partner, the

amount of goodwill is calculated as said above. The entry would be the same as in iii), only the

amount being different, which is shared by the old partners in their old profit sharing ratio.

5. Hidden Goodwill

When the value of goodwill is not given in the question, the value of goodwill has to be

calculated on the basis of total capital/net worth of the firm and profit sharing ratio.

COPYRIGHT FIMT 2020 Page 428

A. New partner's capital X Reciprocal of the share of new partner....XXX B. Less net

worth(excluding goodwill) of new firm...............................XXX

C. A-B = Value of goodwill..XXX

Retirement of a Partner:

When one or more partners leaves the firm and the remaining partners continue to do the business

of the firm, it is known as retirement of a partner. Amit, Sunil and Ashu are partners in a firm. Due

to some family problems, Ashu wants to leave the firm. The other partners decide to allow him to

withdraw from the partnership. Thus, due to some reasons like old age, poor health, strained

relations etc., an existing partner may decide to retire from the partnership. Due to retirement, the

existing partnership comes to an end and the remaining partners form a new agreement and the

partnership firm

is reconstituted with new terms and conditions. At the time of retirement the retiring partner’s claim

is settled.

A partner retires either :

(i) with the consent of all partners, or (ii) as per terms of the agreement; or (iii) at his or her own

will.

The terms and conditions of retirement of a partner are normally provided in the partnership deed.

If not, they are agreed upon by the partners at the time of retirement. At the time of retirement the

following accounting issues are dealt :

(a) New profit sharing ratio and gaining ratio. (b) Goodwill

(c) Adjustment of changes in the value of Assets and liabilities (d) Treatment of reserve and

accumulated profits.

(e) Settlement of retiring partners dues, (f) New capital of the continuing partners.

New profit sharing ratio and gaining ratio

As soon as a partner retires the profit sharing ratio of the continuing partners get changed. The

share of the retiring partner is distributed amongst the continuing partners. In the absence of

information, the continuing partners take the retiring partner’s share in their profit sharing ratio or

in an agreed ratio. The ratio in which retiring partner’s share is distributed amongst continuing

partners is known as gaining ratio. It is

Gaining Ratio = New Ratio – Existing Ratio

COPYRIGHT FIMT 2020 Page 429

Various cases of new ratio and gaining ratio are illustrated as follows: (i) Retiring partner’s

share distributed in Existing Ratio :

In this case, retiring partner’s share is distributed in existing ratio amongst the remaining partners.

The remaining partners continue to share profits and losses in the existing ratio.

The following example illustrates this :

Tanu, Manu and Rena are partners sharing profits and losses in the ratio of = 4 : 3 : 2. Tanu retires

and remaining partners decide to take Tanu’s share in the existing ratio i.e. 3 : 2. Calculate the new

ratio of Manu and Rena.

Existing Ratio between Manu and Rena = 3/9 and 2/9 Tanu’s Ratio (retiring partner) = 4/9

Tanu’s share taken by the Manu and Rena in the ratio of 3 : 2 Manu’s gets = 4/9 × 3/5 = 12/45

Manu’s New Share = 3/9 + 12/45 = 27/45 Rena’s gets = 4/9 × 2/5 = 8/45

Rena’s New Share = 2/9 + 8/45 = 18/45

New ratio between Manu and Rena is 27/45 : 18/45 = 27 : 18 = 3 : 2. Gaining Ratio = New Ratio –

Existing Ratio

Manu Gain = 27/45 – 3/9 = 12/45

Rena Gain = 18/45 – 2/9 = 8/45 12/45 : 8/45

3 : 2

You may note that the new ratio is similar to existing ratio that existed between Manu and Rena

before Tanu’s retirement.

Note: In absence of any information in the question, it will be presumed that retiring partner’s share

has been distributed in existing ratio.

(ii) Retiring partner’s share distributed in Specified proportions: Sometimes the remaining

partners purchase the share of the retiring partner in specified ratio. The share purchased by them is

added to their old share and the new ratio is arrived at. The following example illustrates this:

A, B and C are partners in the firm sharing profits in the ratio of

3 : 2 : 1. B retired and his share was divided equally between A and C. Calculate the new profit

sharing ratio of A and C.

B’s Share = 2/6

B’s share is divided between A and C in the ratio of 1 : 1. A gets 1/2 of 2/6 = 2/6 × 1/2 = 1/6

A’s New Share = 3/6 + 1/6 = 4/6 C’s gets 1/2 of 2/6 = 2/6 × 1/2 = 1/6 C’s New share = 1/6+1/6 =

2/6

COPYRIGHT FIMT 2020 Page 430

Gaining Ratio = New Ratio – Existing, Ratio

(iii)Retiring Partner’s share is taken by one of the partners

The retiring partner’s share is taken up by one of the remaining partners.

In this case, the retiring partner’s share is added to that of partner’s existing share. Only his/her

share changes. The other partners continue to share profit in the existing ratio. An example

illustrating this point is given below: Anuj, Babu and Rani share profit in the ratio of 5 : 4 : 2. Babu

retires and his share is taken by Rani, So Rani’s share is 2/11 + 4/11 = 6/11, Anuj share

will remain unchanged i.e, 5/11. Thus, the new profit sharing ratio of Anuj and Rani is 5 : 6.

Treatment of Goodwill

The retiring partner is entitled to his/her share of goodwill at the time of retirement because the

goodwill is the result of the efforts of all partners including the retiring one in the past. The retiring

To Liabilities A/c [Individually]

(Increase in the value of liabilities)

(iv) For decrease in value of Liabilities: Liabilities A/c Dr. [Individually]

To Revaluation A/c

(decrease in the value of liabilities)

Revaluation account is prepared to record the change in the value of assets or liabilities. It will

reveal profit or loss on revaluation. This profit or loss

is divided amongst all partners including the retiring/deceased partner in existing profit sharing

ratio.

(iv) For Profit on Revaluation : Revaluation A/c Dr. (Individually) To Partner’s Capital A/c

(Profit on revaluation divided amongst all partners in their existing profit sharing ratio)

(v) For loss on Revaluation:

Partner’s Capital A/c Dr. (Individually) To Revaluation A/c

(Loss on revaluation borne by all partners in their existing profit sharing ratio.

(vi) For distribution of undistributed profit and reserve. Reserves A/c Dr

Profit & Loss A/c (Profit) Dr.

To Partners’ Capital A/c (individually)

(Reserves and Profit & Loss (Profit) transferred to all partners capitals A/c in existing profit sharing

ratio)

COPYRIGHT FIMT 2020 Page 431

(vii)For distribution of undistributed loss Partners’ Capital A/c Dr. (individually)

To Profit & Loss A/c (Loss) [Profit & Loss (loss) transferred to

all partners Capitals A/c in old profit sharing ratio]

Death of a Partner:

The death of a partner dissolves the partnership. On the date of death, the accounts are closed

and the net income for the year to date is allocated to the partners' capital accounts. Most

agreements call for an audit and revaluation of the assets at this time. The balance of the

deceased partner's capital account is then transferred to a liability account with the deceased's

estate. The surviving partners may continue the business or liquidate. If the business

continues, the procedures for settling with the estate are the same as those described earlier for

the withdrawal of a partner. On the death of a partner, the accounting treatment regarding goodwill,

Revaluation of assets and reassessment of liabilities, accumulated reserves and undistributed profit

are similar to that of the retirement of a partner, When the partner dies the amount payable to

him/her is paid to his/her legal representatives. The representatives are entitled to the followings :

(a) The amount standing to the credit to the capital account of the deceased partner

(b) Interest on capital, if provided in the partnership deed upto the date of death:

(c) Share of goodwill of the firm;

(d) Share of undistributed profit or reserves;

(e) Share of profit on the revaluation of assets and liabilities; (f) Share of profit upto the date of

death;

(g) Share of Joint Life Policy.

The following amounts are debited to the account of the deceased partner’s legal representatives: (i)

Drawings

(ii) Interest on drawings

(iii) Share of loss on the revaluation of assets and liabilities;

(iv) Share of loss that have occurred till the date of his/her death.

The above adjustments are made in the capital account of the deceased partner and then the balance

in the capital account is transferred to an account opened in the name of his/her executor.

