
 
GURU GOBIND SINGH 

INDRAPRASTHA UNIVERSITY 
 

Paper Code: BCA 202 

Paper ID: 20202 

Paper: Mathematics – IV 

UNIT-I      

COMBINATORICS: Permutation and Combination, Repetition and Constrained Repetition, Binomial 
Coefficients, Binomial Theorem. 

PROBABILITY: Definition of Probability, Conditional Probability, Baye’s Theorem.  

UNIT – II      

PROBABILITY DISTRIBUTIONS: Review of Mean & Standard Deviation, Mathematical Expectation, 
Moments, Moment Generating Functions, Binomial, Poisson and Normal Distributions.    

UNIT-III     

INTERPOLATION: Operators: Shift; Forward Difference, Backward Difference Operators and their Inter-
relation, Interpolation Formulae-Newton’s Forward, Backward and Divided Difference Formulae: 
Lagrange’s Formula. 

SOLUTION OF NON LINEAR EQUATION: Bisection Method, False Position Method, Newton – Raphson 
Method for Solving Equation Involving One Variable only. 

UNIT – IV           

SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS: Gaussian Elimination Method with and without 
Row Interchange: LU Decomposition: Gauss - Jacobi and Gauss-Seidel Method; Gauss – Jordan Method 
and to find Inverse of a Matrix by this Method. 

NUMERICAL DIFFERENTIATION- First and Second Order Derivatives at Tabular and Non-Tabular Points, 
Numerical Integration, Trapezoidal Rule, Simpsons 1/3 Rule: Error in Each Formula (without proof). 

UNIT -1 

 

 



 
COMBINATORICS 

Permutation and Combination 

INTRODUCTION 

Permutation and combination has lately emerged as an important topic for many entrance examinations. 
This is primary because questions from the topic require analytical skill and a logical bend of mind. Even 
students who do not have mathematics as a subject can handle them if they have a fairly good 
understanding of the concepts and their application. Hence anyone who is well-versed in different 
methods of counting and basic calculations will be able to solve these problems easily 

IMPORTANT NOTATION 

n! (Read as n factorial) 
Product of first n positive integers is called n factorial 

    n! = 1 × 2 × 3 × 4 × 5 ×…n 
    n! = (n − l)! n ∈ N 

In special case 0! = 1 

 

MEANING OF PERMUTATION AND COMBINATION 

Permutation 

The arrangement made by taking some or all elements out of a number of things is called a permutation. 
The number of permutations of n things taking r at a time is denoted by nPr and it is defined as under: 

                            n pr =  ∟n /∟(n-r) 
 
 Combination 
The group or selection made by taking some or all elements out of a number of things is called a 
combination. 

The number of combinations of n things taking r at a time is denoted by nCr or and it is defined as 
under: 

nCr = ∟n /∟r∟ (n - r) 

 
  

Here n! = Multiple of n natural number 



 
Some Important Results of Permutations 

1. nPn − 1 = nPn 
2. nPn = n! 
3. nPr = n (n − 1Pr − 1) 
4. nPr = (n − r + 1) × nPr − 1 
5. nPr = n − 1Pr + r (n − 1Pr − 1) 

Types of Permutations 

When in a permutation of n things taken r at a time, a particular thing always occurs, then the required 
number of permutations = r (n − 1Pr − 1). 

Q. If nC10 = nC14 then find the value of n 

Solution 

nC10 = nC14 ⇒ n = (10 + 14) = 24    (∵n = p + q) 

Permutations with Repetition 

These are the easiest to calculate.  

When you have n things to choose from ... you have n choices each time!  

When choosing r of them, the permutations are: 

n × n × ... (r times) 

(In other words, there are n possibilities for the first choice, AND THEN there are n possibilities for the 
second choice, and so on, multiplying each time.) 

Which is easier to write down using an exponent of r? 

n × n × ... (r times) = nr 

Example: in the lock above, there are 10 numbers to choose from (0,1,..9) and you choose 3 of them: 

10 × 10 × ... (3 times) = 103 = 1,000 permutations 

 

 

Permutations without Repetition 



 
In this case, you have to reduce the number of available choices each time. 

 

For example, what order could 16 pool balls be in? 

After choosing, say, number "14" you can't choose it 
again. 

So, your first choice would have 16 possibilities, and your next choice would then have 15 possibilities, 
then 14, 13, etc. And the total permutations would be: 

16 × 15 × 14 × 13 × ... = 20,922,789,888,000 

But maybe you don't want to choose them all, just 3 of them, so that would be only: 

16 × 15 × 14 = 3,360 

In other words, there are 3,360 different ways that 3 pool balls could be selected out of 16 balls. 

But how do we write that mathematically? Answer: we use the "factorial function" 

The factorial function (symbol :!) just means to multiply a series of descending natural numbers. 
Examples: 

• 4! = 4 × 3 × 2 × 1 = 24 
• 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5,040 
• 1! = 1 

There are also two types of combinations (remember the order does not matter now): 

1. Repetition is Allowed: such as coins in your pocket (5,5,5,10,10) 
2. No Repetition: such as lottery numbers (2,14,15,27,30,33) 

  

1. Combinations with Repetition 

Actually, these are the hardest to explain, so I will come back to this later. 

2. Combinations without Repetition 

This is how lotteries work. The numbers are drawn one at a time, and if you have the lucky numbers (no 
matter what order) you win! 

The easiest way to explain it is to: 

• assume that the order does matter (i.e. permutations),  



 
• then alter it so the order does not matter. 

Going back to our pool ball example, let us say that you just want to know which 3 pool balls were 
chosen, not the order. 

We already know that 3 out of 16 gave us 3,360 permutations. 

But many of those will be the same to us now, because we don't care what order! 

For example, let us say balls 1, 2 and 3 were chosen. These are the possibilities: 

Order does matter Order doesn't matter 

1 2 3 
1 3 2 
2 1 3 
2 3 1 
3 1 2 
3 2 1 

1 2 3 

So, the permutations will have 6 times as many possibilities. 

In fact there is an easy way to work out how many ways "1 2 3" could be placed in order, and we have 
already talked about it. The answer is: 

3! = 3 × 2 × 1 = 6 

(Another example: 4 things can be placed in 4! = 4 × 3 × 2 × 1 = 24 different ways, try it for yourself!) 

So, all we need to do is adjust our permutations formula to reduce it by how many ways the objects could 
be in order (because we aren't interested in the order any more): 

 

That formula is so important it is often just written in big parentheses like this: 

 

where n is the number of things to choose 
from, and you choose r of them 



 
(No repetition, order doesn't matter) 

It is often called "n choose r" (such as "16 choose 3") 

And is also known as the "Binomial Coefficient" 

Notation 

As well as the "big parentheses", people also use these notations: 

 

Example 

So, our pool ball example (now without order) is: 

16! 
= 

16! 
= 

20,922,789,888,000 
= 560 

   3!(16-3)! 3!×13! 6×6,227,020,800 

Or you could do it this way: 

16×15×14 
= 

3360 
= 560 

  3×2×1 6 

 

 

 

 

It is interesting to also note how this formula is nice and symmetrical: 

 



 
In other words choosing 3 balls out of 16, or choosing 13 balls out of 16 have the same number of 
combinations. 

