
 
 

 
GURU GOBIND SINGH 

INDRAPRASTHA UNIVERSITY 
Paper Code: BCA 102 

Paper ID: 20102 

Paper: Mathematics – I 

UNIT I            

SETS: Sets, Subsets, Equal Sets Universal Sets, Finite and Infinite Sets, Operation on Sets, Union, 
Intersection and Complements of Sets, Cartesian Product, Cardinality of Set, Simple Applications. 

RELATIONS AND FUNCTIONS: Properties of Relations, Equivalence Relation, Partial Order Relation 
Function: Domain and Range, Onto, Into and One to One Functions, Composite and Inverse Functions, 
Hashing functions, Recursive function.  

UNIT – II           

PARTIAL ORDER RELATIONS AND LATTICES: Partial Order Sets, Representation of POSETS using Hasse 
diagram, Chains, Maximal and Minimal Point, Glb, lub, Lattices & Algebric Systems, Principle of Duality, 
Basic Properties, Sub lattices, Distributed & Complemented Lattices.     

UNIT-III          

Graphs: types and operations(bipartite graph. Subgraph, distance of a graph, cut-edges & cut vertices, 
isomorphic and homomorphic graphs), degree of graphs, adjacent and incidence matrices, path 
circuit(Floyd’s and Warshall algorithms), hamiltonian graph, graph colouring.  

UNIT – IV            

Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies,  
contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Universal and 
existential quantifiers.  

Unit -1 

Definition OF SETS 

A set is a well defined collection of distinct objects. The objects that make up a set (also known 
as the elements or members of a set) can be anything: numbers, people, letters of the alphabet, 



 
 
other sets, and so on. Georg Cantor, the founder of set theory, gave the following definition of a 
set at the beginning of his Beiträge zur Begründung der transfinite Mengenlehre 

A set is a gathering together into a whole of definite, distinct objects of our perception or of our 
thought – which are called elements of the set. 

Sets are conventionally denoted with capital letters. Sets A and B are equal if and only if they 
have precisely the same elements 

As discussed below, the definition given above turned out to be inadequate for formal 
mathematics; instead, the notion of a "set" is taken as an undefined primitive in axiomatic set 
theory, and its properties are defined by the Zermelo–Fraenkel axioms. The most basic properties 
are that a set "has" elements, and that two sets are equal (one and the same) if and only if every 
element of one is an element of the other. 

Describing sets 
There are two ways of describing, or specifying the members of, a set. One way is by intensional 
definition, using a rule or semantic description: 

A is the set whose members are the first four positive integers. 
B is the set of colors of the French flag. 

The second way is by extension – that is, listing each member of the set. An extensional 
definition is denoted by enclosing the list of members in curly brackets: 

C = {4, 2, 1, 3} 
D = {blue, white, red}. 

Every element of a set must be unique; no two members may be identical. (A multi set is a generalized 
concept of a set that relaxes this criterion.) All set operations preserve this property. The order in which 
the elements of a set or multi set are listed is irrelevant (unlike for a sequence or tuple). Combining these 
two ideas into an example 

{6, 11} = {11, 6} = {11, 6, 6, 11} 

because the extensional specification means merely that each of the elements listed is a member 
of the set. 

For sets with many elements, the enumeration of members can be abbreviated. For instance, the 
set of the first thousand positive integers may be specified extensionally as: 

{1, 2, 3, ..., 1000}, 

http://en.wikipedia.org/wiki/Multiset
http://en.wikipedia.org/wiki/Tuple


 
 
where the ellipsis ("...") indicates that the list continues in the obvious way. Ellipses may also be 
used where sets have infinitely many members. Thus the set of positive even numbers can be 
written as {2, 4, 6, 8, ...}. 

The notation with braces may also be used in an intentional specification of a set. In this usage, 
the braces have the meaning "the set of all ...". So, E = {playing card suits} is the set whose four 
members are ♠, ♦, ♥, and ♣. A more general form of this is set-builder notation, through which, 
for instance, the set F of the twenty smallest integers that are four less than perfect squares can 
be denoted: 

F = {n2 − 4 : n is an integer; and 0 ≤ n ≤ 19}. 

In this notation, the colon (":") means "such that", and the description can be interpreted as "F is 
the set of all numbers of the form n2 − 4, such that n is a whole number in the range from 0 to 19 
inclusive." Sometimes the vertical bar ("|") is used instead of the colon. 

One often has the choice of specifying a set intensionally or extensionally. In the examples 
above, for instance, A = C and B = D. 

Membership 

The key relation between sets is membership – when one set is an element of another. If a is a member of 
B, this is denoted a ∈ B, while if c is not a member of B then c ∉ B. For example, with respect to the sets 
A = {1,2,3,4}, B = {blue, white, red}, and F = {n2 − 4 : n is an integer; and 0 ≤ n ≤ 19} defined above, 

4 ∈ A and 12 ∈ F; but 
9 ∉ F and green ∉ B. 

Subsets 

If every member of set A is also a member of set B, then A is said to be a subset of B, written A ⊆ B (also 
pronounced A is contained in B). Equivalently, we can write B ⊇ A, read as B is a superset of A, B 
includes A, or B contains A. The relationship between sets established by ⊆ is called inclusion or 
containment. 

If A is a subset of, but not equal to, B, then A is called a proper subset of B, written A ⊊ B (A is a proper 
subset of B) or B ⊋ A (B is a proper superset of A). 

Note that the expressions A ⊂ B and B ⊃ A are used differently by different authors; some 
authors use them to mean the same as A ⊆ B (respectively B ⊇ A), whereas other use them to 
mean the same as A ⊊ B (respectively B ⊋ A). 



 
 

 
A is a subset of B 

Example: 

• The set of all men is a proper subset of the set of all people. 
• {1, 3} ⊊ {1, 2, 3, 4}. 
• {1, 2, 3, 4} ⊆ {1, 2, 3, 4}. 

The empty set is a subset of every set and every set is a subset of itself: 

• ∅ ⊆ A. 
• A ⊆ A. 

An obvious but useful identity, which can often be used to show that two seemingly different 
sets are equal: 

• A = B if and only if A ⊆ B and B ⊆ A. 

A partition of a set S is a set of nonempty subsets of S such that every element x in S is in exactly 
one of these subsets. 

Power sets 

The power set of a set S is the set of all subsets of S, including S itself and the empty set. For 
example, the power set of the set {1, 2, 3} is {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}, ∅}. 
The power set of a set S is usually written as P(S). 

The power set of a finite set with n elements has 2n elements. This relationship is one of the 
reasons for the terminology power set. For example, the set {1, 2, 3} contains three elements, 
and the power set shown above contains 23 = 8 elements. 



 
 
The power set of an infinite (either countable or uncountable) set is always uncountable. 
Moreover, the power set of a set is always strictly "bigger" than the original set in the sense that 
there is no way to pair the elements of a set S with the elements of its power set P(S) such that every 
element of S set is paired with exactly one element of P(S), and every element of P(S) is paired with 
exactly one element of S. (There is never a bijection from S onto P(S).) 

Every partition of a set S is a subset of the power set of S. 

Cardinality 

The cardinality | S | of a set S is "the number of members of S." For example, if B = {blue, white, red}, | B | 
= 3. 

There is a unique set with no members and zero cardinality, which is called the empty set (or the null set) 
and is denoted by the symbol ∅ (other notations are used; see empty set). For example, the set of all three-
sided squares has zero members and thus is the empty set. Though it may seem trivial, the empty set, like 
the number zero, is important in mathematics; indeed, the existence of this set is one of the fundamental 
concepts of axiomatic set theory. 

Some sets have infinite cardinality. The set N of natural numbers, for instance, is infinite. Some infinite 
cardinalities are greater than others. For instance, the set of real numbers has greater cardinality than the 
set of natural numbers. However, it can be shown that the cardinality of (which is to say, the number of 
points on) a straight line is the same as the cardinality of any segment of that line, of the entire plane, and 
indeed of any finite-dimensional Euclidean space. 

Special sets 

There are some sets that hold great mathematical importance and are referred to with such regularity that 
they have acquired special names and notational conventions to identify them. One of these is the empty 
set, denoted {} or ∅. Another is the unit set {x}, which contains exactly one element, namely x. Many of 
these sets are represented using blackboard bold or bold typeface. Special sets of numbers include: 

• P or ℙ, denoting the set of all primes: P = {2, 3, 5, 7, 11, 13, 17, ...}. 
• N or ℕ, denoting the set of all natural numbers: N = {1, 2, 3, . . .} (sometimes defined containing 

0). 
• Z or ℤ, denoting the set of all integers (whether positive, negative or zero): Z = {..., −2, −1, 0, 1, 

2, ...}. 
• Q or ℚ, denoting the set of all rational numbers (that is, the set of all proper and improper 

fractions): Q = {a/b : a, b ∈ Z, b ≠ 0}. For example, 1/4 ∈ Q and 11/6 ∈ Q. All integers are in this 
set since every integer a can be expressed as the fraction a/1 (Z ⊊ Q). 

• R or ℝ, denoting the set of all real numbers. This set includes all rational numbers, together with 
all irrational numbers (that is, numbers that cannot be rewritten as fractions, such as √2, as well as 
transcendental numbers such as π, e and numbers that cannot be defined). 

• C or ℂ, denoting the set of all complex numbers: C = {a + bi : a, b ∈ R}. For example, 1 + 2i ∈ 
C. 

• H or ℍ, denoting the set of all quaternions: H = {a + bi + cj + dk : a, b, c, d ∈ R}. For 
example, 1 + i + 2j − k ∈ H. 

http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Transcendental_numbers
http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/E_(mathematical_constant)


 
 
Positive and negative sets are denoted by a superscript - or +, for example: ℚ+ represents the set 
of positive rational numbers. 

Each of the above sets of numbers has an infinite number of elements, and each can be 
considered to be a proper subset of the sets listed below it. The primes are used less frequently 
than the others outside of number theory and related fields. 

Basic operations 
There are several fundamental operations for constructing new sets from given sets. 

Unions 

 
 

The union of A and B, denoted A ∪ B 

Two sets can be "added" together. The union of A and B, denoted by A ∪ B, is the set of all 
things that are members of either A or B. 