The payment of the amount of the deceased partner depends on the

agreement. In the absence of an agreement the legal representative of adeceased partner is

entitled to interest @ 6% p.a. on the amount due from the date of death till the date of final

COPYRIGHT FIMT 2020 Page 432

payment.

Calculation of profit upto the date of death of a partner.

If the death of a partner occurs during the year, the representatives of the deceased partner are

entitled to his/her share of profits earned till the date of his/her death. Such profit is ascertained by

any of the following methods: (i) Time Basis (ii) Turnover or Sales Basis

 (i) Time Basis

In this case, it is assumed that profit has been earned uniformly throughout the year. For example:

The total profit of previous year is Rs. 2,25,000 and a partner dies three months after the close of

previous year, the profit of three months

is Rs. 31,250 i.e. 1,25,000 × 3/12, if the deceased partner took 2/10 share of profit, his/her share

of profit till the date of death is Rs. 6,250 i.e. Rs. 31,250 × 2/10.

 (ii) Turnover or Sales Basis

In this method, we have to take into consideration the profit and the total sales of the last year.

Thereafter the profit upto the date of death is estimated on the basis of the sale of the last year.

Profit is assumed to be earned uniformly at the same rate.

Illustration 12

Arun, Tarun and Neha are partners sharing profits in the ratio of 3 : 2 : 1 Neha dies on 31st May

2006. Sales for the year 2005-2006 amounted to Rs.4,00,000.and the profit on sales is Rs.60,000.

Accounts are closed on 31 March every year. Sales from lst April 2006 to 31st May 2006 is

Rs.1,00,000.Calculate the deceased partner’s share in the profit upto the date of death.

Solution :

Profit from 1st April 2006 to 31st May 2006 on the basis of sales: If sales are Rs.4,00,000, profit is

Rs.60,000

If the sales are Rs.1,00,000 profit is : 60,000/4,00,000 × 1,00,000 = Rs.15,000

Neha’s share= 15,000 × 1/6 = Rs.2,500 Alternatively profit is calculated as

Rate of profit =60000/400000×100 = 15% Sale up to date of death = 1,00,000

Profit = 1 00 000X15/100 = Rs 15000.

COPYRIGHT FIMT 2020 Page 433

OBJECT ORIENTED PROGRAMME (209)

UNIT – I

 Introducing Object-Oriented Approach

C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form programming

language that supports procedural, object-oriented, and generic programming. C++ is regarded as a

middle-level language, as it comprises a combination of both high-level and low-level language

features. C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs in Murray Hill,

New Jersey, as an enhancement to the C language and originally named C with Classes but later it

was renamed C++ in 1983. C++ is a superset of C, and that virtually any legal C program is a legal

C++ program.

Note: A programming language is said to use static typing when type checking is performed during

compile-time as opposed to run-time.

COPYRIGHT FIMT 2020 Page 434

Object oriented Programming is a programming methodology that associated data structure with a

set of operators which act upon it. An instance of such an entity is known as object which is a

combination or collection of data and code designed to emulate a physical or abstract entity. Each

object has its own identity and distinguishes from each other. The fundamental idea behind an

object-oriented language is to combine both data and the functions that operate on the data into a

single unit. Such a unit is called an object. Examples of object oriented programming C++, Small

talk, Java. There are two components of an object in C++.

I. Data Member

II. Member function

Structured programming and object-Oriented programming fundamentally differ in the following

way: structured programming views the two core elements of any program- data and function as

two separate entities whereas OOP views them as a single entity. Data members of an object can be

accessed only by using the functions of the object. Therefore, the data is hidden and is safe from

accidental alteration. Data and functions are stored into a single entity. The functions of an object

are called the member functions.

These member functions are called method in other object-oriented languages like Small Talk.

Figure 1 Objected Oriented Programming

Relating to other paradigms (functional, data decomposition)

Figure 2 Object-Oriented paradigm

During program execution, the objects interact with each other by sending messages and receiving

responses.

Features of Procedure oriented programming

Object A

Object B Object C

Data

Function

Function

Data

Function

Function

Data

Function

Function

Object Object

COPYRIGHT FIMT 2020 Page 435

Procedure programming is base on the algorithms. It best suited for the design of a knowledge

base. The following are features of procedural programming.

Programs are organized in the form of subroutines and all data items are global.

Program controls are through jumps and calls to subroutines.

Subroutines are abstracted to avoid repetitions

Suitable for medium sized software applications

Difficult to maintain and enhance the program code

Example FORTRAN and COBOL

Subprograms

Figure 3 Procedural Programmin

Basic Concepts of Object Oriented Programming

 Objects

Objects are the basic run time entities. This represents a person, a place, a bank A/C or any item

that the program has to handle. They can represent user define data type

 Programming problem is analysis I term of object and the nature of communication between them.

Objects represents space in the memory and have an associate address like one record or structure

in ‘C’. When a program is executed the objects interacts by sending massages to one another each

object contains data & code to manipulate the

 Classes

The entire set of data & code of an object can be made a user define data type with the help of a

class. Objects are variables of the class. Once the class has been define we can create any number

of objects belong to that class. A class is a collection of objects of similar type.

 Encapsulation

It is a mechanism that associates the code and the data it manipulates into a single unit and keeps

them safe from external inference and misuse. It is supported by a construct called class. An

instance of a class is known as an object which represents real world entity.

 Data Abstraction

It creates new data types that are well suited to an application to be programmed is known as data

abstraction.

Global Data

COPYRIGHT FIMT 2020 Page 436

 Inheritance

It provides the flexibility to reuse the existing code.

 Multiple Inheritance

A class is derived from more than one base class is known as multiple inheritance.

 Polymorphism

It allows a single name/operator to be associated with different operations depending on the type of

data passed to it. It can be achieved by function overloading, operator overloading and dynamic

binding.

 Message Passing

Object oriented program consist of the set of object that communicate with each other object

communicate by sending & receiving information in the form of message.

 Dynamic binding

Binding refers to the linking of a processor call to the code to be executed I response to the call

dynamic binding is known as late binding means that the code associated with a given procedure

call is not known until the time of the call at run time. This is associated with polymorphism &

inheritance.

Benefits of OOP

It emphasis on the data rather than algorithm.

Data and associated operations are unified into a single unit, thus the objects are grouped with

common attributes, operation and semantics.

Program are designed around the data being operated, rather than operations themselves (data

decomposition rather than algorithm decomposition)

Inheritance increases the reusability of code.

We can build programs from the standard working modules that communicate with one another,

rather than having to start writing the code from scratch which happens procedure oriented

approach. This leads to saving of development time and higher productivity.

Data hiding helps to secure programs that cannot be invaded by code in other parts of the program.

Multiple instances of object can use without any interference.

It is possible to map objects in the problem domain to those in the program.

The data-centered design approach enables us to capture more details of a model in implementable

from.

COPYRIGHT FIMT 2020 Page 437

Object oriented systems can be easily upgraded from small to large systems.

Message passing techniques for communication between objects makes the interface descriptions

with external systems much simpler.

Software complexity can be easily managed.

 Applications of OOP

OOP Provides Many Applications:-

1) Real time Systems - A real time system is a system that give output at given instant and its

parameters changes at every time. A real time system is nothing but a dynamic system. Dynamic

means the system that changes every moment based on input to the system. OOP approach is very

useful for Real time system because code changing is very easy in OOP system and it leads toward

dynamic behavior of OOP codes thus more suitable to real time system.

2) Simulation and Modeling- System modeling is another area where criteria for OOP approach is

countable. Representing a system is very easy in OOP approach because OOP codes are very easy

to understand and thus is proffered to represent a system in simpler form.

3) Hypertext and Hypermedia- Hypertext and hypermedia is another area where OOP approach

is very useful. Its ease of using OOP codes that makes it suitable for various media approaches.

4) Decision support system- Decision support system is an example of Real time system that too

very advance and complex system.

5) CAM/CAE/CAD System- Computer has wide use of OOP approach. This is due to time saving

in writing OOP codes and dynamic behaviour of OOP codes.

6) Office Automation System- Automation system is just a part or type of real time system.

Embedded systems make it easy to use OOP for automated system.

7) AI and expert system- It is mixed system having both hypermedia and real time system.