16! 
= 

16! 
= 

16! 
= 560 

   3! (16-3)! 13! (16-13)! 3! ×13! 

Pascal's Triangle 

You can also use Pascal's Triangle to find the values. Go down to row "n" (the top row is 0), and then 
along "r" places and the value there is your answer. Here is an extract showing row 16: 

1    14    91    364  ... 
 

1    15    105   455   1365  ... 
 

1    16   120   560   1820  4368  ... 

  

1. Combinations with Repetition 

OK, now we can tackle this one ... 

 

Let us say there are five flavors of ice-cream: banana, chocolate, lemon, strawberry 
and vanilla. You can have three scoops. How many variations will there be? 

Let's use letters for the flavors: {b, c, l, s, v}. Example selections would be  

• {c, c, c} (3 scoops of chocolate) 
• {b, l, v} (one each of banana, lemon and vanilla) 
• {b, v, v} (one of banana, two of vanilla) 

(And just to be clear: There are n=5 things to choose from and you choose r=3 of them. 
Order does not matter, and you can repeat!) 

Now, I can't describe directly to you how to calculate this, but I can show you a special technique that 
lets you work it out.  

 

Think about the ice cream being in boxes, you could say "move past the 
first box, then take 3 scoops, then move along 3 more boxes to the end" 
and you will have 3 scoops of chocolate!  



 
  So, it is like you are ordering a robot to get your ice cream, but it 

doesn't change anything, you still get what you want. 

Now you could write this down as (arrow means move, circle means scoop). 

In fact the three examples above would be written like this: 

{c, c, c} (3 scoops of chocolate): 
 

{b, l, v} (one each of banana, lemon and vanilla): 
 

{b, v, v} (one of banana, two of vanilla): 
 

OK, so instead of worrying about different flavors, we have a simpler problem to solve: "how many 
different ways can you arrange arrows and circles" 

Notice that there are always 3 circles (3 scoops of ice cream) and 4 arrows (you need to move 4 times to 
go from the 1st to 5th container).  

So (being general here) there are r + (n-1) positions, and we want to choose r of them to have circles.  

This is like saying "we have r + (n-1) pool balls and want to choose r of them". In other words it is now 
like the pool balls problem, but with slightly changed numbers. And you would write it like this: 

 

where n is the number of things to choose 
from, and you choose r of them 

(Repetition allowed, order doesn't matter)  

Interestingly, we could have looked at the arrows instead of the circles, and we would have then been 
saying "we have r + (n-1) positions and want to choose (n-1) of them to have arrows", and the answer 
would be the same... 

 

 



 
 

 

So, what about our example, what is the answer? 

(5+3-1)! 
= 

7! 
= 

5040 
= 35 

   3! (5-1)! 3! ×4! 6×24 

In Conclusion 

Phew, that was a lot to absorb, so maybe you could read it again to be sure! 

But knowing how these formulas work is only half the battle. Figuring out how to interpret a real world 
situation can be quite hard. 

But at least now you know how to calculate all 4 variations of "Order does/does not matter" and "Repeats 
are/are not allowed". 

BINOMIAL THEOREM 

For any positive integral value 
(x + a) = nc0xn + ncxxn − 1a + nc2xn − 2a2 + … + nan 

Proof 
We can prove this theorem by using principle of mathematical Induction. First we shall verify the 
theorem for n = 1 

 ∴ The result is true for some positive integral value of k or n. ∴(x + a)k=kc0xk + kc1xk−1a + kc2xk − 2a2 + … + kckak 
Now multiplying both sides by x and a and adding the two results 

x (x + a)k = kc0xk + 1 + kc1xa + kc2xk − 1a2 + … + kck xak 
and 
a(x + a)k = kc0xka + kc1xk − 1a2 + kc2xk − 2a3 + … + kckxak + 1 ∴(x + a)k+1 = kc0xk + 1 + (kc1 + kc0)xka + (kc2 + kc1)xk−1 a2 + 
                        (kc3 + kc2)xk − 2a3 + … + kckak + 1 
By using ncr + ncr − 1 = n + 1cr we can say that 
(x + a)k + 1 = kc0xk + 1 + (k + 1)c1xka + (k + 2)c2xk − 1a2 + … + kckak + 1 



 
GENERAL TERM OF BINOMIAL EXPANSION 

We have derived binomial expansion as 
(x + a) n = nc0xn + ac1xn − 1a + nc2xn − 2a2 + … ncnan 
Here T1 = nc0xn 
       T2 = nc2xn − 1a 
       T3 = nc2xn − 2a2 ∴ The (r + 1) th term of the binomial expansion can be written as follows: Tr + 1 = ncrxn − rar 
The (r + 1) th term of binomial expansion is called the general term of expansion. 

 

Probability:-  

Probability is the likely percentage of times an event is expected to occur if the experiment is repeated 
for a large number of trials. The probability of rare event is close to zero percent and that of common 
event is close to 100%. Contrary to popular belief, it is not intended to accurately describe a single 
event, although people may often use it as such. For example, we all know that the probability of seeing 
the head side of a coin, if you were to randomly flip it, is 50%. However, many people misinterpret this 
as 1 in 2 times, 2 in 4 times, 5 in 10 times, etc 

Conditional Probability 

Conditional probability is the probability of one event occuring, given that another event occurs. The 
following expression describes the conditional probability of event A given that event B has occurred:  

 

If the events A and B are dependent events, then the following expression can be used to describe the 
conditional probability of the events:  

 

 

This can be rearranged to give their joint probability relationship:  

 

This states that the probability of events A and B occurring is equal to the probability of B occurring 
given that A has occurred multiplied by the probability that A has occurred. A graphical representation of 
conditional probability is shown below:  



 
Bayes’ Theorem 

Most probability problems are not presented with the probability of an event "A," it is most often 
helpful to condition on an event A"." At other times, if we are given a desired outcome of an 
event, and we have several paths to reach that desired outcome, Baye’s Theorem will 
demonstrate the different probabilities of the pathes reaching the desired outcome. Knowing each 
probability to reach the desired outcome allows us to pick the best path to follow. Thus, Baye’s 
Theorem is most useful in a scenario of which when given a desired outcome, we can condition 
on the outcome to give us the separate probabilities of each condition that lead to the desired 
outcome.  

Derivation of Baye's Theorem: - The derivation of Baye's theorem is done using the third 
law of probability theory and the law of total probability.  

Suppose there exists a series of events: B1,B2,...,Bn and they are mutually exclusive; that is,  

This means that only one event, Bj, can occur. Taking an event "A" from the same sample space 
as the series of Bi, we have:  

Using the fact that the events ABi are mutually exclusive and using the third law of probability 
theory:  

P(A) = ∑ P(ABj) 

 j  

Conditioning on the above probability, the result below is also called "the law of total 
probability"  

P(A) = ∑ P(A | Bj)P(Bj) 

 j  

UNIT-II 

PROBABILITY DISTRIBUTIONS 

In any probabilistic situation each strategy (course of action) may lead to a number of different possible 
outcomes. For example, a product whose sale is estimated around 100 units, may be equal to 100, less, or 
more. Here the sale (i.e., an outcome) of the product is measured in real numbers but the volume of the 



 
sales is uncertain. The volume of sale which is an uncertain quantity and whose definite value is 
determined by chance is termed as random (chance or stochastic) variable. A listing of all the possible 
outcomes of a random variable with each outcome’s associated probability of occurrence is called 
probability distribution. The numerical value of a random variable depends upon the outcome of an 
experiment and may be different for different trials of the same experiment. The set of all such values so 
obtained is called the range space of the random variable. 
 