Examples: 

• {1, 2} ∪ {1, 2} = {1, 2}. 
• {1, 2} ∪ {2, 3} = {1, 2, 3}. 

Some basic properties of unions: 

• A ∪ B = B ∪ A. 
• A ∪ (B ∪ C) = (A ∪ B) ∪ C. 
• A ⊆ (A ∪ B). 
• A ∪ A = A. 
• A ∪ ∅ = A. 
• A ⊆ B if and only if A ∪ B = B. 

Intersections 



 
 
A new set can also be constructed by determining which members two sets have "in common". 
The intersection of A and B, denoted by A ∩ B, is the set of all things that are members of both A 
and B. If A ∩ B = ∅, then A and B are said to be disjoint. 

 
The intersection of A and B, denoted A ∩ B. 

Examples: 

• {1, 2} ∩ {1, 2} = {1, 2}. 
• {1, 2} ∩ {2, 3} = {2}. 

Some basic properties of intersections: 

• A ∩ B = B ∩ A. 
• A ∩ (B ∩ C) = (A ∩ B) ∩ C. 
• A ∩ B ⊆ A. 
• A ∩ A = A. 
• A ∩ ∅ = ∅. 
• A ⊆ B if and only if A ∩ B = A. 

Complements 

 
 

The relative complement 
of B in A 



 
 

 
 

The complement of A in U 

 
 

The symmetric difference of A and B 

Two sets can also be "subtracted". The relative complement of B in A (also called the set-
theoretic difference of A and B), denoted by A \ B (or A − B), is the set of all elements that are 
members of A but not members of B. Note that it is valid to "subtract" members of a set that are 
not in the set, such as removing the element green from the set {1, 2, 3}; doing so has no effect. 

In certain settings all sets under discussion are considered to be subsets of a given universal set 
U. In such cases, U \ A is called the absolute complement or simply complements of A, and is 
denoted by A′. 

Examples: 

• {1, 2} \ {1, 2} = ∅. 
• {1, 2, 3, 4} \ {1, 3} = {2, 4}. 
• If U is the set of integers, E is the set of even integers, and O is the set of odd 

integers, then U \ E = E′ = O. 

Some basic properties of complements: 

• A \ B ≠ B \ A for A ≠ B. 
• A ∪ A′ = U. 
• A ∩ A′ = ∅. 
• (A′)′ = A. 



 
 

• A \ A = ∅. 
• U′ = ∅ and ∅′ = U. 
• A \ B = A ∩ B′. 

An extension of the complement is the symmetric difference, defined for sets A, B as 

 

For example, the symmetric difference of {7,8,9,10} and {9,10,11,12} is the set {7,8,11,12}. 

Cartesian product 

A new set can be constructed by associating every element of one set with every element of 
another set. The Cartesian product of two sets A and B, denoted by A × B is the set of all ordered 
pairs (a, b) such that a is a member of A and b is a member of B. 

Examples: 

• {1, 2} × {red, white} = {(1, red), (1, white), (2, red), (2, white)}. 
• {1, 2} × {red, white, green} = {(1, red), (1, white), (1, green), (2, red), (2, white), 

(2, green) }. 
• {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}. 

Some basic properties of cartesian products: 

• A × ∅ = ∅. 
• A × (B ∪ C) = (A × B) ∪ (A × C). 
• (A ∪ B) × C = (A × C) ∪ (B × C). 

Let A and B be finite sets. Then 

• | A × B | = | B × A | = | A | × | B |. 

 

Applications 
Set theory is seen as the foundation from which virtually all of mathematics can be derived. For 
example, structures in abstract algebra, such as groups, fields and rings, are sets closed under one 
or more operations. 

One of the main applications of naive set theory is constructing relations. A relation from a 
domain A to a codomain B is a subset of the Cartesian product A × B. Given this concept, we are 

http://en.wikipedia.org/wiki/Codomain


 
 
quick to see that the set F of all ordered pairs (x, x2), where x is real, is quite familiar. It has a 
domain set R and a codomain set that is also R, because the set of all squares is subset of the set 
of all reals. If placed in functional notation, this relation becomes f(x) = x2. The reason these two 
are equivalent is for any given value, y that the function is defined for, its corresponding ordered 
pair, (y, y2) is a member of the set F. 

Definition of a relation. 
We still have not given a formal definition of a relation between sets X and Y. In fact the above way of 
thinking about relations is easily formalized, as was suggested in class by Adam Osborne: namely, we 
can think of a relation R as a function from X×Y to the two-element set {TRUE, FALSE}. In other words, 
for (x, y) 2 X×Y, 

we say that xRy if and only if f((x, y)) = TRUE. 

Properties of relations. 
 
Let X be a set. We now consider various properties that a relation R on X – i.e., R _ X × X may or may not 
possess. 
 
(R1) Reflexivity: for all x 2 X, (x, x) 2 R.In other words, each element of X bears relation R to itself. 
Another way to say this is that the relation R contains the equality relation. Exercise X.X: Go back and 
decide which of the relations in Examples X.X above are reflexive. For instance, set membership is 
certainly not necessarily reflexive: 1 62 1 (and in more formal treatments of set theory, a set containing 
itself is usually explicitly prohibited), but _ is reflexive 
 
.(R2) Symmetry: for all x, y 2 X, if (x, y) 2 R, then (y, x) 2 R .Again, this has a geometric interpretation in 
terms of symmetry across the diagonal y = x. For instance, the relation associated to the function y = 1/x is 
symmetric since interchanging x and y changes nothing, whereas the relation associated to the function y 
= x2 is not. (Looking ahead a bit, a function y = f(x) is symmetric iff it coincides with its own inverse 
function.)Exercise X.X: Which of the relations in Examples X.X above are symmetric? 

 
(R3) Anti-Symmetry: for all x, y 2 X, if (x, y) 2 R and (y, x) 2 R, then x = y. 
For instance, _ satisfies anti-symmetry. 
Exercise X.X: Which of the relations in Examples X.X above are anti-symmetric? 
 
(R4) Transitivity: for all x, y, z 2 X, if (x, y) 2 R and (y, z) 2 R, then (x, z) 2 R. 
For instance, “being a parent of” is not transitive, but “being an ancestor of” 
is transitive. 
 
Definition: An equivalence relation on a set X is a relation on X which is reflexive, symmetric and 
transitive. 
 
Examples of equivalence relations. 
 



 
 
Let n be a positive integer. Then there is a natural partition of Z into n parts which generalizes the 
partition into even and odd. Namely, we put Y1 = {. . . ,−2n,−n, 0, n, 2n, . . .} = {kn | k 2 Z} the set of all 
multiples of n,Y2 = {. . . ,−2n + 1,−n + 1, 1, n + 1, 2n + 1 . . .} = {kn + 1 | k 2 Z}, and similarly, for any 0 _ d 
_ n − 1, we put Yd = {. . . ,−2n + d,−n + d, d, n + d, 2n + d . . .} = {kn + d | kinZ}. That is, Yd is the set of all 
integers which, upon division by n, leave a remainder of d. Earlier we showed that the remainder upon 
division by n is a well-defined integer in the range 0 _ d < n. Here by “well-defined”, I mean that for 0 _ d1 

6= d2 < n, the sets Yd1 and Yd2 are disjoint. Recall why this is true: if not, there exist k1, k2 such that k1n + 
d1 = k2n + d2, so d1 − d2 = (k2 − k1)n, so d1 − d2 is a multiple of n. But −n < d1 − d2 < n, so the only multiple 
of n it could possibly be is 0, i.e., d1 = d2. It is clear that each Yd is nonempty and that their union is all of 
Z, so {Yd}n−1 d=0 gives a partition of Z. The corresponding equivalence relation is called congruence 
modulo n, and written as follows: x _ y (mod n). What this means is that x and y leave the same 
remainder upon division by n. 
 

definition 
A (non-strict) partial order is a binary relation "≤" over a set P which is reflexive, anti symmetric, and 
transitive, i.e., which satisfies for all a, b, and c in P: 

• a ≤ a (reflexivity); 
• if a ≤ b and b ≤ a then a = b (anti symmetry); 
• if a ≤ b and b ≤ c then a ≤ c (transitivity). 

In other words, a partial order is an anti symmetric preorder. 

A set with a partial order is called a partially ordered set (also called a poset). The term ordered set is 
sometimes also used for posets, as long as it is clear from the context that no other kinds of orders are 
meant. In particular, totally ordered sets can also be referred to as "ordered sets", especially in areas 
where these structures are more common than posets. 

For a, b, elements of a partially ordered set P, if a ≤ b or b ≤ a, then a and b are comparable. Otherwise 
they are incomparable. In the figure on top-right, e.g. {x} and {x,y,z} are comparable, while {x} and {y} 
are not. A partial order under which every pair of elements is comparable is called a total order or linear 
order; a totally ordered set is also called a chain (e.g., the natural numbers with their standard order). A 
subset of a poset in which no two distinct elements are comparable is called an antichain (e.g. the set of 
singletons {{x}, {y}, {z}} in the top-right figure). An element a is said to be covered by another element 
b, written a<:b, if a is strictly less than b and no third element c fits between them; formally: if both a≤b 
and a≠b are true, and a≤c≤b is false for each c with a≠c≠b. A more concise definition will be given below 
using the strict order corresponding to "≤". For example, {x} is covered by {x,z} in the top-right figure, 
but not by {x,y,z}. 

Standard examples of posets arising in mathematics include: 

• The real numbers ordered by the standard less-than-or-equal relation ≤ (a totally ordered set as 
well). 

http://en.wikipedia.org/wiki/Antichain


 
 

• The set of subsets of a given set (its power set) ordered by inclusion (see the figure on top-
right). Similarly, the set of sequences ordered by subsequence, and the set of strings ordered by 
substring. 

• The set of natural numbers equipped with the relation of divisibility. 

• The vertex set of a directed acyclic graph ordered by reach ability. 

• The set of subspaces of a vector space ordered by inclusion. 

• For a partially ordered set P, the sequence space containing all sequences of elements from P, 
where sequence a precedes sequence b if every item in a precedes the corresponding item in b. 
Formally, (an)n∈ℕ ≤ (bn)n∈ℕ if and only if an ≤ bn for all n in ℕ. 

• For a set X and a partially ordered set P, the function space containing all functions from X to P, 
where f ≤ g if and only if f(x) ≤ g(x) for all x in X. 