Difference between C and C++, cin, cout, new, delete operators

We can summarize the differences as follows:

• Procedural Programming

– Top down design

– create functions to do small tasks

– communicate by parameters and return values

• Object Oriented Programming

– design and represent objects

– determine relationships between objects

COPYRIGHT FIMT 2020 Page 438

– determine attributes each object has

– determine behaviors each object will respond to

– create objects and send messages to them to use or manipulate their attributes

‘c’ Language C++ Language

Emphasis is on action rather than data. Emphasis is on data rather than procedures

subprograms or sub procedures are used Objects are used.

Functions & data are separate Functions that operate on the data of an object are

typed together in the data structure.

Data can be access by external function Data is hidden and can’t be access by external

functions. Objects may communicate with each their

through function.

New data & function for the whole

application can’t be easily added whenever

necessary.

New data & function can be easily added when ever

necessary

Follows up-bottom approach in program

designed

Follows bottom-up approach in program designed.

cin To input the data

cout Shows the output

new To allocate memory to newly created variable

delete To deallocate memory already assign to some variable

C++ Environment: Program development environment

Program development environment is a software application that provides comprehensive

facilities to computer programmers for software development.

Language and the C++ language standards

Standard Libraries

Standard C++ consists of three important parts: The core language giving all the building blocks

including variables, data types and literals etc.The C++ Standard Library giving a rich set of

functions manipulating files, strings etc. The Standard Template Library (STL) giving a rich set of

methods manipulating data structures etc.

The ANSI Standard

The ANSI standard is an attempt to ensure that C++ is portable -- that code you write for

Microsoft's compiler will compile without errors, using a compiler on a Mac, Unix, a Windows

COPYRIGHT FIMT 2020 Page 439

box, or an Alpha. The ANSI standard has been stable for a while, and all the major C++ compiler

manufacturers support the ANSI standard.

The Standard Function Library:

The standard function library is divided into the following categories:

I/O

String and character handling

Mathematical

Time, date, and localization

Dynamic allocation

Miscellaneous

Wide-character functions

The Object Oriented Class Library:

Standard C++ Object Oriented Library defines an extensive set of classes that provide support for a

number of common activities, including I/O, strings, and numeric processing. This library includes

following:

 The Standard C++ I/O Classes

 The String Class

 The Numeric Classes

 The STL Container Classes

 The STL Algorithms

 The STL Function Objects

 The STL iterators

 The STL Allocators

 The Localization library

 Exception Handling Classes

Miscellaneous Support Library

Input/Output with files

C++ provides the following classes to perform output and input of characters to/from files:

_ ofstream: Stream class to write on files

_ ifstream: Stream class to read from files

_ fstream: Stream class to both read and write from/to files.

These classes are derived directly or indirectly from the classes istream, and ostream.

COPYRIGHT FIMT 2020 Page 440

Introduction to various C++ compilers

C++ is a huge language so much that it uses various sets of instructions from different parts to do

its work. Some of these instructions come in computer files that you simply "put" in your program.

These instructions or files are also called libraries.

#include iostream.h

#include "books.h"

When we include a library that came with C++, we enclose it between < and > as follows:

#include <iostream.h>

Following this same technique, we can add as many libraries as we can. Before adding a file,

we will need to know what that file is and why we need it. This will mostly depend on our

application. For example, we can include a library called stdio like this:

#include <iostream.h>

#include <stdio.h>

There are usually two kinds of libraries or files you will use in our programs: libraries that came

with C++, and those that we write. To include our own library, we would enclose it between double

quotes, like this

Testing the C++ program in Turbo C++/Borland C++/MicroSoft VC++/GNU C++ compile

 Borland C++BuilderX is a commercial programming environment developed by Borland. To help

programmers, Borland published a free version, called Personal Edition, that we can download and

use.

1. On the main menu of C++BuilderX, click File -> New...

2. In the Object Gallery dialog box, click New Console

3. Click OK

4. In the New Console Application - Step 1 of 3, enter the name of the new application

in the Name edit box. In this case, we can type Exercise1

COPYRIGHT FIMT 2020 Page 441

5. Click Next

6. In the New Console Application Wizard - Step 2 of 3, accept all defaults and click

Next

7. In the New Console Application Wizard - Step 3 of 3, click the check box under

Create

8. Click Untitled1 and delete it to replace it with Exercise

9. Click Finish

10. In the Project Content frame, double-click Exercise.cpp to display it in the right

Frame

11. To execute the application, on the main menu, click Run -> Run Project

Program structure

When we consider a C++ program, it can be defined as a collection of objects that communicate

via invoking each other's methods. Let us now briefly look into what a class, object, methods, and

instant variables mean.

Object - Objects have states and behaviors. Example: A dog has states - color, name, breed as

well as behaviors - wagging, barking, and eating.

COPYRIGHT FIMT 2020 Page 442

An object is an instance of a class.

Class - A class can be defined as a template/blueprint that describes the behaviors/states that

object of its type support.

Methods - A method is basically a behavior. A class can contain many methods. It is in methods

where the logics are written, data is manipulated and all the actions are executed.

Instant Variables - Each object has its unique set of instant variables. An object's state is created

by the values assigned to these instant variables.

C++ Program Structure:

Let us look at a simple code that would print the words Hello World.

#include <iostream>

using namespace std;

// main() is where program execution begins.

int main()

{

cout << "Hello World"; // prints Hello World

return 0;

}

Let us look at the various parts of the above program:

1. The C++ language defines several headers, which contain information that is either necessary or

useful to your program. For this program, the header <iostream> is needed.

2. The line using namespace std; tells the compiler to use the std namespace. Namespaces are a

relatively recent addition to C++.

3. The next line ‘// main() is where program execution begins.’ is a single-line comment

available in C++. Single-line comments begin with // and stop at the end of the line.

4. The line int main() is the main function where program execution begins.

5. The next line cout << "This is my first C++ program."; causes the message "This is my first

C++ program" to be displayed on the screen.

6. The next line return 0; terminates main() function and causes it to return the value 0 to the

calling process.

Compile & Execute C++ Program:

Let's look at how to save the file, compile and run the program. Please follow the steps given

below:

COPYRIGHT FIMT 2020 Page 443

1. Open a text editor and add the code as above.

2. Save the file as: hello.cpp

3. Open a command prompt and go to the directory where you saved the file.

4. Type 'g++ hello.cpp' and press enter to compile your code. If there are no errors in your code the

command prompt will take you to the next line and would generate a.out executable file.

5. Now, type 'a.out' to run your program.

6. You will be able to see ' Hello World ' printed on the window.

Comments in C++

Program comments are explanatory statements that you can include in the C++ code. These

comments help anyone reading the source code. All programming languages allow for some form

of comments. C++ supports single-line and multi-line comments. All characters available inside

any comment are ignored by C++ compiler.

C++ comments start with /* and end with */. For example:

/* This is a comment */

/* C++ comments can also

* span multiple lines

*/

A comment can also start with //, extending to the end of the line. For example:

#include <iostream>

using namespace std;

main()

{

cout << "Hello World"; // prints Hello World

return 0;

}

When the above code is compiled, it will ignore // prints Hello World and final

executable will produce the following result:

Hello World

UNIT-II

All C++ programs are composed of following two fundamental elements:

COPYRIGHT FIMT 2020 Page 444

Program statements (code): This is the part of a program that performs actions and they are called

functions. Program data: The data is the information of the program which affected by the program

functions.

Encapsulation is an Object Oriented Programming concept that binds together the data and

functions that manipulate the data, and that keeps both safe from outside interference and misuse.

Data encapsulation led to the important OOP concept of data hiding. Data encapsulation is a

mechanism of bundling the data, and the functions that use them and data abstraction is a

mechanism of exposing only the interfaces and hiding the implementation details from the user.

C++ supports the properties of encapsulation and data hiding through the creation of user defined

types, called classes.

Information hiding

Data abstraction refers to, providing only essential information to the outside word and hiding

their background details to represent the needed information in program without presenting the

details. Data abstraction is a programming (and design) technique that relies on the separation of

interface and implementation. C++ classes provide great level of data abstraction. They provide

sufficient public methods to the outside world to play with the functionality of the object and to

manipulate object data to state without actually knowing how class has been implemented

internally.

For example, our program can make a call to the sort() function without knowing what algorithm

the function actually uses to sort the given values. In fact, the underlying implementation of the

sorting functionality could change between releases of the library, and as long as the interface stays

the same, your function call will still work.