EXPECTED VALUE AND VARIANCE OF A RANDOM VARIABLE 

Expected Value The mean (also referred as expected value) of a random variable is a typical value 
used to summarize a probability distribution. It is the weighted average, where the possible values of 
random variable are weighted by the corresponding probabilities of occurrence. If x is a random variable 
with possible values x1, x2,…, xn occurring with probabilities P(x1), P(x2),…, P(xn), then the expected 
value of x denoted by E(x) or μ is the sum of the values of the random variable weighted by the 
probability that the random variable takes on that value. 

 
Similarly, for the continuous random variable, the expected value is given by: 

 
where f(x) is the probability distribution function. 
 

Binomial Probability Distribution 

Binomial probability distribution is a widely used probability distribution for a discrete random variable. 
This distribution describes discrete data resulting from an experiment called a Bernoulli process (named 
after Jacob Bernoulli, 1654–1705, the first of the Bernoulli family of Swiss mathematicians). For each 
trial of an experiment, there are only two possible complementary (mutually exclusive) outcomes such as, 
defective or good, head or tail, zero or one, boy or girl. In such cases the outcome of interest is referred to 
as a ‘success’ and the other as a ‘failure’. The term ‘binomial’ literally means two names. 

Bernoulli process: It is a process wherein an experiment is performed repeatedly, yielding either a 
success or a failure in each trial and where there is absolutely no pattern in the occurrence of 
successes and failures. That is, the occurrence of a success or a failure in a particular trial does not 
affect, and is not affected by, the outcomes in any previous or subsequent trials. The trials are 
independent. 

 



 
Poisson Probability Distribution 

Poisson distribution is named after the French mathematician S. Poisson (1781–1840), The Poisson 
process measures the number of occurrences of a particular outcome of a discrete random variable in a 
predetermined time interval, space, or volume, for which an average number of occurrences of the 
outcome is known or can be determined. In the Poisson process, the random variable values need 
counting. Such a count might be (i) number of telephone calls per hour coming into the switchboard, (ii) 
number of fatal traffic accidents per week in a city/state, (iii) number of patients arriving at a health centre 
every hour, (iv) number of organisms per unit volume of some fluid, (v) number of cars waiting for 
service in a workshop, (vi) number of flaws per unit length of some wire, and so on. The Poisson 
probability distribution provides a simple, easy-to compute and accurate approximation to a binomial 
distribution when the probability of success, p is very small and n is large, so that µ = np is small, 
preferably np > 7. It is often called the ‘law of improbable’ events meaning that the probability, p, of a 
particular event’s happening is very small. As mentioned above Poisson distribution occurs in business 
situations in which there are a few successes against a large number of failures or vice-versa (i.e. few 
successes in an interval) and has single independent events that are mutually exclusive. Because of this, 
the probability of success, p is very small in relation to the number of trials n, so we consider only the 
probability of success. 
 

Variance and Standard Deviation 

Another way to disregard the signs of negative deviations from mean is to square them. Instead of 
computing the absolute value of each deviation from mean, we square the deviations from mean. Then the 
sum of all such squared deviations is divided by the number of observations in the data set. This value is a 
measure called population variance and is denoted by σ2 (a lower-case Greek letter sigma). It is usually 
referred to as ‘sigma squared’. Symbolically, it is written as: 

Population variance, 

 
where d = x – A and A is any constant (also called assumed A.M.) 

Since σ2 is the average or mean of squared deviations from arithmetic mean, it is also called the mean 
square average. 

The population variance is basically used to measure variation among the values of observations in a 
population. Thus for a population of N observations (elements) and with μ, denoting the population mean, 
the formula for population variance . However, in almost all applications of statistics, the data being 
analyzed is a sample data. As a result, population variance is rarely determined. Instead, we compute a 
sample variance to estimate population variance, σ2. 

 
 



 
Normal Probability Distribution Function 

The formula that generates normal probability distribution is as follows: 

 
where π = constant 3.1416 

  e = constant 2.7183 

  μ = mean of the normal distribution 

  σ = standard of normal distribution 

The f(x) values represent the relative frequencies (height of the curve) within which values of random 
variable x occur. The graph of a normal probability distribution with mean μ, and standard deviation σ is 
shown in Fig. 8.8. The distribution is symmetric about its mean μ, that locates at the centre. 

Since the total area under the normal probability distribution is equal to 1, the symmetry implies that 
the area on either side of μ, is 50 per cent or 0.5. The shape of the distribution is determined by μ, and σ 
values. 
UNIT-III 
INTERPOLATION 
Suppose that a function is defined by a table of values (xr, yr), (r = 0, 1, 2, …, n) or is tabulated for a 
number of equidistant values of the argument; for example, the tabulated values of logarithmic function or 
trigonometric function. We may have to estimate the value of the function at a point not coinciding with 
the given points. The process of estimating the value of y for an x belonging to the range [x0, xn] is known 
as interpolation. 

Here the points x0, x1, …,xn are called the interpolation points . 
  

 
  

The process of estimating the value of y for an x outside the range [x0, xn] is known as extrapolation. 
Interpolation is to construct a new function F (x) which coincides with the known function f(x) at the 
tabulated (n + 1) interpolation points. 

INTERPOLATION FORMULAS FOR EQUAL INTERVALS 

4.5.1 Newton1–Gregory2 Forward Interpolation Formula 

Let the values of yr = f(xr) be given for equally spaced values of the independent variable 
  
xr = x0 + rh, r = 0, 1, 2, …, n   
  

Suppose that the nth degree interpolating polynomial is 
  
ϕ(x) = a0 + a1 (x − x0) + a2 (x − x0)(x − x1) + … + an (x − x0) (x − x1) (x − xn−1) (  

http://my.safaribooksonline.com/9789332515703/chapter004_fn_xhtml
http://my.safaribooksonline.com/9789332515703/chapter004_fn_xhtml


 
  

Since the curve y = ϕ(x) passes through the points [xr, yr], r = 0 … n, we get the following equations for 
determining the constants a0, a1, …, an. 
  
Generally 
 

Substituting these values of ar in  we get the Newton–Gregory forward interpolation formula 
  

Putting x = x0 + ph, y(x0) = y0 formula  can be put in a simpler form as 
 INTERPOLATION WITH UNEQUAL INTERVALS 
So far we have considered interpolation formulas for equally spaced values of x. We now develop two 
interpolation formulas for unequally spaced values of x. 