• A fence, a partially ordered set defined by an alternating sequence of order relations a < b > c < 
d ... 

Function 
 
Consider the relation 
f : {(a, 1), (b, 2), (c, 3), (d, 5)} 
In this relation we see that each element of A has a unique image in B This relation f from set A 
to B where every element of A has a unique image in B is defined as a function from A to B. So 
we observe that in a function no two ordered pairs have the same first element. 
 
Domain and Range:-  
We also see that ∃ an element ∈ B, i.e., 4 which does not have its preimage in A. Thus here: 
(i) the set B will be termed as co-domain and 
(ii) the set {1, 2, 3, 5} is called the range. 
From the above we can conclude that range is a subset of co-domain. Symbolically, this 
function can be written as 
f : A → B or A f → B 
 
Example 
 
Which of the following relations are functions from A to B. Write their 
domain and range. If it is not a function give reason? 
(a) { (1, −2),(3,7),(4, −6),(8,1) } , A = {1,3,4,8} , B = {−2,7, −6,1,2} 
(b) { (1,0),(1 − 1),(2,3),(4,10) }, A = {1,2,4} , B = {0, −1,3,10} 
(c) { (a,b),(b,c),(c,b),(d,c)} , A = { a,b,c,d,e} B = {b,c} 

http://en.wikipedia.org/wiki/Reachability


 
 
(d) { (2,4),(3,9),(4,16),(5,25),(6,36 }, A = { 2,3,4,5,6} , B = {4,9,16,25,36 } 
(e) { (1, −1),(2, −2),(3, −3),(4, −4),(5, −5)} ,A = { 0,1,2,3,4,5} , 
B = {−1, −2, −3, −4, −5} 
 
Solution : 
(a) It is a function. 
Domain= {1,3,4,8} , Range = {−2,7, −6,1} 
(b) It is not a function. Because Ist two ordered pairs have same first elements. 
(c) It is not a function. 
Domain= {a,b,c,d} ≠ A, Range = { b, c} 
(d) It is a function. 
Domain = {2,3,4,5,6} , Range = {4,9,16,25,36 } 
(e) It is not a function . 
Domain = {1,2,3,4,5} ≠A , Range = {−1, −2, −3, −4, −5} 
 
Types of functions :- 
 
One-to-one:- Let f be a function from A to B. If every element of the set B is the image of at least 
one element of the set A i.e. if there is no unpaired element in the set B then we say that the 
function f maps the set A onto the set B. Otherwise we say that the function maps the set A into 
the set B. Functions for which each element of the set A is mapped to a different element of the 
set B are said to be one-to-one. 
 
Many-to-one.:-  A function can map more than one element of the set A to the same element of 
the set B. Such a type of function is said to be many-to-one. 
 
Reciprocal Function/Inverse function:-  
Functions of the type y = 1/x, x≠0, called a reciprocal function. 
 
Composite function:- Consider the two functions given below: 
y = 2x + 1, x ∈{1,2,3} 
z = y + 1, y ∈{3,5,7} 
Then z is the composition of two functions x and y because z is defined in terms of y and y in 
terms of x. 
Graphically one can represent this as given below : 
 



 
 

HASHING FUNCTION 

To save space and time, each record stored in a computer is assigned an address (memory location) in the 
computer's memory. The task of assigning the address is performed by the Hashing function (or Hash 
function) H : K → L, which maps the set K of keys to the set L of memory addresses. Thus a Hashing 
function provides means of identifying records stored in a table. The function H should be one-to-one. In 
fact, if k1 ≠ k2 implies H (k1) = H (k2), then two keys will have same address and we say that collision 
occurs. To resolve collisions, the following methods are used to define the hash function. 

1. Division Method. In this method, we restrict the number of addresses to a fixed number 
(generally a prime) say m and define the hash function H : K → L by  
  

H (k) = k (mod m), k ∈ K,  
  
where k (mod m) denotes the remainder when k is divided by m. 

2. Midsquare Method. As the name suggest, we square the key in this method and define hash 
function H : K → L by H (k) = l, where l is obtained by deleting digits from both ends of k2. 

3. Folding Method. In this method the key k is partitioned into a number of parts, where each 
part, except possibly the last, has the same numbers of digits as the required memory address. 
Thus, if k = k1 + k2 + … + kn, then the hash function H : K → L is defined by  

  
H (k) = k1 + k2 + … + kn, where the last carry has been ignored. 

 
 
Definition of recursive functions:- The class of recursive functions is defined as 
follows:The functions s and z are recursive, and so are all projections 

ipk . Functions built from 
recursive ones by using composition Cn or primitive recursion Pr are\ also recursive.Functions 
built from recursive ones by\minimization Mn are also recursive 
 
UNIT -2 (PARTIAL ORDER RELATIONS AND LATTICES) 
 
Partial Order Relations on a Lattice:- 
A partial order relation on a lattice (L) follows as a consequence of the axioms for the binary 
operations ∨ and ∧. 
 
PARTIALLY ORDERED SETS 

A relation R on a set X is said to be anti symmetric if a R b and b R a imply a = b.  Relation R on a set X is 
called a partial order relation if it is reflexive, anti-symmetric and transitive. A set X with the partial 
order R is called a partially ordered set or poset and is denoted by (X, R) 

EXAMPLE  



 
 
Let Ã be a collection of subsets of a set S. The relation ⊆ of set inclusion is a partial order relation on Ã. 
In fact, if A, B, C ∈ Ã, then, 

A ⊆ A, that is, A is a subset of itself which is true. 

If A ⊆ B, B ⊆ A, then A = B 

If A ⊆ B, B ⊆ C, then A is a subset of C, that is, A ⊆ C. 

HASSE DIAGRAM 

Let A be a finite set. By the theorem proved above, the digraph of a partial order on A has only cycles of 
length 1. In fact, since a partial order is reflexive, every vertex in the digraph of the partial order is 
contained in a cycle of length 1. To simplify the matter, we shall delete all such cycles from the digraph.  

We also eliminate all edges that are implied by transitivity property. Thus, if a ≤ b, b ≤ c, it follows that a 
≤ c. In this case, we omit the edge form a to c. We also agree to draw the digraph of partial order with all 
edges pointing upward, omit the arrows and to replace then the circles by dots 

“The diagram of a partial order obtained from its digraph by omitting cycles of length 1, the edges 
implied by transitivity and the arrows (after arranging them pointing upward) is called Hasse diagram of 
the partial order of the poset”. 

EXAMPLE  

Let A = {1, 2, 3, 4, 12}. Consider the partial order of divisibility on A. That is, if a and b are in A, a ≤ b if 
and only if a | b 

Therefore, the Hasse diagram of the poset (A, ≤) is as shown in Figure 1.18. 

 

EXAMPLE  

Let S = {a, b, c} and Ã = P(S) (power set of S). 

Consider the partial order of set inclusion (⊆). We note that 

  

Ã = P(S) = { ϕ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}  

Then the Hasse diagram of the poset (Ã, ⊆)  
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Hasse diagram of a finite linearly ordered set is always of the form and thus consists of simply one path. 
Hence diagram of a totally order set is a chain. 

 

 Hasse Diagram of Dual Poset 

If (A, ≤) is a poset and (A, ≥) is the dual poset, then the Hasse diagram of (A, ≥) is just the Hasse diagram 
of (A, ≤) turned upside down. 

For example, let A = {a, b, c, d, e, f} and let be the Hasse diagram of poset (A, ≤). Then the Hasse diagram 
of dual poset (A, ≥) is which can be constructed by turning the Hasse diagram of (A, ≤) upside down. 

EXAMPLE Let A = {a, b, c, d, e}. Then the Hasse diagram defines a partial order on B in the natural way. 
That is, d ≤ b, d ≤ a, e ≤ c and so on. 

EXAMPLE Let n be a positive integer and Dn denote the set of all divisors of n. Considering the partial 
order of divisibility in Dn, draw Hasse diagram D24, D30 and D36. 

Solution. 

We know that 

  

D24 = {1, 2, 3, 4, 6, 8, 12, 24},  

D30 = {1, 2, 3, 5, 6, 10, 15, 30},  

D36 = {1, 2, 3, 4, 6, 9, 12, 18, 36}.  

Therefore, the Hasse diagram of D24, D30 and D36  

  

{5}, {3, 2}, {2, 2, 1}, {1, 1, 1, 1, 1}, {4, 1}, {3, 1, 1}, {2, 1, 1, 1}.  

We order the partitions of an integer m as follows: 

A partition P1 precedes a partition P2 if the integers in P1 can be added to obtain integers in P2 or we 
can say that if the integers in P2 can be further subdivided to obtain the integers in P1. For example, {1, 
1, 1, 1, 1} precedes {2, 1, 1, 1}. On the other hand, {3, 1, 1} and {2, 2, 1} are non-comparable. 

The Hasse diagram of the partition of m = 5 is  



 
 
Let A be a (non-empty) linearly ordered alphabet. Then Kleene closure of A consists of all words w on A 
and is denoted by A*. 

Also then |w| denotes the length of w. 

We have following two order relations on A*. 

Alphabetical (Lexicographical) order: In this order we have  

λ < w, where λ is empty word and w is any non-empty word. 

Suppose u = a u′ and v = b v′ are distinct non-empty words where a, b ∈ A and u′, v′ ∈ A*. Then, 

u < v if a < b or if a = b but u′ < v′ Short-lex order: Here A* is ordered first by length and then 
alphabetically, that is, for any distinct words u, v, in A*,  u < v if |u| < |v| or if |u| = |v| but u precedes v 
alphabetically. For example, “to” proceeds “and” since |to| = 2 but |and| = 3. Similarly, “an” precedes 
“to” since they have the same length but “an” precedes “to” alphabetically. 

This order is also called free semi-group order. 

Let A be a partially ordered set with respect to a relation ≤. An element a in A is called a maximal 
element of A if and only if for all b in A, either b ≤ a or b and a are not comparable. 

An element a in A is called greatest element of A if and only if for all b in A, b ≤ a. 

An element a in A is called minimal element of A if and only if for all b in A, either a ≤ b or b and a are 
not comparable. 

An element a in A is called a least element of A if and only if for all b in A, a ≤ b. 