Benefits of Data Abstraction:

Data abstraction provides two important advantages:

• Class internals are protected from inadvertent user-level errors, which might corrupt the state of

the object.

• The class implementation may evolve over time in response to changing requirements or bug

reports without requiring change in user-level code.

By defining data members only in the private section of the class, the class author is free to make

changes in the data. If the implementation changes, only the class code needs to be examined to see

what affect the change may have. If data are public, then any function that directly accesses the

data members of the old representation might be broken.

Abstract data Type

COPYRIGHT FIMT 2020 Page 445

An abstract data type is simply an encapsulation that includes only the data representation of one

specific data type and the subprograms that provide the operations for that type. It is a data type

that satisfies two conditions:-

1) The representation, or definition, of the type and the operations are contained in a single

syntactic unit.

2) The representation of objects of the type is hidden from the program units that use the type, so

only direct operations possible on those objects are those provided in the type’s definition

Classes

When we define a class, we define a blueprint for a data type. This doesn't actually define any data,

but it does define what the class name means, that is, what an object of the class will consist of and

what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class body,

enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a

list of declarations. A class enclosed both the data and functions that operate on the data into a

single unit shown in fig 4.

Defining variables of a class type is known as instantiation and such variables are called objects.

Figure 4

In fig 4 a class called data is created and it holds data members and data functions.

C++ Class:

When we define a class, we define a blueprint for a data type. This doesn't actually define any data,

but it does define what the class name means, that is, what an object of the class will consist of and

what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class body,

enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a

list of declarations.

Data

Data1

Data2

Data3

func1()

func2()

func3()

COPYRIGHT FIMT 2020 Page 446

For example we defined the Box data type using the keyword class as follows:

Where

o Data is class a name

o Public is a keyword. It determines the access attributes of the members of the class that follow it.

A public member can be accessed from outside the class anywhere within the scope of the class

object.

o roll_no is a variable

o name[20] is a variable.

C++ Objects

A class provides the blueprints for objects, so basically an object is created from a class. We

declare objects of a class with exactly the same sort of declaration that we declare variables of

basic types. Following statements declare two objects of class Box:

Member /function In C++

A function is a group of statements that together perform a task. Every C++ program has at least

one function which is main(), and all the most trivial programs can define additional functions

The general form of a C++ function definition is as follows:

return_type function_name(parameter list)

{

Class data

{

Public:

Int roll_no;

char name[20];

};

St1 //object 1

St2 // object2

COPYRIGHT FIMT 2020 Page 447

body of the function

}

A C++ function definition consists of a function header and a function body. Here are all the parts

of a function:

• Return Type: A function may return a value. The return_type is the data type of the value the

function returns. Some functions perform the desired operations without returning a value. In this

case, the return_type is the keyword void.

• Function Name: This is the actual name of the function. The function name and the parameter

list together constitute the function signature.

• Parameters: A parameter is like a placeholder. When a function is invoked, we pass a value to

the parameter. This value is referred to as actual parameter or argument. The parameter list refers

to the type, order, and number of the parameters of a function. Parameters are optional; that is, a

function may contain no parameters.

• Function Body: The function body contains a collection of statements that define what the

function does. The public data members of objects of a class can be accessed using the direct

member access operator (.). Let us try the following example to make the things clear:

#include <iostream>

using namespace std;

class Box

{

public:

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

};

int main()

{

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specification

Box1.height = 5.0;

Box1.length = 6.0;

COPYRIGHT FIMT 2020 Page 448

Box1.breadth = 7.0;

// box 2 specification

Box2.height = 10.0;

Box2.length = 12.0;

Box2.breadth = 13.0;

// volume of box 1

volume = Box1.height * Box1.length * Box1.breadth;

cout << "Volume of Box1 : " << volume <<endl;

// volume of box 2

volume = Box2.height * Box2.length * Box2.breadth;

cout << "Volume of Box2 : " << volume <<endl;

return 0;

}

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Defining attributes in C++ Programming

The first part of the class is the private part, where the attributes of the class are listed. The

attributes of a class are defined in a very similar way to the way in which variables are defined. The

only difference is that they cannot be given an initial value. The format of the declaration is :

<type> <identifier>;

For example:

string name;

int age;

C++ class declaration, (references, this pointer)

A class is an expanded concept of a data structure: instead of holding only data, it can hold both

data and functions. An object is an instantiation of a class. In terms of variables, a class would be

the type, and an object would be the variable. Classes are generally declared using the keyword

class, with the following format:

class class_name {

access_specifier_1:

COPYRIGHT FIMT 2020 Page 449

member1;

access_specifier_2:

member2;

...

} object_names;

Where

class_name is a valid identifier for the class,

object_names is an optional list of names for objects of this class. The body of the declaration can

contain members that can be either data or function declarations, or optionally access specifiers.

Encapsulation

The wrapping up of data and function into a single unit (called class) is known as encapsulation.

Data encapsulation is the most striking feature of a class. The data is not accessible to the outside

world, and only those functions which are wrapped in the class can access it. These functions

provide the interface between the object’s data and the program. This insulation of the data from

direct access by the program is called data hiding or information hiding.

Object & classes, attributes, Methods

The main purpose of C++ programming is to add object orientation to the C programming

language and classes are the central feature of C++ that supports object-oriented programming and

are often called user-defined types. A class is used to specify the form of an object and it combines

data representation and methods for manipulating that data into one neat package.

The data and functions within a class are called members of the class.

C++ Class Definitions

When you define a class, you define a blueprint for a data type. This doesn't actually define any

data, but it does define what the class name means, that is, what an object of the class will consist

of and what operations can be performed on such an object. A class definition starts with the

keyword class followed by the class name; and the class body, enclosed by a pair of curly braces.

A class definition must be followed either by a semicolon or a list of declarations. For example, we

define the Box data type using the keyword class as follows:

This pointer

Function Overloading

COPYRIGHT FIMT 2020 Page 450

 In C++, two or more functions can be given the same name and provide unique signature.

Example

swap(int, int)

swap(float,float)

In this example a method is used with same name but parameters are changed.

When we call an overloaded function or operator, the compiler determines the most appropriate

definition to use by comparing the argument types you used to call the function or operator with the

parameter types specified in the definitions. The process of selecting the most appropriate

overloaded function or operator is called overload resolution. We can have multiple definitions for

the same function name in the same scope. The definition of the function must differ from each

other by the types and/or the number of arguments in the argument list. We cannot overload

function declarations that differ only by return type

Constructors and destructors

A class constructor is a special member function of a class that is executed whenever we create

new objects of that class. A constructor will have exact same name as the class and it does not have

any return type at all, not even void. Constructors can be very useful for setting initial values for

certain member variables.

Example

Class student

 {

int m,n;

Public:

 student(void);

};

studebt::student(void)

{

 M=0; n=0;

}

Characteristics of constructor

 It always declares in public section.

 They invoked automatically when the objects are created.

 No return type.

COPYRIGHT FIMT 2020 Page 451

 Cannot inherit and cannot refer their addresses.

 An object with a constructor cannot be used as a member of a union.

 ‘New’ and ‘Delete’ operators are called implicitly when memory allocation is required.

Types of Constructor

 copy constructor

 parameterized constructor

 Dynamic Constructor

The Class Destructor:

A destructor is a special member function of a class that is executed whenever an object of it's class

goes out of scope or whenever the delete expression is applied to a pointer to the object of that

class. A destructor will have exact same name as the class prefixed with a tilde (~) and it can

neither return a value nor can it take any parameters. Destructor can be very useful for releasing

resources before coming out of the program like closing files, releasing memories etc.