Divided Differences 

Suppose that the function yx is given for values x = a, b, c, d, … where the intervals b − a, c − b, d − c are 
not necessarily equal. We define the divided difference of ya at b by 
  
 Linearity Property 
The divided difference operator ⊿′ is linear (a) ⊿′[f(x) + g(x)] = ⊿′f(x) + ⊿′g(x); (b) ⊿′[cf(x)] = c⊿′[f(x)]. 

 Symmetrical Property 

The divided differences are symmetrical in the symbols. 

 Vanishing of (n + 1) Divided Differences 

If y = y(x) is an nth degree polynomial then its nth order divided difference ⊿′nyx is constant and higher 
order divided differences vanish. 
  

Theorem     If yx is a polynomial of degree n then ⊿′nyx is constant. 

Proof 

a polynomial of degree (n − 1). 
Now ⊿′ is a linear operator. Hence it follows that the first divided difference of yx = a0 + a1x + … anxn 

is a polynomial of degree (n − 1); the second divided difference is a polynomial of degree (n − 2); the nth 
divided difference is constant, and all higher divided differences are zero. 

Newton's Divided Difference Formula 

Consider the function yx for the arguments x, a, b, c, d… j, k. Then  



 
We continue this process until nth differences are reached. Assuming that yx is represented by an nth 

degree polynomial, all higher differences vanish and we have Newton's divided difference formula: 
where there are (n + 1) arguments a, b, c, …, k and A = (x − a), B = (x − b), C = (x − c), …, K = (x − k). 

Corollary    If the arguments a, b, c, … are taken as 0, 1, 2, … then and we obtain from equation  

LAGRANGE'S INTERPOLATION FORMULA 

In the inverse interpolation for a given value of y, the corresponding value of x is to be found. 
Interchanging the roles of x and y = f(x) in Lagrange's interpolation formula we get Lagrange's inverse 
interpolation formula as  

 
  

Newton's divided differences formula is 
  
y = f(x) = f(x0) + (x − x0) [x0, x1] + (x − x0) (x − x1) · [x0, x1, x2] + (x − x0) (x − 
x1) (x − x2) · [x0, x1, x2] + ⋅⋅⋅ = 48 + 52 (x − 4) + 15(x − 4) (x − 5) + 1(x − 4) (x 

− 5) (x − 7) = x2(x − 1)  
  ∴ f(2) = 22 (2 − 1) = 4  
  

f(8) = 82 (8 − 1) = 448  
 
 

CONVERGENCE OF REGULA–FALSI METHOD 

Let ξ be the actual root of the equation f(x) = 0 . Thus, f(ξ) = 0 . Let xn = ξ + εn, where εn is the error 
involved at the nth step while determining the root.  

 

 
NEWTON–RAPHSON METHOD 
If the derivative of a function f can be easily found and is a simple expression, then the real roots of the 
equation f(x) = 0 can be computed rapidly by Newton–Raphson method. 

Let x0 denote the approximate value of the desired root and let h be the correction which must be 
applied to x0 to give the exact value of the root x. Thus, x = x0 + h and so the equation f(x) = 0 reduces to 
f(x = x0 + h) = 0. Expanding by Taylor’s Theorem, we have 

 



 
Hence, 

 
If h is relatively small, we may neglect the term containing h2 and have 

  
f (x0) + hf′(x0) = 0.  

 
 

SQUARE ROOT OF A NUMBER USING NEWTON–RAPHSON METHOD 

Suppose that we want to find the square root of N. Let 

 
We have 

  
f (x) = x2 − N = 0.  

Then, Newton–Raphson method yields 

 
For example, if N = 10, taking x0 = 3 as an initial approximation, the successive approximations are 

  
x1 = 3.166666667, x2 = 3.162280702,  
x3 = 3.162277660, x4 = 3.162277660  

correct up to nine decimal places. 

However, if we take f(x) = x3 – Nx so that if f(x) = 0 then Now f’(x) = 3x2 – N and so the Newton–
Raphson method gives 

 

Taking x0 = 3, the successive approximations to are 
  

x1 = 3.176, x2 = 3.1623, x3 = 3.16227, x4 = 3.16227  

correct up to five decimal places. 
Suppose that we want to find the pth root of N. Then consider f(x) = xp – N The Newton–Raphson 

formula yields 

UNIT -IV 

Linear Systems of Equations. Gauss Elimination 



 
We now come to one of the most important use of matrices, that is, using matrices to solve systems of 
linear equations. We showed informally of how to represent the information contained in a system of 
linear equations by a matrix, called the augmented matrix. This matrix will then be used in solving the 
linear system of equations. Our approach to solving linear systems is called the Gauss elimination 
method. Since this method is so fundamental to linear algebra, the student should be alert. 

A shorter term for systems of linear equations is just linear systems. Linear systems model many 
applications in engineering, economics, statistics, and many other areas. Electrical networks, traffic flow, 
and commodity markets may serve as specific examples of applications. 

Inverse of a Matrix. Gauss–Jordan Elimination 

In this section we consider square matrices exclusively. 
The inverse of an n × n matrix A = [ajk] is denoted by A−1 and is an n × n matrix such that 

 
where I is the n × n unit matrix  

If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then A is called a 
singular matrix. 

If A has an inverse, the inverse is unique. 
Indeed, if both B and C are inverses of A, then AB = I and CA = I, so that we obtain the uniqueness 

from 

 
We prove next that A has an inverse (is nonsingular) if and only if it has maximum possible rank n. 

The proof will also show that Ax = b implies x = A−1b provided A−1 exists, and will thus give a 
motivation for the inverse as well as a relation to linear systems. (But this will not give a good method of 
solving Ax = b numerically because the Gauss elimination  requires fewer computations.) 
NUMERICAL DIFFERENTIATION 
INTRODUCTION 

Situations arise frequently when the conventional calculus methods of differentiation and integration 
cannot be applied to a function, for instance, 

1. when we do not know the exact function but know only values of it at a set 
of discrete points; and 

2. when the function is known but is too complicated to apply the 
conventional methods of calculus. 

In such cases we apply numerical methods. The method of finding the derivative dy/dx / integral 
of a function y = f(x) using numerical techniques is called numerical differentiation /numerical 
integration. 



 
6.1.1 Numerical Differentiation 

Numerical differentiation is a process of computing the derivative of a function at some assigned value of 
x from a given set of data 
  
(xi fi) fi = f(xi) (i = 0, 1, 2, …, n)  
MAXIMUM AND MINIMUM VALUES OF A TABULATED FUNCTION 
We know that maximum and minimum values of a function are found by equating the first derivative to 
zero and solving for the variable. We can apply this procedure to a tabulated function as well. 

Differentiating Newton's Forward interpolation formula 
we have neglecting higher-order terms. 

For an extreme value of y, we must have dy/dp = 0. This yields the quadratic in p: 
  

a0+a1p+a2p2 = 0         
  
with The values of x are found from x = x0+ ph. 
NUMERICAL INTEGRATION: INTRODUCTION 
We can find the integral of a function y = f(x) defined and continuous on an interval [a, b]if there exists a 

function F (x) such that F′(x) = f(x). According to the Fundamental Theorem of Integral Calculus we  
  
Geometrically, it represents the area under the curve y = f (x) and between the ordinates x = a and x = b. 