A greatest element is maximal but a maximal element need not be greatest element. Similarly, a least 
element is minimal but a minimal element need not be a least element. 

The elements a1, a2 and a3 are maximal elements of A, and the elements b1, b2 and b3 are minimal 
elements. Observe that since there is no line between b2 and b3 we can conclude that neither b3 ≤ b2 
nor b2 ≤ b3 showing that b2 and b3 are not comparable. 

Let A be the poset of non-negative real numbers with usual partial order ≤ (read as “ less than or equal 
to ”). Then 0 is the minimal element of A. There is no maximal element of A. 

Let A be a finite non-empty poset with partial order ≤. Then A has at least one maximal element and at 

. 

 



 
 
Let (A, ≤) be a poset and B a subset of A. An element a ∈ A is called a least upper bound (supremum) of B 
if 

a is an upper bound of B, that is, b ≤ a ∀ b ∈ B 

a ≤ a′ whenever a′ is an upper bound of B. 

An element a ∈ A is called a greatest lower bound (infimum) of B if 

a is a lower bound of B, that is, a ≤ b ∀ b ∈ B 

a′ ≤ a whenever a′ is a lower bound of B. 

Further, upper bounds in the poset (A, ≤) correspond to lower bounds in the dual poset (A, ≥) and the 
lower bounds in (A, ≤) correspond to upper bound in (A, ≥). 

Similar statements also hold for greatest lower bounds and least upper bounds. 

Consider Example 1.69 above: 

Since B1 = {a, b} has no lower bound, it has no greatest lower bound. However,  

  

lub (B1) = c  

  

Since the lower bounds of B2 = {c, d, e} are c, a and b, we have  

  

glb (B2) = c  

  

The upper bounds of B2 are f, g, h. Since f and g are not comparable, we conclude that B2 has no least 
upper bound. 

(Here d and e are not upper bounds of {c, d, e} because d e ∈ B2 and e d∈B2) 

EXAMPLE  

Let A = {1, 2, 3, 4, 5, …, 11}be the poset whose Hasse diagram is given (Figure 1.32). 
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Figure  Find lub and glb of B = {6, 7, 10}, if they exist. 

Solution. 

Exploring all upward paths from 6, 7 and 10 we find that lub (B) = 10. Similarly, by examining all 
downward paths from 6, 7 and 10, we find that glb (B) = 4. 

EXAMPLE Let Dn denote the set of factors of a positive integer n partially ordered by divisibility. Then, 

 

Let ≤ and ≤′ be two partial order relations on a set A. Then ≤′ is said to be compatible with ≤ if and only if 

  

a ≤ b ⇒ a ≤′ b for all a, b ∈ A.  

The process of constructing a linear order (total order) which is compatible to a given partial order on a 
given set is called topological sorting. 

The construction of a topological sorting for a general finite partially order set is based on the fact that 
any partially ordered set that is finite and non-empty has a minimal element. 

To create a total order for a partially ordered set (A, ≤), we proceed as follows: 

Pick any minimal element and make it number one. Let this element be a. 

Consider A – {a}. It is a subset of A and so is partially ordered. If it is empty, stop the process. If not, pick 
a minimal element from it and call it element number 2. Let it be b. 

Consider A – {{a}, {b}}. If this set is empty, stop the process. If not, pick a minimal element and call it 
number 3. Continue in this way until all the elements of the set have been used up. 

We now give algorithm to construct a topological sorting for a relation ≤ defined on a non-empty finite 
set A. 

Then, remove one of 4 and 18. If we remove 18, we get 

 

Figure  



 
 
total order : 3 ≤′ 2 ≤′ 6* ≤′ 18 

Then, 

  

A = (A – {3, 2, 6, 18})  

Now minimal element is 4. We remove it and we get 

  

A = A – {3, 2, 6, 18, 4} = {24}  

total order : 3 ≤′ 2 ≤′ 6 ≤′ 18 ≤′ 4 ≤′ 24  

 (Hasse diagram of A – {d}) 

The minimal element of A – {d} is e and we put e in sort [2]. The Hasse diagram of A – {d, (Hasse diagram 
of A – {d, c}). 

The minimal element of A – {d, e} is c and we put e in sort [3]. The Hasse diagram of A – {d, e, c} is as 
shown below .The minimal element of A – {d, e, c} are a and b. We pick b and put it in sort [4]. The Hasse 
diagram of A – {d, e, c, b} is shown below: (Hasse diagram of A – {d, e, c, b}). 

The minimal element of A – {d, e, c, b} is a and we put it in sort [5]. The topological sorting of (A, ≤) is 
therefore (A, <), where total order : d < e < c < b < a and the Hasse diagram of (A, <) is as shown in the  

Let N be the set of positive integers. Then the usual relation ≤ (read “less than or equal to”) is a partial 
order on N. 

Similarly, ≥ (read “greater than or equal to”) is a partial order on N. 

But the relation < (read “less than”) is not a partial order on N. In fact, this relation is not reflexive. 

EXAMPLE Let N be the set of positive integers. Then the relation of divisibility is a partial order on N. We 
say that “a divides b” written as a | b, if there exists an integer c such that a c = b. We note that for a, b, 
c ∈ N. 

a | a 

a | b, b | a ⇒ a = b 

a | b, b | c ⇒ a | c. 



 
 
Thus, relation of divisibility is a partial order on N. 

EXAMPLE  

The relation of divisibility is not a partial order on the set of integers. For example, 3 | −3, −3 | 3 but 3 ≠ 
−3, that is, the relation is not anti-symmetric and so cannot be partial order. 

EXAMPLE  

If R is a partial order on A, then R−1 (inverse rela�on) is also a par�al order. 

We know that if R is a relation on A, then 

  

R−1 = {(b, a) : (a, b) ∈ R}, a, b ∈ A.  

Since R is a partial order relation, 

a R a ∀ a ∈ A 

a R b, b R a ⇒ a = b 

a R b, b R c ⇒ a R c. 

We observe that 

(i) Since R is a relation, (a, a) ∈ R ∀ a ∈ A 

            ⇒ (a, a) ∈ R−1 

            ⇒ a R−1 a. 

Thus the relation R−1 is reflexive. 

(ii) If (b, a) ∈ R−1 and (a, b) ∈ R−1, then 

            (a, b) ∈ R and (b, a) ∈ R, 

            ⇒ a R b and b R a, 

            ⇒ a = b, since R is anti-symmetric. 

Hence, R−1 is an�-symmetric. 

(iii) If (b, a) ∈ R−1 and (c, b) ∈ R−1, then 

            (a, b) ∈ R and (b, c) ∈ R, 



 
 
            ⇒ (a, c) ∈ R, since R is transitive 

            ⇒ (c, a) ∈ R−1. 

Thus (c, b) ∈ R−1 and (b, a) ∈ R−1 ⇒ (c, a) ∈ R−1 and so R−1 is transi�ve. 

Hence R−1 is a par�al order. 

The poset (A, R−1) is called the dual of the poset (A, R) and the par�al order R−1 is called the dual of the 
partial order R. 

A relation R on a set A is said to be quasi order if 

R is irreflexive, that is, (a, a) ∉ R for any a ∈ A 

R is transitive, that is, a R b, b R c ⇒ a R c for a, b, c ∈ A. 

Let (A, R) be a poset. The elements a and b of A are said to be comparable if a R b or b R a.  

We know that the relation of divisibility is a partial order on the set of natural numbers. But we see that 

3 7 and 7 3. 

Thus, 3 and 7 are positive integers in N which are not comparable (In such a case we write 3 || 7). 

If every pair of elements in a poset (A, R) is comparable, we say that A is linearly ordered (totally ordered 
or a chain). The partial order is then called linear order or total ordering relation. The number of 
elements in a chain is called the length of the chain. 

Let A be a set with two or more elements and let ⊆ (set inclusion) be taken as the relation on the 
subsets of A. If a and b are two elements of A, then {a} and {b} are subsets of A but they are not 
comparable. Hence P(A) is not a chain. A subset of A is called Antichain if no two distinct elements in the 
subsets are related. 

But, if we consider the subsets ϕ, {a} and A of A, then this collection (subsets { ϕ, {a}, A} of P(A)) is a 
chain because ϕ ⊆ {a} ⊆ A. Similarly, ϕ, {b} and A form a chain. 

. 

Let (a, b) R″ (a′, b′) and (a′, b′) R″ (a, b). Then, by definition,  

  

  a R a′, a′ R a in A (i) 



 
 
  b R′ b′, b′ R′ b in B. (ii) 

Since (A, R) and (B, R′) are posets, (i) and (ii) respectively imply 

  

a = a′  

and 

  

b = b′.  

Thus, (a, b) R″ (a′, b′) and (a′, b′) R″ (a, b) imply 

  

(a, b) = (a′, b′).  

Hence R″ is anti-symmetric. 

Let (a, b) R″ (a′, b′) and (a′, b′) R″ (a″, b″), 

where a, a′, a″ ∈ A and b, b′, b″ ∈ B. Then 

  

  a R a′ and a′ R a″ (iii) 

  b R′ b′ and b′ R′ b″. (iv) 

By transitivity of R, (iii) gives 

  

a R a″,  

while (iv) yields 

  

b R′ b″.  

Hence, 
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(a, b) R″ (a″, b″).  

Hence R″ is transitive and so (A × B, R″) is a poset. 

The partial order R″ defined on the Cartesian product A × B, as above, is called the Product Partial Order. 

Definition 1.51 

A relation R on a set A is called asymmetric if a R b and b R a do not both hold for any a, b ∈ A. 

Definition 1.52 

A transitive, asymmetric relation R is called a Strict Partial Ordering. 

Theorem 1.27 

If ≤ is a partial order of the set A, then a relation < defined by 

  

a < b if a ≤ b and a ≠ b  

is a strict partial order of A. 

Proof. We shall show that < is transitive and asymmetric. 

(i) Transitivity: Suppose that a < b and b < c. Then, by definition, 

  

a ≤ b and b ≤ c, a ≠ b, b ≠ c.          (1)  

Since ≤ is partial order, it is transitive and so a ≤ c. It remains to show that a ≠ c. Suppose on the contrary 
that a = c. Then, 

  

c ≤ b (using a ≤ b from (1)).          (2)  

From (1) and (2), we have b ≤ c and c ≤ b and so b = c which is contradiction. Hence, 

  

a < b and b < c implies a < c.  