Instantiation of objects

Instantiation of a class literally means creating an instance of a class. This is the process of

allocating memory for an object that we can use in your program.

class class_name {

access_specifier_1:

member1;

access_specifier_2:

member2;

} object_names;

Default parameter value

A default parameter is a function parameter that has a default value provided to it. If the user does

not supply a value for this parameter, the default value will be used. If the user does supply a value

for the default parameter, the user-supplied value is used.

void PrintValues(int nValue1, int nValue2=10)

{

using namespace std;

cout << "1st value: " << nValue1 << endl;

cout << "2nd value: " << nValue2 << endl;

}

COPYRIGHT FIMT 2020 Page 452

int main()

{

PrintValues(1); // nValue2 will use default parameter of 10

PrintValues(3, 4); // override default value for nValue2

}

This program produces the following output:

1st value: 1

2nd value: 10

1st value: 3

2nd value: 4

In the first function call, the caller did not supply an argument for nValue2, so the function used the

default value of 10. In the second call, the caller did supply a value for nValue2, so the user-

Supplied value was used. Default parameters are an excellent option when the function needs a

value that the user may or may not want to override. For example, here are a few function

prototypes for which default parameters might be commonly used:

References

A reference variable is an alias, that is, another name for an already existing variable. Once a

reference is initialized with a variable, either the variable name or the reference name may be used

to refer to the variable.

References vs Pointers

 References are often confused with pointers but three major differences between references and

pointers are:

 You cannot have NULL references. You must always be able to assume that a reference is

connected to a legitimate piece of storage.

 Once a reference is initialized to an object, it cannot be changed to refer to another object. Pointers

can be pointed to another object at any time.

 A reference must be initialized when it is created. Pointers can be initialized at any time.

Dynamic Memory Allocation

Until now, in all our programs, we have only had as much memory available as we declared for our

variables, having the size of all of them to be determined in the source code, before the execution

COPYRIGHT FIMT 2020 Page 453

of the program. But, what if we need a variable amount of memory that can only be determined

during runtime. For example, in the case that we need some user input to determine the necessary

amount of memory space. For that we need dynamic memory, for which C++ integrates the

operators new and delete.

 Operators new and new[]

In order to request dynamic memory we use the operator new. New is followed by a data type

specifier and -if a sequence of more than one element is required- the number of these within

brackets []. It returns a pointer to the beginning of the new block of memory allocated. Its form is:

pointer = new type

pointer = new type [number_of_elements]

 Operators delete and delete[]

Since the necessity of dynamic memory is usually limited to specific moments within a program,

once it is no longer needed it should be freed so that the memory becomes available again for other

requests of dynamic memory.

Garbage Collection

It is a process that many Operating Systems and some applications, especially services perform.

The purpose of Garbage Collection is to recover or reorganize system resources such as available

blocks of RAM to prevent failure due to resource starvation. Many applications allocate blocks of

RAM for storing variables. When the blocks of RAM are no longer required they are returned to

the application. The addresses of the blocks are usually stored on a free list and when the

application later requests more RAM, it checks the free list first. The effect of this over a period of

time is to split RAM into smaller and smaller blocks. Eventually an application will request a block

that is too big and fail. Garbage Collection merges all the free blocks into one large block. In older

languages like C++ programmers had to write their own Garbage Collection routines but newer

languages like C# provide this.

Abstract class

An interface describes the behavior or capabilities of a C++ class without committing to a

particular implementation of that class. The C++ interfaces are implemented using abstract classes

and these abstract classes should not be confused with data abstraction which is a concept of

keeping implementation detail separate from associated data. The purpose of an abstract class

(often referred to as an ABC) is to provide an appropriate base class from which other classes can

COPYRIGHT FIMT 2020 Page 454

inherit. Abstract classes cannot be used to instantiate objects and serves only as an interface.

Attempting to instantiate an object of an abstract class causes a compilation error.

Metaclass: A class whose instances are classes.

UNIT- III

Inheritance and Polymorphism

Inheritance

One of the most important concepts in object-oriented programming is that of inheritance.

Inheritance allows us to define a class in terms of another class, which makes it easier to create and

maintain an application. This also provides an opportunity to reuse the code functionality and fast

implementation time. When creating a class, instead of writing completely new data members and

member functions, the programmer can designate that the new class should inherit the members of

an existing class. This existing class is called the base class, and the new class is referred to as the

derived class. The idea of inheritance implements the is a relationship. For example, mammal IS-A

animal, dog IS-A mammal hence dog IS-A animal as well and so on.

Base & Derived Classes

A class can be derived from more than one classes, which means it can inherit data and functions

from multiple base classes. To define a derived class, we use a class derivation list to specify the

base class (es).

A class derivation list names one or more base classes and has the form: class derived-class:

access-specifier base-class. Where access-specifier is one of public, protected, or private, and

base-class

is the name of a previously defined class. If the access-specifier is not used, then it is private by

default. Consider a base class Shape and its derived class Rectangle as follows:

#include <iostream>

using namespace std;

// Base class

class Shape

{

public:

void setWidth(int w)

{

width = w;

}

void setHeight(int h)

COPYRIGHT FIMT 2020 Page 455

{

height = h;

}

protected:

int width;

int height;

};

// Derived class

class Rectangle: public Shape

{

public:

int getArea()

{

return (width * height);

}

};

int main(void)

{

Rectangle Rect;

Rect.setWidth(5);

Rect.setHeight(7);

// Print the area of the object.

cout << "Total area: " << Rect.getArea() << endl;

return 0;

}

Access Control and Inheritance

A derived class can access all the non-private members of its base class. Thus base-class members

that should not be accessible to the member functions of derived classes should be declared private

in the base class. We can summarize the different access types according to - who can access them,

in the following way:

Access public protected private

Same class yes yes yes

Derived classes yes yes no

COPYRIGHT FIMT 2020 Page 456

Outside classes yes no no

Class hierarchy

Derivation

Class Access Modifiers

Data hiding is one of the important features of Object Oriented Programming which allows

preventing the functions of a program to access directly the internal representation of a class type.

The access restriction to the class members is specified by the labeled public, private, and

protected sections within the class body. The keywords public, private, and protected are called

access specifiers.

A class can have multiple public, protected, or private labeled sections. Each section remains in

effect until either another section label or the closing right brace of the class body is seen. The

default access for members and classes is private.

Public Members

A public member is accessible from anywhere outside the class but within a program. You can set

and get the value of public variables without any member function as shown in the following

example:

#include <iostream>

using namespace std;

class Line

{

public:

double length;

void setLength(double len);

double getLength(void);

};

Private

A private member variable or function cannot be accessed, or even viewed from outside the class.

Only the class and friend functions can access private members. By default all the members of a

class would be private, for example in the following class width is a private member, which means

until you label a member, it will be assumed a private member:

class Box

{

COPYRIGHT FIMT 2020 Page 457

double width;

public:

double length;

void setWidth(double wid);

double getWidth(void);

};

Practically, we define data in private section and related functions in public section so that they can

be called from outside of the class as shown in the following program.

Protected

A protected member variable or function is very similar to a private member but it provided one

additional benefit that they can be accessed in child classes which are called derived classes. You

will learn derived classes and inheritance in next chapter. For now you can check following

example where I have derived one child class SmallBox from a parent class Box.

Following example is similar to above example and here width member will be accessible by any

member function of its derived class SmallBox.

#include <iostream>

using namespace std;

class Box

{

protected:

double width;

};

Types of Inheritance

 Single Inheritance

 Multilevel Inheritance

 Multiple Inheritance

Compositions:

 Typically use normal member variables

 Can use pointer values if the composition class automatically handles allocation/deallocation

 Responsible for creation/destruction of subclasses

Aggregations:

COPYRIGHT FIMT 2020 Page 458

 Typically use pointer variables that point to an object that lives outside the scope of the aggregate

class

 Can use reference values that point to an object that lives outside the scope of the aggregate class

 Not responsible for creating/destroying subclasses

Polymorphism

The word polymorphism means having many forms. Typically, polymorphism occurs when there

is a hierarchy of classes and they are related by inheritance. C++ polymorphism means that a call to

a member function will cause a different function to be executed depending on the type of object

that invokes the function.