In applications, evaluation of the integral may prove to be very complicated and not practical: 

1. when we cannot find the anti derivative F (x) of f(x) and 
2. when the integrand f(x) is a tabulated function. 

In such cases we have to resort to numerical evaluation which is also called mechanical quadrature. 
The basic idea is to replace f (x) by an interpolating polynomial ϕ(x) using a suitable interpolation 
formula. We derive a general formula for numerical integration using Newton's Forward difference 
formula. 

INTRODUCTION 

Many engineering and scientific problems are modelled as differential equations. Forming differential 
equation, finding its solution and interpreting the results obtained are of utmost importance for engineers 
and scientists. Exact solutions of differential equations can be found only in a limited number of cases. 
Hence, there is need for numerical solution. Even in cases where closed-form solutions are possible to 
assess and analyse them we have to compute. Instead, we could solve the differential equation itself 
numerically and have a better understanding of the solution, especially now with the availability of high-
speed digital computers. 
 Ordinary Differential Equation 



 
An equation of the form 
  
F(x, y, y′, y″, …, y(n)) = 0     (7.1)  

Simpson's Method  
  

In order to find y(xn) where xn = x0+ nh by Milne's method we proceed in the following way. 
Since the value y0 = y(x0) is given to us, we compute y1 = y(x1) = y(x0+ h), y2 = y(x2) = y(x0+ 2h), y3 = 

y(x3) = y(x0 + 3h) by Picard's or Taylor's method. Next we calculate 
 

To evaluate: 

0

f(x)dx
nx

x
∫  

 1.  Divide [xo, xn] into n segments (n ≥ 1) 

 2.  Within each segment approximate ƒ(x) by an mth order polynomial, 

    pm(x) = a0 +a1x + a2x2 + … + amxm 

The polynomial order need not be the same for all segments.  Then: 

  

    

f(x)dx
0x

nx
∫ =

    

pm
1

(x)dx
0x

1x
∫   +

    

pm
2

(x)dx
0x

2x
∫ + … + 

    

pm
n

(x)dx
0x

nx
∫  

 the mi's may be the same or different.  Integrate each polynomial exactly. 

Order m of polynomial pm(x) determines Newton-Cotes formulas: 

 m Polynomial Formula Error 

 1 linear Trapezoid O(h2) 

 2 quadratic Simpson's 1/3 O(h4) 

 3 cubic Simpson's 3/8 O(h4) 

 4 quartic Boole's Rule O(h6) 

 5 quintic Boole's Rule O(h6) 

 



 
Trapezoid Rule  

 For each segment (or one segment), let ƒ(x) ≈ p1(x) = a0 +a1x 

  a.  Determine a0 + a1x from Newton DD Polynomial: 

   i i 1
1 i-1 i-1

i i 1

f(x ) f(x )p (x) = f(x ) (x x )
x x

−

−

−
+ −

−
  

b. Integrating [use trapezoid area formula, C&C 4th ed., Box 21.1]: 

 
i

i 1

x
i i 1

1 i i 1

x

f (x ) f (x )
p (x)dx (x x )

2
−

−
−

+
= −∫  

c. Truncation Error [C&C 4th ed., Box 21.2]: 
i

i 1

x
3i i 1

i i 1 i i 1

x

f (x ) f (x ) 1(x)dx (x x ) (x x ) f "( )
2 12

−

− −− −
+

ƒ = − − ξ∫  

  Integrates a linear function correctly: f "(ξ) = 0. 

  Easily derived by considering Taylor Series. 



 
Composite Trapezoid Rule  

 

 For multiple segments, sum segment areas to approximate integral: 

  I = 
xn

x0

f (x)dx∫
 

=
n

i i 1
i i 1 ti

i 1

f(x ) f(x )(x x ) E
2

−
−

=

+ − +  ∑   

 where Eti is truncation error in ith interval.   

 If data are evenly spaced, i.e.,  xi – xi-1 = 
  
x n − x0

n
 = h  for i=1,...,n 

  I ≈ (xn – x0)

n 1

0 i n
i 1

f(x ) 2 f(x ) f(x )

2n

−

=

 
 + +
 
 

∑
  

 or: I ≈
n 1

0 i n
i 1

1 1h f(x ) f(x ) f(x )
2 2

−

=

 
 + +
  

∑   

 It can be shown that   
n

i
i=1

f ( )′′ ξ∑  ≈  ( )nf ′′ ξ      so the error is  

   Et = –
  
nh3

12
′ ′ f = – 

  
(xn − x0 )h2

12
′ ′ f   

 

NOTE: C&C notation is different 

 h = (xn-x0)/n  ==> (b-a)/n   and  
3 3

t 2
nh (b a)E " "
12 12n

−
= − ƒ = − ƒ  

 

Simpson 1/3 Rule  

Improving the estimate of the integral  

Note:  If n is doubled, 
hè h/2 and Et è 

Ea/4 



 
• fit Lagrange polynomials to three points (a pair of segments)  

• integrate those polynomials to obtain a general formula for integrals. 

• the resulting function must correctly integrate quadratic polynomials.   

Evaluate   
n n

0 0

x x

2

x x

f (x)dx p (x)dx≈∫ ∫  

For each pair of segments use Lagrange Interpolating Polynomial: 

i i 1 i 1 i 1 i 1 i
2 i 1 i i 1

i 1 i i 1 i 1 i i 1 i i 1 i 1 i 1 i 1 i

(x x )(x x ) (x x )(x x ) (x x )(x x )
p (x) f (x ) f (x ) f (x )

(x x )(x x ) (x x )(x x ) (x x )(x x )
+ − + −

− +
− − + − + + − +

− − − − − −
= + +

− − − − − −
 

If points are evenly spaced, integrating yields: 

   
i 1

i 1

x

i 1 i i 1 i 1 i i 1
i 1 i 1

x

f (x ) 4f (x ) f (x ) f (x ) 4f (x ) f (x )f (x)dx (x x ) h
6 3

+

−

− + − +
+ −

+ + + +
= − =∫  

Simpson's 1/3 Rule – Alternative derivation 

Choose weights in ω0 f (-1) + ω1 f (0) +  ω2 f (1) so that over [ -1, +1]: 

 a. 
1

0 1 2

1

1 dx 2 (1) (1) (1)
+

−

= = ω + ω + ω∫  

   
1

0 1 2

1

x dx 0 ( 1) (0) ( 1)
+

−

= = ω − + ω + ω +∫    

    
1

2 2 2
0 1 2

1

2x dx ( 1) (0) ( 1)
3

+

−

= = ω − + ω + ω +∫   

from 2nd equation:  ω0 =  ω2;  from 3rd:  ω0 +  ω2 = 2/3;   

hence ω0 =  ω2 = 1/3 and from 1st equation ω1 = 4/3  

b.  General formula for evenly spaced points (note interval above had width of 2): 



 

   
( ) ( ) ( )i 1

i 1

x
i 1 i i 1

2 i 1 i 1

x

f x 4f x f x
p (x)dx (x x )

6

+

−

− +
+ −

+ +
= −∫  

 c.  Error: 4 (4)
2 2 0

x xi+1 i 1

x xi-1 i-1

1f (x) dx p (x) dx (x x ) h f ( )
180

ξ
+

= − −∫ ∫   

  è Integrates a cubic exactly: ƒ(4)(ξ) = 0.   