Proving that < is transitive. 

(ii) Asymmetry: Suppose that x < y and y < x both holds. Therefore, 
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x ≤ y and y ≤ x.  

Since ≤ is anti-symmetric, it follows that x = y, which contradicts x < y. Hence x < y and y < x cannot both 
hold. Thus < is asymmetric. 

Hence < is strict partial order of A. 

Remark 1.1 If < is a strict partial order of A, then the relation ≤ defined by x ≤ y if x < y or x = y is a partial 
order of A (can be proved using the definitions). 

Definition 

A sequence of letters or other symbols, written without commas is called a string. Further, 

A string of length p may be considered as an ordered p-tuple. 

An infinite string such as abababab … may be regarded as the infinite sequence a, b, a, a, b, ab, … 

If S is any set with a partial order relation, then the set of strings over S is denoted by S*. 

Definition Let (A, ≤) and (B, ≤) be chains (linearly ordered sets). Then the order relation (which is in fact 
totally ordered) < on the Cartesian product A × B defined by 

  

(a, b) < (a′, b′) if a < a′ or if a = a′ and b ≤ b′  

is called Lexicographic order or Dictionary order. 

EXAMPLE 

Consider the plane R2 = R × R. It is linearly ordered by lexicographic order. In fact, each vertical line has 
usual order (less than or equal to) and points on a line (e.g., x = a1 in Fig. 1.14) are less than any point on 
a line farther to the right (e.g. x = a2 in Fig. 1.14). Thus the point p1 (a1, b1) < p2 (a2, b2) because a1 < 
a2. Further, p2(a2, b2) < p3(a2, b3) because in this case a2 = a2 and b2 ≤ b3. 

Theorem  :-The digraph (directed graph) of a partial order has no cycle of length greater than 1. 

Proof. Suppose on the contrary that the digraph of the partial order ≤ on the set A contains a cycle of 
length n ≥ 2. Then there exist distinct elements a1, a2, …, an such that 

  

a1 ≤ a2, a2 ≤ a3, …, an−1 ≤ an, an ≤ a1.  
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By the transitivity of partial order, used n − 1 �mes, a1 ≤ an. Thus we have 

  

a1 ≤ an and an ≤ a1.  

Since ≤ is partial order, anti-symmetry implies a1 = an, which is a contradiction to the assumption that 
a1, a2… an are distinct. Hence the result. 

Definition The Transitive closure of a relation R is the smallest transitive relation containing R. It is 
denoted by R∞. 

We note that from vertex 1, we have paths to the vertices 2, 3, 4 and 1. Note that path from 1 to 1 
proceeds from 1 to 2 to 1. Thus we see that the ordered pairs (1, 1), (1, 2), (1, 3) and (1, 4) are in R∞. 
Starting from vertex 2, we have paths to vertices 2, 1, 3 and 4 so the ordered pairs (2, 1), (2, 2), (2, 3) 
and (2, 4) are in R∞. The only other path is from vertex 3 to 4, so we have 

  

R∞ = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)}  

 

 

A Lattice is an algebraic system (L, ∨, ∧) with two binary operations ∨ and ∧, called join and 
meet, respectively, on a non-empty set L which satisfies the following axioms for a, b, c ∈ L: 

1. Commutative Law:  
  

a ∨ b = b ∧ a and a ∧ b = b ∨ a.  
  

2. Associative Law:  
  

(a ∨ b) ∨ c = a ∨ (b ∨ c)  

and 
  

(a ∧ b)∧ c = a ∧ (b ∧ c).  
  

3. Absorption Law:  

i. a ∨ (a ∧ b) = a, 



 
 
ii. a ∧ (a ∨ b) = a. 

We note that Idempotent Law follows from axiom 3 above. In fact, 
  
a ∨ a = a ∨ [a ∧ (a ∨ b)] using 3 (ii) 

  = a using 3 (i). 

The proof of a ∧ a = a follows by the principle of duality. 

 

 

LATTICE 

Definition  

A lattice is a partially ordered set (L, ≤) in which every subset {a, b} consisting of two elements 
has a least upper bound and a greatest lower bound. 

We denote LUB({a, b}) by a ∨ b and call it join or sum of a and b. Similarly, we denote GLB 
({a, b}) by a ∧ b and call it meet or product of a and b. 

Other symbols used are 
  

LUB: ⊕, +, ∪,  
GLB: *, ·, ∩.  

Thus Lattice is a mathematical structure with two binary operations, join and meet. 
A totally ordered set is obviously a lattice but not all partially ordered sets are lattices. 

EXAMPLE Let A be any set and P(A) be its power set. The partially ordered set (P(A), ⊆) is a 
lattice in which the meet and join are the same as the operations ∩ and ∪, respectively. If A has 
single element, say a, then P(A)={ϕ, {a}}  

 

PROPERTIES OF LATTICES 

Let (L, ≤) be a lattice and let a, b, c ∈ L. Then, from the definition of ∨ (join) and ∧(meet) we 
have 

i. a ≤ a ∨ b and b ≤ a ∨ b; a ∨ b is an upper bound of a and b. 



 
 

ii. If a ≤ c and b ≤ c, then a ∨ b ≤ c; a ∨ b is the least upper bound of a and 
b. 

iii. a ∧ b ≤ a and a ∧ b ≤ b; a ∧ b is a lower bound of a and b. 
iv. If c ≤ a and c ≤ b, then c ≤ a ∧ b; a ∧ b is the greatest lower bound of a 

and b. 

Theorem  

Let L be a lattice. Then for every a and b in L, 

i. a ∨ b = b if and only if a ≤ b, 
ii. a ∨ b = a if and only if a ≤ b, 
iii. a ∧ b = a if and only if a ∨ b = b. 

I. BOUNDED, COMPLEMENTED AND DISTRIBUTIVE LATTICES 
ii. Let (L, ∨, ∧) be a lattice and let S = {a1, a2, …, an} be a finite subset of L. Then, 

iii.   
iv. LUB of S is represented by a1 ∨ a2 ∨ … ∨ an, 

GLB of S is represented by a1 ∧ a2 ∧ … ∧ an.  
v. Definition A lattice is called complete if each of its non-empty subsets has a least upper 

bound and a greatest lower bound. 
vi. Obviously, every finite lattice is complete. 

vii. Also, every complete lattice must have a least element, denoted by 0 and a greatest 
element, denoted by I. 

viii. The least and greatest elements if exist are called bound (units, universal bounds) of the 
lattice. 

ix. Definition A lattice L is said to be bounded if it has a greatest element I and a least 
element 0. 

x. For the lattice (L, ∨, ∧) with L = {a1, a2, …, an}, 

UNIT -3 

DEFINITIONS AND BASIC CONCEPTS 

Definition  

A graph G = (V, E) is a mathematical structure consisting of two finite sets V and E. The 
elements of V are called vertices (or nodes) and the elements of E are called edges. Each edge is 
associated with a set consisting of either one or two vertices called its endpoints. 



 
 

The correspondence from edges to endpoints is called edge-endpoint function. This function 
is generally denoted by γ. Due to this function, some authors denote graph by G = (V, E, γ). 

Definition 

A graph consisting of one vertex and no edges is called a trivial graph. 

Definition  

A graph whose vertex and edge sets are empty is called a null graph. 

Definition 

An edge with just one endpoint is called a loop or a self-loop. 

SPECIAL GRAPHS 

Definition  
A graph G is said to simple if it has no parallel edges or loops. In a simple graph, an edge with 
endpoints v and w is denoted by {v, w}. 

Definition 

For each integer n ≥ 1, let Dn denote the graph with n vertices and no edges. Then Dn is called 
the discrete graph on n vertices. 

 
Definition  
Let n ≥ 1 be an integer. Then a simple graph with n vertices in which there is an edge between 
each pair of distinct vertices is called the complete graph on n vertices. It is denoted by Kn. 

For example, the complete graphs K2, K3 and K4 are shown in  

 
Definition  
If each vertex of a graph G has the same degree as every other vertex, then G is called a regular 
graph. 

SUBGRAPHS 

Definition  



 
 
A graph H is said to be a subgraph of a graph G if and only if every vertex in H is also a vertex 
in G, every edge in H is also an edge in G and every edge in H has the same endpoints as in G. 

We may also say that G is a super graph of H 
Definition  

A sub graph H is said to be a proper sub graph of a graph G if vertex set VH of H is a proper 
subset of the vertex set VG of G or edge set EH is a proper subset of the edge set EG. 

For example, the sub graphs in the above examples are proper sub graphs of the given graphs. 

ISOMORPHISMS OF GRAPHS 

We know that shape or length of an edge and its position in space are not part of specification of 
a graph. For example, the represent the same graph. 

 
Definition  

Let G and H be graphs with vertex sets V(G) and V(H) and edge sets E(G) and E(H), 
respectively. Then G is said to isomorphic to H if there exist one-to-one correspondences g: 
V(G) → V(H) and h: E(G) → E(H) such that for all v ∈ V(G) and e ∈ E(G), 

  
v is an endpoint of e ⇔ g(v) is an endpoint of h(e).  

Definition  

The property of mapping endpoints to endpoints is called preserving incidence or the 
continuity rule for graph mappings. 

As a consequence of this property, a self-loop must map to a self-loop. 
Thus, two isomorphic graphs are same except for the labelling of their vertices and edges. 

 

WALKS, PATHS AND CIRCUITS 

Definition  

In a graph G, a walk from vertex v0 to vertex vn is a finite alternating sequence {v0, e1, v1, e2, …, vn − 1, 
en, vn} of vertices and edges such that vi − 1 and vi are the endpoints of ei. 

The trivial walk from a vertex v to v consists of the single vertex v. 

Definition  



 
 
In a graph G, a path from the vertex v0 to the vertex vn is a walk from v0 to vn that does not contain a 
repeated edge. 

Thus a path from v0 to vn is a walk of the form 
  

{v0, e1, v1, e2, v2, …, vn − 1, en, vn},  

where all the edges ei are distinct. 