Consider the following example where a base class has been derived by other two classes:

#include <iostream>

using namespace std;

class Shape {

protected:

int width, height;

public:

Shape(int a=0, int b=0)

{

width = a;

height = b;

}

int area()

{

cout << "Parent class area :" <<endl;

return 0;

}

};

class Rectangle: public Shape{

public:

Rectangle(int a=0, int b=0):Shape(a, b) { }

int area ()

{

COPYRIGHT FIMT 2020 Page 459

cout << "Rectangle class area :" <<endl;

return (width * height);

}

};

class Triangle: public Shape{

public:

Triangle(int a=0, int b=0):Shape(a, b) { }

int area ()

{

cout << "Triangle class area :" <<endl;

return (width * height / 2);

}

};

// Main function for the program

int main()

{

Shape *shape;

Rectangle rec(10,7);

Triangle tri(10,5);

// store the address of Rectangle

shape = &rec;

// call rectangle area.

shape->area();

// store the address of Triangle

shape = &tri;

// call triangle area.

shape->area();

return 0;

}

Operator overloading

C++ allows you to specify more than one definition for a function name or an operator in the

same scope, which is called function overloading and operator overloading respectively. An

COPYRIGHT FIMT 2020 Page 460

overloaded declaration is a declaration that is declared with the same name as a previously declared

declaration in the same scope, except that both declarations have different arguments and obviously

different definition (implementation). When you call an overloaded function or operator, the

compiler determines the most appropriate definition to use, by comparing the argument types you

have used to call the function or operator with the parameter types specified in the definitions. The

process of selecting the most appropriate overloaded function or operator is called overload

resolution.

Function Overloading in C++

You can have multiple definitions for the same function name in the same scope. The definition of

the function must differ from each other by the types and/or the number of arguments in the

argument list. You cannot overload function declarations that differ only by return type.

Following is the example where same function print() is being used to print

different data types:

#include <iostream>

using namespace std;

class printData

{

public:

void print(int i) {

cout << "Printing int: " << i << endl;

}

void print(double f) {

cout << "Printing float: " << f << endl;

}

void print(char* c) {

cout << "Printing character: " << c << endl;

}

};

int main(void)

{

COPYRIGHT FIMT 2020 Page 461

printData pd;

// Call print to print integer

pd.print(5);

// Call print to print float

pd.print(500.263);

// Call print to print character

pd.print("Hello C++");

return 0;

}

Parametric polymorphism:

If all code is written without mention of any specific type and thus can be used transparently with

any number of new types it is called parametric polymorphism.

Polymorphism by parameter

Parametric polymorphism is obtained when a function works uniformly on a range of types; these

types normally exhibit some common structure. Ad-hoc polymorphism is obtained when a function

works, or appears to work, on several different types (which may not exhibit a common

structure) and may behave in unrelated ways for each type."

Virtual Function

A virtual function is a function in a base class that is declared using the keyword virtual. Defining

in a base class a virtual function, with another version in a derived class, signals to the compiler

that we don't want static linkage for this function. What we do want is the selection of the function

to be called at any given point in the program to be based on the kind of object for which it is

called. This sort of operation is referred to as dynamic linkage, or late binding.

Pure Virtual Functions

It is possible that you want to include a virtual function in a base class so that it may be redefined

in a derived class to suit the objects of that class, but that there is no meaningful definition you

could give for the function in the base class. We can change the virtual function area() in the base

class to the following:

class Shape {

protected:

int width, height;

public:

COPYRIGHT FIMT 2020 Page 462

Shape(int a=0, int b=0)

{

width = a;

height = b;

}

// pure virtual function

virtual int area() = 0;

};

Early v/s Late Binding

The reason for the incorrect output is that the call of the function area() is being set once by the

compiler as the version defined in the base class. This is called static resolution of the function

call, or static linkage - the function call is fixed before the program is executed. This is also

sometimes called early binding because the area() function is set during the compilation of the

program. A virtual function is a function in a base class that is declared using the keyword virtual.

Defining in a base class a virtual function, with another version in a derived class, signals to the

compiler that we don't want static linkage for this function. What we do want is the selection of the

function to be called at any given point in the program to be based on the kind of object for which

it is called. This sort of operation is referred to as dynamic linkage, or late binding.

4.1 Generic Programming

 4.1.1Introduction- In the simplest definition, generic programming is a style of computer

programming in whichalgorithms are written in terms of to-be-specified-later types that are then

instantiated when needed for specific types provided as parameters C++ provides unique abilities

to express the ideas of Generic Programming through templates.

Templates provide a form of parametric polymorphism that allows the expression of generic

algorithms and data structures. The instantiation mechanism of C++ templates insures that when

a generic algorithm or data structure is used, a fully-optimized and specialized version will be

created and tailored for that particular use, allowing generic algorithms to be as efficient as their

non-generic counterparts.

4.1.2 Templates

Templates are the foundation of generic programming, which involves writing code in a way that is

independent of any particular type. A template is a blueprint or formula for creating a generic class

or a function. The library containers like iterators and algorithms are examples of generic

COPYRIGHT FIMT 2020 Page 463

programming and have been developed using template concept. There is a single definition of each

container, such as vector, but we can define many different kinds of vectors for example, vector

<int> or vector <string>. You can use templates to define functions as well as classes, let us see

how they work:

 Function Template

The general form of a template function definition is shown here:

template <class type> ret-type func-name(parameter list)

{

// body of function

}

 Template functions

Function templates are special functions that can operate with generic types. This allows us to

create a function template whose functionality can be adapted to more than one type or class

without repeating the entire code for each type.

In C++ this can be achieved using template parameters. A template parameter is a special kind of

parameter that can be used to pass a type as argument: just like regular function parameters can be

used to pass values to a function, template parameters allow to pass also types to a function. These

function templates can use these parameters as if they were any other regular type.

The format for declaring function templates with type parameters is:

template<class identifier>function_declaration;

template <typename identifier> function_declaration;

 Overloading of template functions

You may overload a function template either by a non-template function or by another function

template. If you call the name of an overloaded function template, the compiler will try to deduce

its template arguments and check its explicitly declared template arguments. If successful, it will

instantiate a function template specialization, then add this specialization to the set of candidate

functions used in overload resolution. The compiler proceeds with overload resolution, choosing

the most appropriate function from the set of candidate functions. Non-template functions take

precedence over template functions. The following example describes this:

#include <iostream>

using namespace std;

template<class T> void f(T x, T y) { cout << "Template" << endl; }

void f(int w, int z) { cout << "Non-template" << endl; }

COPYRIGHT FIMT 2020 Page 464

4.1.3 Overriding inheritance methods

When a method in a derived class has the same name, arguments in numbers and types and the

same return type the method says to override that base class method. The base class has an

overloaded method with the same name as the overridden method, that method says to be hided and

cannot be accessed by the derived class without the special class (baseclass::) notation.

4.2 Files and Exception Handling

4.2.1 Persistant objects

A persistent object can live after the program which created it has stopped. Persistent objects can

even outlive different versions of the creating program, can outlive the disk system, the operating

system, or even the hardware on which the OS was running when they were created. The challenge

with persistent objects is to effectively store their member function code out on secondary storage

along with their data bits. This is non-trivial when you have to do it yourself.

In C++, you have to do it yourself. C++ databases can help hide the mechanism for all this.

4.2.2Streams and files

The C++ standard libraries provide an extensive set of input/output capabilities. C++ I/O occurs in

streams, which are sequences of bytes. If bytes flow from a device likes a keyboard, a disk drive, or

a network connection etc. to main memory, this is called input operation and if bytes flow from

main memory to a device likes a display screen, a printer, a disk drive, or a network connection,

etc, this is called output operation. Of course, it's also possible to open files or other I/O sources)

explicitly. We can open files using the function fopen; certain systems may also provide

specialized ways of opening streams connected to I/O devices or set up in more exotic ways. A

successful call to fopen returns a pointer of type FILE *, that is, ``pointer to FILE,'' where FILE is a

special type defined by

<stdio.h>. A FILE * (also called ``file pointer'') is the handle by which we refer to an I/O stream in

C++. I/O Library Header Files:

There are following header files important to C++ programs:

Header File Function and Description

COPYRIGHT FIMT 2020 Page 465

<iostream> This file defines the cin, cout, cerr and clog objects, which correspond to the

standard input stream, the standard output stream, the un-buffered standard error stream and the

buffered standard error stream, respectively.

<iomanip> This file declares services useful for performing formatted I/O with so-called

parameterized stream manipulators, such as setw and set precision.

<fstream> This file declares services for user-controlled file processing. We will discuss about

it in detail in File and Stream related chapter.

4.2.3The standard output stream (cout):

The predefined object cout is an instance of ostream class. The cout object is said to be

"connected to" the standard output device, which usually is the display screen. The cout is used

in conjunction with the stream insertion operator, which is written as << .