Because (x2 – x0) = 2h, the error term becomes (C&C 4th ed., Table 21.2, p. 604): 

   
5

5 (4) (4)i+1 i-11 (x x )h f ( ) = f ( )
90 2880

ξ ξ−
− −  

 

Derivation of Simpson 1/3 Rule error term  

Let: x = -h, 0, +h 
h 2

o o o
-h

x = f(x)dx = (f  + xf  +  f + ) dx
2!

I ′ ′′∫ ∫ K  

 
  
=  2hfo +  

2h3

6
 ′ ′ f o +  

2h5

5!
 fo

[4] +  . . .  (only odd powers of h survive) 

  
S =  

h
3

 f -h( ) +  4f(0) +  f(+h)[ ]
    
=

h
3

6fo + 0 +
2h2

2
′ ′ f o + 0 +

2h4

4!
fo

4[ ] +K
 

  
 

   

 
3 5

[4]
0 0

2h 2h2hf f f
6 3(4!)

′′= + + +L  

 

Both have only odd terms.      I - S =  Truncation Error:  

 =  − 
  
(2h)h4

180
 f [4] +  2h 0(h6 ) = 5 (4)1 h f ( )

90
ξ−  

 

Composite Simpson 1/3 Rule  



 
Sum pairs of segment areas to approximate the given integral: 

I =
  

f(x)dx
x0

xn

∫  =
  

(xi+1 − xi−1)
f(x i −1) + 4f(x i ) + f(x i+1 )

6
+ Eti

 
 
  

 i=1,3, 5

n −1

∑   

If all data are evenly spaced, i.e., xi – xi-1  = h for i=1,...,n: 

 
n 1 n 2

0 i j n
i 1,3,5 j 2,4,6

hI f (x ) 4 f (x ) 2 f (x ) f (x )
3

− −

= =

 
 ≈ + + +
 
 

∑ ∑  

It can also be shown that 
  

f
4( )(ξ i )

i =1

n

∑  ≈ (4)nf   so: 

  
4 55

(4) (4) (4)n 0 n 0
t 4

(x x )h (x x )nhE f f f
180 180 180n

− −
= − = − = −   

        Note:  If n is doubled, h--> h/2 and Et --> Et /16 

 

Simpson 3/8 Rule   

For each triple of segments, let ƒ(x) ≈ p3(x) = a0 + a1x + a2x2 + a3x3 

 a.  Replace a0 + a1x + a2x2+ a3x3 w/ Lagrange Polynomials and integrate 

b. For evenly spaced points:   

3
0 1 2 3 0 1 2 3

3 3 0

0

x

x

f(x ) 3f(x ) 3f(x ) f(x ) f(x ) 3f(x ) 3f(x ) f(x )p (x)dx (x x ) 3
8 8

h+ + + + + +
= − =∫   

c.  Error: 

  

f(x)dx
x

0

x3

∫  =

  

p3 (x)dx
x

0

x3

∫ –
80
1

 (x3 – x0)h4f (4)(ξ)

 
5

4 (4) 5 (4) (4)3 0
3 0

( )1 3( ) ( ) ( ) ( )
80 80 6480t

x xE x x h f h f fξ ξ ξ−
= − − = − = −   



 
Notes: 1.  Composite Simpson 1/3 Rule and Simpson 3/8 Rule errors are 

   
4 (4) 4 (4)n 0 n 0(x x ) (x x )h f      vs.    h f

180 80
− −

− −  

Simpson 1/3 rule is slightly more accurate over the interval [x0, xn] 
when the two methods use the same value of  h.   

But both methods have the same order of accuracy. 

  2.  Simpson 3/8 Rule requires multiples of three segments. 

       Simpson 1/3 Rule requires even number of segments. 

 

3. Can use a combination of T, S 1/3, and/or S 3/8 when number of 
segments is neither even nor divisible by 3 or when data in unevenly 
spaced. 

 

Higher order does not always yield higher accuracy. 

Example:  I  =  
    

c e− x 2

dx
0.2

1.5

∫  =  1.00000   

n  Trap.  Simp. 1/3 Simp. 3/8 

1  1.05191 

2  1.00499* 0.98935 

3  1.00187*   0.99561 

4  1.00099 0.99965 

6  1.00042 0.99994* 0.99985 

8  1.00023 0.99998* 

9  1.00019   0.99998* 

12  1.00011 1.00000* 1.00000* 

15  1.00008   1.00000* 

16  1.00006 1.00000* 



 
32  1.00001 

64  1.00000 Asterisk (*) denotes more accurate answer for each n.  

Newton-Cotes Integration -- Other Cases: 

1.  NC formulas can be derived for any number of segments and spacing. 

Just integrate Lagrange Polynomial to get weight on each value of function: 

    f(xi), i = 0,...,n;   

 Formula can be open or closed. 

2. Can always use multiple-application Trapezoidal Rule. 

 Can use a Simpson Rule when adjacent segments have equal h’s. 

3.  Integrate interpolating sp line. 
 

Richardson Extrapolation 

Given two numerical estimates obtained using different h's, compute a higher-
order estimate. 

Scheme: 

Starting with a step size h1, the exact value of some operation A is: 

 A = A(h1) +  O (h1 
n)  

Suppose we reduce step size to h2 

  A = A(h2) +  O (h2 
n)   

Multiplying the second equation by r = (h1/h2)n and then subtracting 
the first equation yields [where the bracketed error terms tend to 
cancel]: 

 

  (r-1) A = r A(h2) – A(h1) + [r O(h2n) – O(h1n)] 

 



 

    A =

n
1

2 1
2

n
1

2

h
A(h ) A(h )

h

h 1
h

 
− 

 

 
− 

 

 + O(h1
m)     m ≥ n+1 

 

Richardson Extrapolation Example -- Numerical Differentiation  

  D  = 

n
1

2 1
2

n
1

2

h
D(h ) D(h )

h

h 1
h

 
− 

 

 
− 

 

 

 Start with O(h2) centered first difference approx. from Table 23.3: 

  i i 1 1
i

f(x h) f(x h) f ff (x ) D(h)
2h 2h

−+ − − −′ ≈ = =   

Substituting h2 = h and h1 = 2h, Richardson Extrapolation yields the next 
highest order centered first-difference formula in Table 23.3: 

  f '(xi) =  (1/3) [ 4 D(h) –  D(2h) ] + O (h
4

) = 

  =  1 1 2 2
1 1 14 (f f ) (f f )
3 2h 4h− −

 − − −  
 + O (h4) = 

  = 2 1 1 2(-f 8f 8f f )
12h

− −+ − +

 
 + O (h4)



 
Richardson Extrapolation Example -- Numerical Integration 

Suppose we use the Trapezoidal Rule to integrate.  If we use step size h 

   I = T(2h) +  O(4h2).   

To improve estimate, reduce step size: 

   I = T(h) + O(h2). 