Definition  

In a graph, a simple path from v0 to vn is a path that does not contain a repeated vertex. 
Thus a simple path is a walk of the form 
  

{v0, e1,v1, e2, v2, …, vi − 1, en, vn},  

HAMILTONIAN CIRCUITS 

 
Definition  

A Hamiltonian path for a graph G is a sequence of adjacent vertices and distinct edges in which every 
vertex of G appears exactly once. 

Definition  

A Hamiltonian circuit for a graph G is a sequence of adjacent vertices and distinct edges in which every 
vertex of G appears exactly once, except for the first and the last which are the same. 

 

Definition  

A graph is called Hamiltonian if it admits a Hamiltonian circuit. 

MATRIX REPRESENTATION OF GRAPHS 

A graph can be represented inside a computer by using the adjacency matrix or the incidence matrix of 
the graph. 

Definition  



 
 
Let G be a graph with n ordered vertices v1, v2, …, vn. Then the adjacency matrix of G is the n × n matrix 
A(G) = (aij) over the set of non-negative integers such that 

  
aij = the number of edges connecting vi and vj for all i, j = 1, 2, …, n.  

We note that if G has no loop, then there is no edge joining vi to vi, i = 1, 2, …, n.Therefore, in this 
case, all the entries on the main diagonal will be 0. 

Further, if G has no parallel edge, then the entries of A(G) are either 0 or 1. 
It may be noted that adjacent matrix of a graph is symmetric. 
Conversely, given a n × n symmetric matrix A(G) = (aij) over the set of non-negative integers, we can 

associate with it a graph G, whose adjacency matrix is A(G), by letting G have n vertices and joining vi to 
vertex vj by aij edges 

COLOURING OF GRAPH 

Definition  
Let G be a graph. The assignment of colours to the vertices of G, one colour to each vertex, so that the 
adjacent vertices are assigned different colours is called vertex colouring or colouring of the graph G. 

Definition  

A graph G is n-colourable if there exists a colouring of G which uses n colours. 

Definition  

The minimum number of colours required to paint (colour) a graph G is called the chromatic number of 
G and is denoted by χ (G). 

UNIT-4 Propositional Logic: 

INTRODUCTION TO LOGIC 

Logic is essentially the study of arguments. For example, someone may say, suppose A and B are true, 
can we conclude that C is true? Logic provides rules by which we can conclude that certain things are true 
given other things are true. Here is a simple example: A tells B that “if it rains, then the grass will get wet. 
It is raining”; B can then conclude that the grass is wet, if what A has told B is true. Logic provides a 
mechanism for showing arguments like this to be true or false. 

The section starts by showing how to translate English sentences into a logical form, specifically into 
something called “propositions”. In fact, our study of logic starts with propositional calculus. 

Propositional calculus is the calculus of propositions and we plan to study propositions. Most of us 
may associate the term calculus with integrals and derivatives, but if we check out the definition of 



 
 
calculus in the dictionary, we will see that calculus just means “a way of calculating”, so differential 
calculus, for instance, is how to calculate with derivatives and integral calculus is how to calculate with 
integrals. 

However, before going into how to translate English sentences into propositions, we are going to 
introduce Boolean expressions (that is, propositions), and then discuss about translation. Hence, we will 
see the same ideas in two different forms. 

 

BOOLEAN EXPRESSIONS 

Definition A Boolean variable is a variable that can either be assigned true or false. We have 
programmed in C++ and know about types such as integers, floats, and character pointers. However, C++ 
also has a Boolean type, as do Java and Pascal. We can declare variables to be of Boolean type, which 
means that they can only take on two values: true and false. Throughout the chapter, we shall generally 
use the letters, p, q, and r as Boolean variables. However, in some cases we will allow these letters to 
have subscripts. For example, p0, q1492 and r1776 are all Boolean variables. 

Definition A Boolean expression is either 

1. a Boolean variable, or 
2. it has the form ¬ϕ, where ϕ is a Boolean expression, or 
3. it has the form (ϕ * ψ), where ϕ and ψ are Boolean expressions and * is 

one of the following:  ∧, ∨, →, or ↔. 
 

CONSTRUCTION OF BOOLEAN EXPRESSIONS 

Suppose we are given a Boolean expression and asked to prove that it is a Boolean expression. How do 
we proceed? There are two different ways of doing it. The first is to build a Boolean expression from its 
constituent parts. Let us start off with an example. We want to show that ((p ∧ q) ∨ ¬r) is a Boolean 
expression. To do so, we will take a bottom-up approach. 
  
  Expression Reason 

1. p Boolean variable 
2. q Boolean variable 
3. r Boolean variable 
4. ¬r 3, ¬ϕ 
5. (p ∧ q) 1, 2, (ϕ ∧ ψ) 



 
 

6. ((p ∧ q) ∨ ¬r) 5, 4, (ϕ ∧ ψ) 
  

Notice that we start with the smallest Boolean expression (namely, Boolean variables) and work our 
way up. Look at line number 4. The reason is “3, ¬ϕ”. This means that we are using the rule ¬ϕ to create 
line 4, where ϕ is from line 3. This is just the second part of the definition being applied. And we use lines 
1 and 2 and rule (ϕ ∧ ψ) to create the expression in line 5. Again, this rule comes from part 3 of the 
definition. 

Definition A construction of a Boolean expression is a list of steps, where each line is either a Boolean 
variable or it uses a connective (e.g., ¬, ∧, ∨, → or ↔) to connect two other Boolean expressions (they 
may be the same), with line numbers that are less than itself. Each line is a valid Boolean expression. 

For example, look at the construction above. If we have to add a 7th step to the construction, we would 
have two choices. Either we could introduce a Boolean variable (we could always do this) or we could 
use a connective and find a Boolean expression that is already on the list and add it. For example, we 
could place a ¬ in front of ¬r (from step 4) and produce ¬¬r. 

The point of this exercise was to explain how to convince someone else that ((p ∧ q) ∨ ¬r) is a Boolean 
expression. It is a kind of proof and uses the definition of Boolean expressions as reasons or justifications 
for each step. 

The only difficulty with using this (and it is a small one) is that it is sometimes easier seeing an 
expression top-down than bottom-up. That is, it is intuitively simpler to take a complicated expression 
like ((p ∧ q) ∨ ¬r) and try to break it down to its two parts, (p ∧ q) and ¬r. 

 

MEANING OF BOOLEAN EXPRESSIONS 

One use of logic is as a means of deciding what things are true, given that certain facts are already true. 
Logic provides us a framework for deducing new things that are true. However, this deduction is based on 
form. For example, we might say that either x > 0 or x ≤ 0 and also that x is not greater than 0. Given 
these two facts, we should be able to conclude that x ≤ 0. 

Now both arguments actually have the same form that is, we basically said ϕ or ψ is true and then ϕ is 
not true, therefore we concluded ψ is true. In the first example, ϕ was x > 0 and ϕ was x ≤ 0, while in the 
second example ϕ was “the capital of India is Mumbai” and ψ was “the capital of India is New Delhi”. In 
both examples, there was a similar form of the argument and the conclusion that we drew was purely 
based on the form. 

This is actually at the heart of logic. (Some) English arguments can be translated into Boolean 
expressions, and then we can apply rules of logic to determine whether the arguments make sense, atleast, 
based on their form. 

We know that Boolean variables are the building blocks of Boolean expressions. Boolean variables 
like p generally stand for either English or mathematical propositions. 



 
 
Definition A proposition is something that is either true or false but not both. 

Not all English sentences are propositions. For example, the sentence “Run away” cannot really be said 
to be true nor false. Not all mathematical “sentences” are propositions either. For example, x > y is neither 
true nor false. We would need to know the values of x and y before we could draw the conclusion. 
Actually, we do not have to be this strict, x > y is either true or false, so in some sense, we can consider it 
a proposition. 

Once the translation has been made from English sentences or mathematical sentences into Boolean 
expressions, then we generally do not care what the original sentence means. We can make conclusions 
based on the Boolean expressions. We shall get into the details soon. 

1.4.1 Conjunctions 

The most basic Boolean expression is a Boolean variable, which is either true or false. Throughout this 
section, we shall refer to two propositions: p and q. 

p    I own a cat. 
q    I own a dog. 
One way to make a more complicated sentence is to connect two sentences with “and”. For example, “I 

own a cat” AND “I own a dog”. In propositional calculus (which is what we are studying now), our 
purpose is to determine when expressions or sentences are true. So, when is the entire expression “I own a 
cat AND I own a dog” true? Intuitively, we would say it is true if both parts are true. 

Now let’s look at the Boolean expression equivalent of that same sentence. It happens to be (p ∧ q) 
(again, notice the use of parentheses). The symbol for AND is ∧, which we can pronounce as AND. If it 
helps us to remember, the ∧ symbol looks sort of like an “A”, which is the first letter of AND. 
Sometimes, mathematicians say that (p ∧ q) is a conjunction of p and q and that p and q are conjuncts of 
the conjunction. Despite the fancy name, the work “conjunction” does come up often enough and hence 
we ought to remember it. 

So, when is (p ∧ q) true? When both p and q are true. If either is false, then the whole expression is 
false. We can actually summarize this in a truth table. A truth table tells us the “truth” of a Boolean 
expression given that we assign either true or false to each of the Boolean variables. 

Given two different Boolean variables, p and q, there are four different ways to assign truth values to 
them. Each of the four ways is listed below. T stands for true, while F stands for false. If we look at the 
column for variable q, we will see that it alternates T, then F, then T, then F, whereas the column with p 
to its immediate left alternates, T, T, then F, F. If we had another variable, r and placed it to the left of p, 
it would alternate T, T, T, T then F, F, F, F. 

 
There is a pattern. Starting from the rightmost Boolean variable, we will alternate every turn T, F, T, F. 

The next column to its left will alternate T, T, F, F, T, T, F, F, etc. The next one to its left will alternate T, 
T, T, T, F, F, F, F. As we move to the left, we repeat the Ts twice as many times as the previous column 



 
 
and twice as may Fs. This pattern actually covers all possible ways of combining truth values for n 
Boolean variables. 

Now, look at line 1 in the truth table. Look at the last column. We will notice that the entry has the 
value T, which means that when p is assigned T and q is assigned T, then (p ∧ q) is true as well. This is 
just a formalization of what we said before, (p ∧ q) is only true when p and q are both true (that is, both 
assigned to true). 