The standard input stream (cin):

The predefined object cin is an instance of istream class. The cin object is said to be attached to

the standard input device, which usually is the keyboard. The cin is used in conjunction with the

stream extraction operator, which is written as >>

The standard error stream (cerr):

The predefined object cerr is an instance of ostream class. The cerr object is said to be attached

to the standard error device, which is also a display screen but the object cerr is un-buffered and

each stream insertion to cerr causes its output to appear immediately

4.2.4Namespaces

Consider a situation, when we have two persons with the same name, Zara, in the same class.

Whenever we need to differentiate them definitely we would have to use some additional

information along with their name, like either the area, if they live in different area or their

mother’s or father’s name, etc. Same situation can arise in your C++ applications. For example,

you might be writing some code that has a function called xyz() and there is another library

available which is also having same function xyz(). Now the compiler has no way of knowing

which version of xyz() function you are referring to within your code. A namespace is designed to

overcome this difficulty and is used as additional information to differentiate similar functions,

classes, variables etc. with the same name available in different libraries. Using namespace, you

can define the context in which names are defined. In essence, a namespace defines a scope.

Defining a Namespace efinition begins with the keyword namespace followed by the namespace

name as follows:

namespace namespace_name {

COPYRIGHT FIMT 2020 Page 466

// code declarations

}

To call the namespace-enabled version of either function or variable, prepend

(::) the namespace name as follows:

namespace namespace_name {

// code declarations

}

Let us see how namespace scope the entities including variable and functions:

#include <iostream>

using namespace std;

// first name space

namespace first_space{

void func(){

cout << "Inside first_space" << endl;

}

}

4.2.5 The basic stream classes:

C++ predefined streams,

C++ provides the following predefined streams:

cin The standard input stream

cout The standard output stream

cerr The standard error stream, unit-buffered such that characters sent to this stream are flushed

on each output operation

clog The buffered error stream

All predefined streams are tied to cout. When you use cin, cerr, or clog, cout gets flushed

sending the contents of cout to the ultimate consumer.

C++ standard streams create all I/O to I/O streams:

• Input to cin comes from stdin (unless cin is redirected)

• cout output goes to stdout (unless cout is redirected)

• cerr output goes to stderr (unit-buffered) (unless cerr is redirected)

COPYRIGHT FIMT 2020 Page 467

• clog output goes to stderr (unless clog is redirected)

4.2.6Types of Exception

An exception is a problem that arises during the execution of a program. A C++ exception is a

response to an exceptional circumstance that arises while a program is running, such as an attempt

to divide by zero. There are many different derived exception types .Here, we look at various

exception types

• ArgumentException

• ArgumentNullException

• ArgumentOutOfRangeException

• ArrayTypeMismatchException

• DirectoryNotFoundException

• DivideByZeroException

• FileNotFoundException

• FormatException

• IndexOutOfRangeException

• InvalidCastException

• InvalidOperationException

• IOException

• KeyNotFoundException

• NullReferenceException

• OutOfMemoryException

• OverflowException

• StackOverflowException

• TypeInitializationException

 Error handling during files operations

we perform the file operation without any knowledge of failure or success of the function

open() that opens the file. There are many reasons and they may result in error during

read/write operation of the program.

(1) An attempt to read a file which does not exist.

(2) The file name specified for opening a new file may already exist.

(3) An attempt to read contents of file when file pointer is at the end of file.

(4) Insufficient disk space.

COPYRIGHT FIMT 2020 Page 468

(5) Invalid file name specified by the programmer.

(6) An effort to write data to the file that is opened in read only mode.

(7) A file opened may already be opened by another program.

(8) An attempt to open read only file for writing operation.

(9) Device error.

 ERROR HANDLING FUNCTIONS

eof() Return true if end-of-file is encountered while reading

fail() Return true when an input or output operation has failed .

bad() Return true if an invalid operation is attempted or any unrecoverable error has

occured

good() Return true if no error has occured

These functions may be used in appropriate places in a program to locate the status of a file

stream and therefore to take the necessary corrective measures.

4.2.7 Command Line Arguments.

In C++ it is possible to accept command line arguments. Command-line arguments are given after

the name of a program in command-line operating systems like DOS or Linux, and are passed in to

the program from the operating system. To use command line arguments in your program, you

must first understand the full declaration of the main function, which previously has accepted no

arguments.

 In fact, main can actually accept two arguments: one argument is number of command line

arguments, and the other argument is a full list of all of the command line arguments.

4.2.8 Error handling during file operations

An exception is a problem that arises during the execution of a program. A C++ exception is a

response to an exceptional circumstance that arises while a program is running, such as an attempt

to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. C++ exception

handling is built upon three keywords: try, catch, and throw.

 throw: A program throws an exception when a problem shows up. This is done using a throw

keyword.

 catch: A program catches an exception with an exception handler at the place in a program where

you want to handle the problem.

 The catch keyword indicates the catching of an exception.

 try: A try block identifies a block of code for which particular exceptions will be activated. It is

followed by one or more catch blocks.

COPYRIGHT FIMT 2020 Page 469

Assuming a block will raise an exception, a method catches an exception using a combination of

the try and catch keywords. A try/catch block is placed around the code that might generate an

exception. Code within a try/catch block is referred to as protected code, and the syntax for using

try/catch is as follows:

Types of Exception, Catching and Handling Exceptions.

try

{

// protected code

}catch(ExceptionName e1)

{

// catch block

}catch(ExceptionName e2)

{

// catch block

}catch(ExceptionName eN)

{

// catch block

}

You can list down multiple catch statements to catch different type of exceptions in case your try

block raises more than one exception in different situations.

Catching Exceptions

The catch block following the try block catches any exception. You can specify what type of

exception you want to catch and this is determined by the exception declaration that appears in

parentheses following the keyword catch.

try

{

// protected code

}catch(ExceptionName e)

{

// code to handle ExceptionName exception

}

COPYRIGHT FIMT 2020 Page 470

Above code will catch an exception of Exception Name type. If you want to specify that a catch

block should handle any type of exception that is thrown in a try block, you must put an ellipsis, ...,

between the parentheses enclosing the

exception declaration as follows:

try

{

// protected code

}catch(...)

{

// code to handle any exception

}

	Mean median and mode
	Range, variance and standard deviation
	CENTRAL TENDENCY
	MEAN
	Arithmetic mean
	Weighted mean
	Geometric Mean
	Harmonic mean
	DEFINATION:
	METHODS OF MEASURING DISPERSION:

	Univariate frequency tables
	Joint frequency distributions
	Applications
	Mean (Arithmetic)
	When not to use the mean

	Median
	Mode
	In statistics, the Pearson product-moment correlation coefficient (r) is a common measure of the correlation between two variables X and Y. When measured in a population the Pearson Product Moment correlation is designated by the Greek letter rho (?)....
	A correlation of 0 means there is no linear relationship between the two variables. Correlations are rarely if ever 0, 1, or -1. If you get a certain outcome it could indicate whether correlations were negative or positive.
	Mathematical Formula:-- : The quantity r, called the linear correlation coefficient, measures the strength and the direction of a linear relationship between two variables. The linear correlation coefficient is sometimes referred to as the Pearson pro...
	The mathematical formula for computing r is:
	Sources of Bias
	Errors in methodology
	Change
	Technology
	Business
	Group communication
	Public relations
	The Cost of Waiting in Line
	Queuing Theory

	M/M/1 queue
	M/M/c queue
	M/M/1/K queue

	INTRODUCTION
	Brief History of CPM/PERT
	Planning, Scheduling & Control
	The Framework for PERT and CPM
	REGISTER TRANSFER LANGUAGE
	REGISTER TRANSFER
	ARITHMETIC MICROOPERATIONS
	SHIFT MICROOPERATIONS
	COMPUTER REGISTER
	TYPES OF REGISTERS ARE AS FOLLOWINGS
	MAR stand for Memory Address Register
	Program Counter
	Accumulator Register
	Memory Data Register (MDR)
	Index Register
	Memory Buffer Register
	Data Register

	INSTRUCTION CODE AND COMPUTER INSTRUCTIONS
	INSTRUCTION CYCLE: Memory reference, register reference and input out put instruction
	Instruction Fetch and Decode

	MEMORY-REFERENCE INSTRUCTION
	DESIGN OF ACCUMULATOR LOGIC: BASIC COMPUTER INSTRUCTION FORMAT

	GENERAL REGISTER ORGANIZATION
	STACK ORGANIZATION
	The Stack Data Structure
	Stack Implementation
	Uses for Stacks
	Subprogram Calls
	Reverse Polish Notation