Combining to eliminate error of order h2 yields 

  
2

4
2

2 T(h) T(2h)I O(h )
2 1

−
= +

−
 =  

1
3  [ 4 T(h)  –  T(2h) ]  + O(h4)  

 1.  Greater weight is placed on the more accurate estimate 

 2.  Weighting coefficients sum to unity, i. e. (4 – 1)/3 =  1 

 3.  Actually Simpson’s 1/3 rule: (h/3)[ƒ(xi-1) + 4ƒ(xi) + ƒ(xi+1)] 

Romberg Integration  

Systematic application of Richardson extrapolation with: hi+1 = hi/2 

Benefit:  Get a high-order Newton-Cotes formula easily. 

   Can watch convergence. 

General formula 

 j,k 1
k 1

j 1,k 1
j,k k 1

4 I I
I

4 1
−

−
+ −

− −

−
=   j,k 1j 1,k 1

j 1,k 1 k 1

I I
I

4 1
−+ −

+ − − −

−
= +  

 where:  j = level of subdivision 

  k = level of integration O(h2k) 

 

Tabular Organization of Romberg Integration   

  Ij,k =   Ij+1,k-1 + j 1,k 1 j,k 1
k 1

I I

4 1
+ − −

−

−

−
 



 
j # Trap. 

segs. 

n 

k = 1 

O(h2) 

Trap 

k = 2 

O(h4) 

Simp 1/3 

k = 3 

O(h6) 

Boole 5 

k = 4 

O(h8) 

k = 5 

O(h10) 

1     1 I1,1 I1,2 I1,3   
2     2 I2,1 I2,2    
3     4 I3,1     
4     8      
5   16      

  k 1
1

4 1− −
 =        1/3        1/15 1/63   1/255 

Romberg Integration: Continuation of earlier integration example. 

Example :     I  = 
2

1.5
x

1.2

ce dx−∫  = 1.0000000  

 Trap Trap Simpson Boole 

 n O(h
2

) O(h
4

) O(h
6) O(h

8
)  

 1 1.0519096 0.9893489 1.0003403
 0.9999970 

 2 1.0049891 0.9996533 1.0000024
 1.0000000 

 4 1.0009873 0.9999806 1.0000000
 1.0000000 

 8 1.0002322 0.9999988 1.0000000
 1.0000000 

 16 1.0000572 0.9999999 1.0000000 

 32 1.0000142 1.0000000   

 64 1.0000036    

 



 

Example : 
1

a

0

I (a+1)x  dx  = ∫  a = 6  

 
Trap Trapezoid 

Simp 1/3 Boole 5-pt   

 n 
O(h2) O(h4) O(h6) O(h8) O(h10) 

 1 3.500000 1.239583 1.002604 1.000000 1.000000 

 2 1.804688 1.017415 1.000041 1.000000  

 4 1.214233 1.001127 1.000001   

 8 1.054403 1.000071    

 16 1.013654     

 

Example 3: 
1

a

0

I (a+1)x  dx  = ∫  a = 1.5 

 Trap 
Trapezoid 

Simp 1/3 Boole 5-pt   

 n 
O(h2) O(h4) O(h6) O(h8) O(h10) 

 1 1.250000 1.005922 1.000757 1.000124 1.000022 

 2 1.066942 1.001080 1.000134 1.000022  

 4 1.017545 1.000193 1.000024   

 8 1.004531 1.000034    

 16 1.001159     



 
Gauss Quadrature  

 

 Requires:  ƒ(x) to be explicitly known so we can pick any xi 

 Approach: 
1 n 1

i i n
i 01

f(x)dx f(x ) R
+ −

=−

= ω +∑∫  

        where: ωi = weighting factors 

    xi = sampling points selected optimally 

    Rn= truncation error 

Pick points & weights cleverly to integrate a polynomial of order (2n - 1) exactly.   

For n = 2  Gauss Quadrature will be accurate for cubics. 

   Trapezoidal Rule is accurate for linear functions. 

 For n=3 exact result for polynomials of order up to and including 5 

 

With 3 points we want exact results for polynomials of order 5 over the interval 
[-1, +1]. 

 

 
1

1

1dx
+

−
∫  =  2  =  ω0 1 + ω11 + ω21 

   
1

1

xdx
+

−
∫  =  0  =  ω0 x0 + ω1 x1 +  ω2 x2 

 
1

2

1

x dx
+

−
∫  =  

  
2
3

  =  ω0 x0 
2 + ω1 x1 

2 +  ω2 x2 
2 



 

   
1

3

1

x dx
+

−
∫  = 0  =  ω0 x0 

3 + ω1 x1 
3 +  ω2 x2 

3 

 
1

4

1

x dx
+

−
∫  = 

  
2
5

  =  ω0  x0 
4 + ω1  x1 

4 +  ω2  x2 
4 

   
1

5

1

x dx
+

−
∫  = 0  =  ω0  x0 

5 + ω1  x1 
5 +   ω2  x2 

5 

  

With six equations there are six  unknowns, 

 i.e., 3 unknown weights (ω0, ω1, ω2) and  

 3 unknown sampling points (x0, x1, x2). 

 

Solving these six equations for the six unknowns results in: 

  ω0 =  0.555555556 ω1 = 0.888888889 ω2 =   0.555555556 

  x0 = –0.774596669 x1 =  0.000000000 x2 =  +0.774596669 

     I ≈  ω0 f(x0)  +  ω1 f(x1)  +  ω2 f(x2) 

See C&C Table 22.1, p. 626, for Gauss-Legendre formulas, n = 2, 3, 4, 5, and 6.  

Gauss Quadrature Truncation Error  

In general, n sampling points will provide an exact solution for a 2n–1 order 
polynomial.  With n = # of sampling points 

  Rn =
[ ] ( )

[ ]

2n 1 4

3
2(b a) n!

(2n 1) (2n)!

+−

+
 f (2n)(ξ) 

  (similar to C&C except their n = # pts.–1) 



 
Because (b-a) = h, the error with the composite Gauss rule is O (h2n) globally 

with n = # of pts.. 

This shows a superiority of order over the Newton-Cotes formulas. 

 Higher order need not always mean higher accuracy. 

Arbitrary intervals: Gauss Quadrature: When the limits of integration are [a,b] 
instead of [–1,+1]  (C&C, p. 621) 

We have a solution for the integral
1

1

f(x)dx
+

−
∫ .  