The key point is to notice that we can find out the truth value of a complicated expression by knowing 
the truth value of the parts that make it up. This is really no different from arithmetic expressions. For 
example, if we had the expression (x + y) − z, then we could tell that the value for this expression, 
provided if we knew the values for each of the variables. It is the same with Boolean expressions. If we 
know the truth values of the Boolean variables, then using truth tables, we can determine the truth value 
of a Boolean expression. 

Now, we used p and q for the truth table above. However, there was nothing special about using those 
two Boolean variables. Any two different Boolean variables would have worked. In fact, any two Boolean 
expressions would have worked. We could have replaced p with ϕ and q with ψ and (p ∧ q) with (ϕ ∧ ψ) 
and the truth table would still have been fine. 

1.4.2 Disjunctions 

Instead of saying “I own a cat” AND “I own a dog”, we could connect the two statements with OR, as in, 
“I own a cat” OR “I own a dog”. When would this statement be true? It would be true if I owned either a 
cat or a dog. That is, only one of the two statements has to be true. What happens if both are true? Then is 
the entire statement “I own a cat OR I own a dog” true? Going by propositional logic, we will say yes. 
That is, the entire OR statement is true if one or the other statement or both are true. 

We use the symbol ∨ to represent OR. So (p ∨ q) (again, notice the parentheses) is the same as p OR q 
and the whole expression is true if p is true or q is true or both are true. It is false if both p and q are false. 
Sometimes the expression (p ∨ q) is called a disjunction (with a ∧, it was a conjunction) and p and q are 
the disjuncts of the disjunction. Any Boolean expression (or sub expression) can be called a disjunction if 
it has the pattern (ϕ ∨ ψ). 

The use of “OR” in propositional calculus actually contrasts with the way we normally use it in 
English. For example, if A said, “I will go to the Cinema OR I will go to the Garden”. Usually it means, I 
will go to one or the other, but NOT both. This kind of “OR” is called as exclusive OR, while the one we 
use in propositional calculus is called an inclusive OR. We will almost always use the inclusive OR (the 
exclusive OR can be defined using inclusive ORs and negations, which will be introduced in the next 
section). 

Here is the truth table for OR. 

 
Notice the rightmost column of this truth table and compare it to the rightmost column of the truth 

table of (p ∧ q). In the case of conjunction (i.e., AND), (p ∧ q) is true in only one case, namely, when p 



 
 
and q are both true. It is false in all other cases. However, for (p ∨ q) (read p OR q), it is true in all cases 
except when both p and q are false. In other words, only one of either p or q has to be true for the entire 
expression (p ∨ q) to be true. 
The main point covered so far: 

The symbols we have seen: {∧, ∨, →, ↔, ¬} are often called connectives because they connect two 
Boolean expressions (although in the case of ¬, it’s only attached to a single Boolean expression). 

1.4.3 Negations 

The symbol ¬, (pronounced “not”) is like a negative sign in arithmetic. So, if we have p (“I own a cat”), 
the ¬p (notice there are no parentheses) can be read as “Not I own a cat”, or “It is not the case that I own a 
cat” (in which case the ¬ could be read as “it is not the case that”). Both of these sound awkward, but the 
idea is to use the original sentence and attach something before it, just like the connective. In English, it 
sounds more correct to say “I do not own a cat”. 

Unlike ∧ and ∨, ¬ only attaches to a single Boolean expression. So, the truth table is actually smaller 
for ¬ since there is only one Boolean variable to worry about. 

Line p ¬p 

1 T F 

2 F T 

This should be an easy truth table to understand. If p is true, then ¬p is false. The reverse holds as well. 
If p is false, then ¬p is true. 
 

CONSTRUCTION OF TRUTH TABLES 

Suppose we are given a Boolean expression, say, ((p ∧ q) ∨ ¬p). We want to know whether this 
expression is true or false. 

We introduce a function, v. This function will be called a valuation. If we were to write this function 
signature in pseudo-C++ code, it would look like 
boolean v( boolExpr x ); 

In words, this function takes a Boolean expression as input (think of it as a class) and returns back a 
Boolean value, that is, it returns either true or false. 

Let us formally define a valuation. 



 
 
Definition A valuation (also called, a truth value function or a truth value assignment) is a function which 
assigns a truth value (that is, true or false) for a Boolean expression, under the following restrictions. 
                   v((ϕ ∧ ψ)) = min(v(ϕ), v(ψ)) 
                   v((ϕ ∨ ψ)) = max(v(ϕ), v(ψ)) 
                           v(¬ϕ) = 0, if v(ϕ) = 1 
  = 1, if v(ϕ) = 0 
                  v((ϕ → ψ)) = 1, if v(ϕ) = F or v(ψ) = T 
  = 0, otherwise 
                  v((ϕ ← ψ)) = 1, if v(ϕ) = v(ψ) 
  = 0, otherwise 

The interesting thing is that because of these restrictions, once a truth value function has been defined 
for all the Boolean variables in a Boolean expression, the truth value for the Boolean expression (and all 
its sub expressions) are defined as well. 

Let us take a closer look at the definition. We shall take it line by line. In the first line, we have 

v((ϕ ∧ ψ)) = min(v(ϕ), v(ψ)) 

This says that if we want to find the truth value of (ϕ ∧ ψ), then we have to find the truth value of ϕ 
(that is, v(ϕ)) and the truth value of ψ (that is, v(ψ)). We take the “minimum” of v(ϕ) and v(ψ). How does 
one take the minimum of the two? If we treat false as the number 0 and true as the number 1, then taking 
the minimum of two numbers makes sense. But is it an accurate translation of AND? 

Let us think about this for a moment. When is (ϕ ∧ ψ) true? When ϕ is true AND when ψ is true. If we 
think of true as being the number 1, then we are asking what the minimum of 1 and 1 is. And the 
minimum of those two numbers is 1. If we translate it back, we get true. That seems to work. 

Now, when is (ϕ ∧ ψ) false? When either ϕ or ψ is false, that is, when v(ψ) = F or (and this is an 
inclusive or) when v(ψ) = F. So, let’s think about this. If one of the two is false, then it has a value of 0. 
The minimum of 0 and anything else is 0. Why? Well, since truth values are either 0 (for false) or 1 (for 
true), we can only take the minimum of 0 and some other number. That number could be 0, in which case 
the minimum is 0, or it could be 1, in which case the minimum is still 0. So, the minimum of 0 and any 
other number (restricted to 0 or 1) is 0. And that makes sense too because we want (v(ϕ ∧ ψ)) to be false 
(i.e., 0) when either v(ϕ) or v(ψ) is false. 

If we treat false as 0 and true as 1, then we can show 
  

v((ϕ ∨ψ)) = max(v(ϕ), v(ψ)) 

makes sense too. max is the function that takes the maximum of two numbers (in this case, we need to 
treat the truth values like numbers). 

The real point of this is to show that to find out the truth value of a Boolean expression (i.e., to find out 
the value of v(ϕ), we need to find out the value of the smaller sub expressions.) For example, to find 



 
 
v(¬ϕ), we need to know the value of v(ϕ). And to find out v(ϕ) we need to see what pattern ϕ follows (is it 
a negation, conjunction, or disjunction?) and recursively apply the definition. At each step, we break 
down the equation into smaller and smaller sub expressions until we reach the smallest sub expression, 
which happens to be a Boolean variable. 

To find the truth value of a Boolean expression, we just need to know the truth value of the Boolean 
variables in that expression. 

 Back to Derivations 

Based on the insight of the previous section, we now return to our problem. We want to construct a truth 
table for ((p ∧ q) ∨ ¬p). To do so, we need to find the Boolean variables in this expression. This is easy as 
there are only p and q. 

This is how we will derive the Boolean expression. The reason will become clear, but we intend to use 
it to construct a truth table. 

Here is the derivation. 
  
  Expression Reason 

1. p Boolean variable 
2. q Boolean variable 
3. ¬p 1, ¬ϕ 
4. (p ∧ q) 1, 2, (ϕ ∧ ψ) 
5. ((p ∧ q) ∨ ¬p) 4, 3, (ϕ ∧ ψ) 

  
We will create one column in the truth table for each line in the derivation. How many rows do we 

use? If n is the number of Boolean variables (in this case, 2), then 2n is the number of rows (in this case, 
22 = 4 rows). 

 
Now we just fill in the columns one after another. We know that column 3 is derived from column 1. 

So, we can just get column 3 by “negating” the values in column 1. Compare the values of column 1 and 
column 3. We are basically applying the definition of ∨ from the last section. 

 
Column 4 is based on columns 1 and 2. We get the values by adding them. 

 
Finally, column 5 is constructed from columns 4 and 3, respectively. 

 
And that is how it is done! 



 
 
Valuations and Truth Tables 

If we know the truth values for the variables, then the value of the Boolean expression is known as well. 
There is a simple analog to arithmetic expressions. In an expression like (x + y) − z, we know the value 
once we know what value each variable has been assigned. For example, if x = 4, y = 3, and z = 5, the 
expression’s value is 2. If we change the values of the variables, the result of the expression changes too. 
However, the result is completely defined by the values assigned to the variables. 

How does v relate to truth tables? Essentially each row of a truth table corresponds to a separate v. For 
example, consider the last truth table in the previous section. Row 1 defines v(p) = T and v(q) = T. Given 
this, v((p ∧ q) ∨ ¬p) must have the value true. Row 2 defines a different v, one where v(p) = T, but v(q) = 
F, and where v((p ∧ q) ∨ ¬p) consequently has the value false. 

 How Many Rows 
If there are n Boolean variables, then there will be 2n rows in the truth table. Why? 

We start with one Boolean variable, say this is r. r can either be true or false. So, a truth table with just 
one variable has two lines. One when the value is true and one when it is false. 

Line r 

1 T 

2 F 

Now we add a second variable, q. q can also be either true or false. So, suppose q is true. Then, we get 
a truth table that looks like: 

  1 2 

Line q r 

1 T T 

2 T F 



 
 

This still gives us two rows. Notice we have done nothing to the r column. r still has the two values, T 
and F. Meanwhile q has been set to true. However, what about the case when q is false? We should get 
two more rows for when q is false because r can still be true or false in that case. 

So notice that rows 3 and 4 have F in column 1, (this is when q is false) and T in rows 1 and 2. 