	INSTRUCTION FORMATS
	ADDRESSING MODES
	Data Transfer and Manipulation
	Program Control
	Status Bit Conditions

	DIFFERENCE BETWEEN RISC AND CISC
	CISC
	RISC

	INPUT-OUTPUT INTERFACE
	ASYNCHRONOUS DATA TRANSFER
	Direct-mapped cache
	2-way set associative cache
	Speculative execution
	2-way skewed associative cache

	VIRTUAL MEMORY AND VIRTUAL MEMORY MANAGEMENT
	Overview of the .NET Framework
	Two-Tier and Three-Tier Architecture
	Two-Tier Architecture:
	Three-Tier Architecture:
	Components of .Net Framework

	 Features of .NET Platform are :-
	.NET and Its Advantages / Disadvantages
	Garbage Collection: Memory Management in .Net
	Exception Handling
	VB.Net - Overview
	Strong Programming Features VB.Net

	VB.Net - Environment Setup
	The .Net Framework
	Integrated Development Environment (IDE) For VB.Net
	Writing VB.Net Programs on Linux or Mac OS

	VB.Net - Program Structure
	VB.Net Hello World Example
	Compile & Execute VB.Net Program:

	VB.Net - Basic Syntax
	A Rectangle Class in VB.Net
	Identifiers
	VB.Net Keywords

	VB.Net - Data Types
	Data Types Available in VB.Net
	Example
	The Type Conversion Functions in VB.Net
	Example:

	VB.Net - Variables
	Variable Declaration in VB.Net The Dim statement is used for variable declaration and storage allocation for one or more variables. The Dim statement is used at module, class, structure, procedure or block level.
	Variable Initialization in VB.Net
	Example
	Accepting Values from User
	Lvalues and Rvalues

	VB.Net - Constants and Enumerations
	Declaring Constants
	Example
	Print and Display Constants in VB.Net
	Declaring Enumerations
	Example (1)

	VB.Net - Modifiers
	List of Available Modifiers in VB.Net

	VB.Net - Statements
	Declaration Statements
	Executable Statements

	VB.Net - Directives
	Compiler Directives in VB.Net
	The #Const Directive
	The #ExternalSource Directive
	The #If...Then...#Else Directives
	The #Region Directive

	VB.Net - Operators
	Arithmetic Operators
	Comparison Operators
	Logical/Bitwise Operators
	Bit Shift Operators
	Assignment Operators
	Miscellaneous Operators
	Operators Precedence in VB.Net

	VB.Net - Decision Making
	VB.Net - Loops
	Loop Control Statements:

	VB.Net - Strings
	Creating a String Object
	Properties of the String Class
	Methods of the String Class
	Examples:

	VB.Net - Date & Time
	Properties and Methods of the DateTime Structure
	Creating a DateTime Object
	Getting the Current Date and Time:
	Formatting Date
	Predefined Date/Time Formats
	Properties and Methods of the DateAndTime Class

	VB.Net - Arrays
	Creating Arrays in VB.Net
	Dynamic Arrays
	Multi-Dimensional Arrays
	Jagged Array
	The Array Class
	Properties of the Array Class
	Methods of the Array Class
	Example

	VB.Net - Collections
	Various Collection Classes and Their Usage

	VB.Net - Functions
	Defining a Function
	Example
	Function Returning a Value
	Recursive Function
	Param Arrays
	Passing Arrays as Function Arguments

	VB.Net - Sub Procedures
	Defining Sub Procedures
	Example
	Passing Parameters by Value
	Passing Parameters by Reference

	VB.Net - Classes & Objects
	Class Definition
	Member Functions and Encapsulation
	Constructors and Destructors
	Shared Members of a VB.Net Class
	Inheritance
	Base & Derived Classes:
	Base Class Initialization

	VB.Net - Exception Handling
	Syntax
	Exception Classes in .Net Framework
	Handling Exceptions
	Creating User-Defined Exceptions
	Throwing Objects

	VB.Net - File Handling
	VB.Net I/O Classes
	The FileStream Class
	Example:
	Advanced File Operations in VB.Net

	VB.Net - Basic Controls
	Control Properties
	Control Methods
	Control Events
	Basic Controls

	VB.Net - Dialog Boxes
	VB.Net - Advanced Form
	Adding Menus and Sub Menus in an Application
	Adding the Cut, Copy and Paste Functionalities in a Form
	Anchoring and Docking Controls in a Form
	Modal Forms

	VB.Net - Event Handling
	Handling Mouse Events
	Example
	Handling Keyboard Events
	Example (1)

	VB.Net - Regular Expressions
	Constructs for Defining Regular Expressions
	The Regex Class
	Example 1
	Example 2
	Example 3

	VB.Net - Database Access
	ADO.Net Object Model
	Data Provider
	DataSet
	Connecting to a Database
	Example 1
	Example 2
	Creating Table, Columns and Rows
	Example 3

	VB.Net - Excel Sheet
	Creating an Excel Application from VB.Net

	VB.Net - Send Email
	The SmtpClient Class
	Example

	VB.Net - XML Processing
	XML Parser APIs
	Parsing XML with SAX API
	Example 1
	Example 2
	Parsing XML with DOM API
	Example 3

	VB.Net - Web Programming
	ASP.Net Built-in Objects
	ASP.Net Programming Model
	Web Forms
	Example
	Web Services
	Windows Communication Foundation
	Example (1)

	ADO.NET
	The DataSet Class
	The DataTable Class
	The DataRow Class
	The DataAdapter Object
	The DataReader Object
	DbCommand and DbConnection Objects
	Example

	ASP.NET - File Uploading
	Example

	ASP.NET - Ad Rotator
	The Advertisement File
	Properties and Events of the AdRotator Class
	Working with AdRotator Control

	ASP.NET – Calendars
	Properties and Events of the Calendar Control
	Working with the Calendar Control
	Example

	ASP.NET - Multi Views
	Properties of View and MultiView Controls
	Example

	ASP.NET - Panel Controls
	Working with the Panel Control
	Example

	ASP.NET - Ajax Control
	The ScriptManager Control
	The UpdatePanel Control
	Example
	Properties of the UpdatePanel Control
	Methods of the UpdatePanel Control

	The UpdateProgress Control
	Properties of the UpdateProgress Control
	Methods of the UpdateProgress Control

	The Timer Control

	ASP.NET - Data Sources
	Data Source Views
	The SqlDataSource Control
	The ObjectDataSource Control
	The AccessDataSource Control

	ASP.NET - Data Binding
	Simple Data Binding
	Declarative Data Binding
	Example

	ASP.NET - Custom Controls
	User Controls
	Custom Controls
	Working with Custom Controls
	Example

	ASP.NET - Personalization
	Understanding Profiles
	Example

	Attributes for the <add> Element
	Anonymous Personalization

	ASP.NET - Error Handling
	Tracing
	Error Handling

	ASP.NET - Debugging
	Breakpoints
	The Debug Windows

	ASP.NET - LINQ
	LINQ Operators
	The Join clause
	The Where clause
	Orderby and Orderbydescending Clauses
	The Let clause

	ASP.NET - Security
	Forms-Based Authentication
	Implementing Forms-Based Security
	IIS Authentication: SSL

	ASP.NET - Data Caching
	What is Caching?
	Caching in ASP.Net
	Output Caching
	Data Caching
	Example

	Object Caching
	Example

	ASP.NET - Web Services
	Creating a Web Service
	Consuming the Web Service
	Creating the Proxy

	ASP.NET - Multi Threading
	Creating Thread
	Thread Life Cycle
	Thread Priority
	Thread Properties & Methods
	Example

	Observe the following

	ASP.NET - Configuration
	Configuration Section Handler declarations
	Application Settings
	Connection Strings
	System.Web Element
	AnonymousIdentification
	Authentication
	Authorization
	Caching
	CustomErrors
	Deployment
	HostingEnvironment
	Identity
	MachineKey
	Membership
	Pages
	Profile
	RoleManager
	SecurityPolicy
	UrlMappings
	WebControls
	WebServices

	ASP.NET - Deployment
	XCOPY Deployment
	Copying a Website
	Creating a Setup Project