Assume that there is a variable x which is linearly related to xd such that: 

  y = a0 + a1x  

If   y = a, corresponds to x = –1 and y = b, corresponds to x = 1, then 

   a = a0 + a1(–1)  and   b = a0 + a1(+1) 

Solving these two equations yields: 

  a0 = (b+a)/2  and    a1 = (b–a)/2 

which gives the change of variables: 

  y =   
2

ab +
 +  

b – a
2    x        and        dy  =   

b a
2
−

dx  

Thus, 
b

a

f(y)dy∫  = 
1

-1

(b a) (b-a)x b af dx
2 2

+
+ + − 

 
 ∫  ≈ 

n 1

i i
i 0

b a f(y[x ])
2

−

=

−
ω∑   

 (The xi are the tabulated Gauss points (Table 22.1) in C&C) 

Example :  Evaluate ∫
2

1.5
y

0.2

e dy  using 3-pt Gauss Quad: 

1.  Change of variables: y = 
(1.5 0.2) (15 0.2)x

2
+ + −

 = 0.65 x + 0.85 

      dy  = 
2

2.05.1 −
 dx  =  0.65 dx 



 

2.   With
2

1.5
y

0.2

e dy−∫ = 0.65
2

1
[0.65x 0.85]

1

e dx
+

+

−
∫  

  I  ≈   0.65{ω0 e
–[0.65x

0
+0.85]2 

+ ω
1 e

–[0.65x
1
+0.85]2

 + ω
2 e

–[0.65x
2
+0.85]2} 

 where:  ω0 = 0.555555556  x0 = –0.774596669 

ω1 = 0.888888889  x1 =    0.000000000 

ω2 = 0.555555556  x2 =  +0.774596669 

 

    Itrue  = 0.65882  

    Igauss  = 0.65860,  et =  0.03% 

Note:   with 3 points, i.e., 2 segments:    Itrap  = 0.66211,  et = 0.50% 

   ISimp.1/3  = 0.65181,  et = 1.06% 

Example : 
1

0

cdy
2 cos(  y/2)+ π∫  

 n pts Romberg Gauss Quad 

 1 2 1.08253170 0.99955157 

 2 3 1.00066008 1.00000812 

 4 5 0.99999114 1.00000000 

 8 9 0.99999987 1.00000000 

 n pts Romberg Gauss Quad 

 1 2  O(h2) O(h4) 

 2 3  O(h4) O(h6) 

 4 5  O(h6) O(h10) 

 8 9  O(h8) O(h18) 



 
 n = number of panels;   pts = number of points 

Gauss Quadrature Formulas for Special Integrals 

In each of these schemes, f(x) is a “well behaved” function, that 
is, continuously differentiable.  Also each of these schemes has 
its own tabulated sampling points and weighting factors (not in 
C&C). 

 

 Gauss-Legendre   Gauss-Hermite 

 ( )
1

1

f x dx
+

−
∫  ( )

2xe f x dx
+∞

−

−∞
∫  

 Gauss-Laguerre log-weighted 

 ( )x

0

e f x dx
+∞

−∫  ( ) ( )
1

0

ln x f x dx∫   

 Gauss-Chebyshev  

 
( )1

2
1

f x
dx

1 x

+

− −
∫  

 

Advantages (A) and Disadvantages (D) of Gauss Quadrature 

A1)   With n points obtain a formula that integrates polynomials 1, x, x2, ..., x2n-
1 because of 2n free parameters:  very high order.   

 Excellent for well-behaved functions! 

A2)  Special formulas are available and can be derived for special weighting 
functions, and infinite and semi-infinite intervals. 

 

D1)   Errors can depend upon f (2n)(ξ) so the method is only dependable if high 
order derivatives are well behaved. 



 
D2)   When composite Gauss formulas are applied (Gauss Quadrature applied to 

separate panels), endpoints cannot be reused as they are with Trapezoid, 
Simpson and Romberg. 

D3)   With an adaptive strategy that selectively subdivides intervals where 
truncation error may be large, cannot reuse points as one can with 
Trapezoid and Simpson.  Gauss also fails to provide an estimate of local 
error as do Trapezoid, Simpson, and Romberg by clever use of the same 
function values with different weights. 

D4)  Inconvenient to remember special Gauss points and Gauss weights. 

 

Improper Integrals  

 

1. Use Gauss Quadrature for that special interval. 

 

2. Transform variables on the outer portion of the interval.  (Beware of singularities at 
what was infinity.)  For any function that approaches zero at least as fast as 1/x2 as x 
approaches infinity, perform change of variables:  

   x = 
t
1

  and     dx = –dt/t2 

   
b

x a

f(x)dx
=
∫  =

t 1/a

2
t 1/b

1 1f ( ) dt
tt

=

=
∫      (22.27) 

which is valid for ab > 0.  For integration limits that pass through zero, implement the 
integration in two (or three) steps:  

  
b a b

a

f (x) dx f (x) dx f (x) dx
−

−∞ −∞ −

= +∫ ∫ ∫  

where a > 0.  The first integral may be evaluated using equation (22.27) and the 
second may be evaluated using a Newton-Cotes formula or Gauss Quadrature. 

 



 
For a detailed example (on the cumulative normal distribution), see C&C Example 
22.6, page 629-630. 

 

Integration when the Integrand contains a singularity 

In the following, the function f(x) is “well behaved,” i.e., it is continuously differentiable in the 
neighborhood of the singularity of the integrand or its derivative.  Here is an integral with a singularity at 
the lower limit: 

  
1

0

f (x)I dx problem at the singular point x = 0
x

= ⇒∫  

In addition, if the derivative of the integrand goes to infinity, it is possible that the error 
goes to infinity as well.  An example of this situation is: 

   
u

0

I x f (x)dx= ∫  

To integrate, we need to control error near the singularity. 

 Divide the integration region to isolate singularity, then------- 

Approach 1a:  Try to subtract out singularity and numerically integrate only 
the remainder.   

 Consider the case  
u

0

x f (x)dx∫   

 where f(x) is continuously differentiable at x = 0.  

 a) Subtract out the singularity at x = 0, and integrate numerically: 

u

0

[f(x) - f(0)] x dx∫  

     Here the bracketed term in the integrand vanishes at the singularity 



 

 b) Integrate the singularity separately: 
1.5u

0

u

1.5
f (0) x dx f (0)=∫  

 c) Add the singularity back in: I 
1.5u

0

u

1.5
[f(x) - f(0)] x dx f (0)= +∫  

Approach 1b: Even better, include the first derivative when isolating the singularity, i.e.,:  

a) Subtract out the singularity at x = 0, and integrate numerically: 

u

0

[f (x) - f (0) - xf '(0)] x dx∫  

b) Integrate the singularity separately:  

[ ]
1.5 2.5u

0

u u

1.5 2.5
f (0) xf (0) x dx f (0) f (0)′ ′+ = +∫  

c) Add the singularity back in:  

1.5 2.5u

0

u u

1.5 2.5
I [f(x) - f(0)- x f (0)] x dx f (0) f (0)′ ′= + +∫  

Approach 2: Try a change of variables for part of interval near singularity 

u
a

0

x f (x) dx∫  

• Let x = y
2
, then dx = 2ydy ==> x

a f(x) dx = 2 y
2a+1 f(y

2
) dy 

For 0 < a < 1, 1 < 2a+1 so the singularity is eliminated. 

• Does not entirely solve the problem, but makes it less severe. 
• Use Trapezoid or Simpson rule near the problem.  For a = ½: 

u u u
2 2 2

0 0 0

f (x) x dx f (y ) y(2y)dy 2 f (y ) y dy= =∫ ∫ ∫  



 
 

Approach 3:  Integrate by parts: a a 1 a 1x f(x)dx x f(x) x f '(x)dx+ += −∫ ∫  

Approach 4:  Use the appropriate Gauss Quadrature approaches specialized 

for the particular singular function  
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