  1 2 

Line q r 

1 T T 

2 T F 

3 F F 

4 F F 

At this point, we have shown 4 different ways in which q and r can be assigned truth values. Now, let’s 
take it one step further. We add a third variable p. Suppose p = T (or more accurately, v(p) = T). How 
many different combinations of truth values are there for q and r? Four, right? There were four 
combinations of truth values for q and r when we did not have p, so why should there be any more or less 
when v(p) = T? So, there should be 4 ways when p is true. 

Now how many combinations of q and r are there when p is false? It is still 4, for the same reason. 
Now, we have a total of 8 rows. 4 rows when p is true (since there are 4 combinations of values for q and 
r) and 4 more when p is false. It will give a total of 8. Does this follow our formula? There are 3 
variables, so there should be 23 rows and 23 equals 8, so it matches. 

But the formula for the number of rows actually makes sense. Let us pretend we have n variables. This 
ought to create 2n rows or equivalently, 2n different ways to assign truth values to n variables. Now, we 
want to add one more variable. We shall call this new variable, p. That will make a total of n + 1 
variables. We expect there to be 2n + 1 rows. 

We know there are 2n different combinations for n rows. Now, there are still 2n combinations when p is 
true. After all, why should p being true (in effect, it is a constant) affect the number of combinations of 
the other n variables? It should not and it does not. Then, there are 2n combinations when p is false for the 
same reason. So there are 2n combinations when p is true and 2n combinations when p is false. Add the 



 
 
two together and we get 2n + 2n = 2n + 1. So, adding a new variable doubles the number of rows. We get 
one set of rows when the new variable is true and another set when it is false. 

 Making Truth Tables 

Just because we know there are 2n rows in a truth table, does not mean that it is easy to figure out a quick 
way to fill one up. So, here is the quick way to do it. We shall use three variables p, q, and r. 

 
To start, fill in the right-most row with a Boolean variable. In this case, it is column 3 (the column with 

r). Start alternating T, F, T, F all the way down. 

 
Go on to the column over to the left. This is column 2. Go down alternating T, T then F, F then repeat. 

So, 2 Ts, followed by two Fs and repeat. 

 
Finally, move to column 1 and repeat 4 Ts, followed by 4 Fs. That is, T, T, T, T then F, F, F, F and 

repeat, if necessary. 

 
In doing this we see a general pattern. Suppose we are in a particular column and are repeating the 

pattern of n Ts, followed by n Fs. If we move one column left, we double the number of Ts followed by 
double the number of Fs; that is, 2n Ts, followed by 2n Fs. 

Why does this work? Well, it is related to the previous section. Think of T as being 1 and F as being 0. 
Look at row 1. There are three t’s in this row. Convert it to a binary number. This will be 111. Now, we 
go to row 2. Reading across, we read T, T, F. Converting to 1s and 0s, we get 110. In binary, this is 6. 
Now, as we progress down from row 1 to row 8, we will be counting backwards in binary, from 7 down 
to 0. So, essentially a truth table for n variables has one row for each n bit binary number. We shall learn 
about binary numbers later on, but this is the basic idea of how filling out a truth table works. 

LOGICAL EQUIVALENCE 

The idea of logical equivalence is deceptively simple. We are given two Boolean expressions. How do we 
determine if they are the same? The first question we need to ask is, “What do we mean by ‘the same’?” 
The two expressions are same if they generate the same truth table. We can be a little bit more formal. As 
we have said earlier, once we have defined the truth values of all the Boolean variables in a Boolean 
expression, we can know (or calculate) the truth value of the Boolean expression. 

Now, suppose we had two different Boolean expressions, a (pronounced “alpha”) and b (pronounced 
“beta”). Write down all the Boolean variables possible for both of them. Suppose a has m Boolean 
variables and b has n Boolean variables (usually, m = n, but this does not have to be the case). Now 
suppose that between the two, there are k unique variables. For example, a might have variables p, q, and 



 
 
r, while b has variables, p and r2. Between the two, there are 4 unique variables. In this example, k is 4. 
Thus, there are 2k different ways of assigning truth values to these k unique variables. 

For every function, v (there are 2k of these, one for each row of the truth table), if v(a) = v(b), then the a 
and b are logically equivalent. 

Let us consider a simple example. We want to show that p is logically equivalent to ¬¬p. In arithmetic, 
this is the equivalent of saying x = – – x. While this is intuitively obvious, it is better to have a method to 
determine when expressions are logically equivalent. 

There is only one Boolean variable in both expressions, namely p. So, there are 21 = 2 ways to assign 
truth values to p. We can either assign it true or false. Now, all we do is construct the truth table for both 
expressions. The result looks like: 

 
Columns 1 and 3 are identical, which means the two are logically equivalent. 
There is a stranger example. Many times, both expressions we wish to show as logically equivalent 

have the same Boolean variables. This makes sense, because if the variables were different, say, p as one 
Boolean expression and q as another, then we could find a function v, which sets v(p) = T and v(q) = F. 
Hence, there would exist some function v such that v(p) ≠ v(q) and thus the two would not be logically 
equivalent. 

However, sometimes, even though a Boolean expression contains a variable, it does not really depend 
on that variable. For example, consider (p ∧ ¬p). Even if we do not know the value of p, we know (p ∨ 
¬p) is true. Why? For (p ∨ ¬p) to be true, either p or ¬p must be true. That is, if one is true, the other must 
be false. So, one of the two is always guaranteed to be true. In other words, it does not matter whether p is 
true or false, (p ∨ ¬p) is always true. This means that this expression does not really depend on p. 

For a Boolean expression to depend on a variable, the truth value of the expression must change at 
some point, if p changes its value. That is, there must be some assignment of truth values to the other 
variables in an expression, a, such that v(a) ≠ v′(alpha). In this case, v might represent the valuation where 
p is true and v′ would then represent the valuation where p is false. For all other variables, v and v′ give 
the same truth values. 

So, let us show that (p ∨ ¬p) and (q ∨ ¬q) are logically equivalent. There are two unique variables 
between the two of them: p and q. Now, we construct the truth table for both expressions. 

 
Notice that columns 5 and 6 are identical. When two columns are identical in this manner, they are 

logically equivalent. 
To show two expressions are not logically equivalent, we just need a single valuation, v, where v(a) 

does not equal v(b). Or equivalently, we need to find a single line in a truth table, where one expression′s 
truth value is T, while the other’s is false. 

Now we show that (p ∧ q) and (p ∨ q) are not logically equivalent. Again, we write up the truth tables 
for both. 

 



 
 

Just by inspection, we should be able to tell that columns 3 and 4 are not the same. For example, we 
can look at row 2 where v(p) = T and v(q) = F, so the result is that v((p ∧ q)) = F, but v((p ∨ q)) = T. Row 
3 also gives a case where v((p ∧ q)) ≠ v((p ∨ q)). The two expressions agree in rows 1 and 4. Thus, we 
conclude that (p ∧ q) and (p ∨ q) are not logically equivalent. 

TAUTOLOGIES AND CONTRADICTIONS 

Definition A tautology is a Boolean expression which always results in a true result, regardless of what 
the Boolean variables in the expression are assigned to. 

We saw this earlier on, with the expression (p ∨ ¬p). If v(p) = T, then the whole expression is true. If 
v(p) = F, then also the whole expression is true. Basically, a tautology means that the result of the 
expression is independent of whatever Boolean variables have been assigned the result is always true. 

Definition A contradiction is a Boolean expression which always results in a false result, regardless of 
what the Boolean variables in the expression are assigned to. 

A contradiction is just the opposite of a tautology, in fact, given any Boolean expression that is a 
tautology, we just have to negate it to get a contradiction. For example, (p ∨ ¬p) is a tautology. The 
negation of that, ¬(p ∨ ¬p), is a contradiction. We can apply De Morgan’s law and get (¬p ∧ ¬¬p) and by 
using the simplification for double negation result in (¬p ∧ p). So, since all of these are logically 
equivalent, then (¬p ∧ p) is also a contradiction. 

 

CONTRADICTION RULE 

 
¬p is true and then deduce a contradiction, then p is true. The idea runs something like this: one generally 
believes math is consistent that is, we do not derive contradictions using the rules of logic (the most 
common contradiction is to derive ¬q when we also know that q happens to be true). So, when we try to 
prove p, we try to assume ¬p and if this leads to a contradiction, then we know that ¬p cannot be true, 
since our system avoids contradiction and thus if ¬p is not true, it is false, and if it is false, then p must be 
true. This is often the line of reasoning used in a proof by contradiction. 

UNDERSTANDING QUANTIFIERS 

What does ∀x P(x) mean? We can read ∀ as “for all”, so the entire statement can be read as “for all x, P of 
x”. If we add a domain, things can be made clearer. So, let, D, our domain, be the set {2, 4, 6, 8, 10}. 

Then the statement ∀x D P{x) makes more sense. We expect every single x picked from D to have 



 
 

the property P. In fact, a very convenient way to think about ∀x D P(x) is to expand it out using 
ANDs. 

For example, the expansion of ∀x D P(x) would be: 
P(2) ∧ P(4) ∧ P(6) ∧ P(8) ∧ P(10). 

Every x in D having property P means P(2) is true AND P(4) is true AND P(6) is true AND P(8) is 
true AND P(10) is true. In general, we will not be able to write it all out like this because D could be 
infinite, but it is a correct way to think about what ∀ really means. 

What does the expansion for ∃x D P(x) mean? ∃ is read as “there exists”, so the entire statement 
reads as “there exists an x in D, P of x (or such that P(x)) holds true. The phrase “There exists” should 
give the hint that at least one x from D has the property P. And if the previous example for ∀ used ANDs, 

what do we think ∃ uses? If we said ORs, that would be correct. Using the same set D as before, ∃x 
D P(x) can be expanded to: 

P(2) ∨ P(4) ∨ P(6) ∨ P(8) ∨ P(10). 

This disjunction is true when at least one of the Ps is true and that should make sense based on our 
intuition of what “there exists” means (that is, it means at least one exists). 

We will normally not be able to expand out universal quantifiers (∀) or existential quantifiers (∃) in 
this manner because D, the domain, may be infinite. Nevertheless, it is useful to think about an expansion 
when trying to get a feel of what quantifiers mean. 
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