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Unit -I 

Permutation and Combination 

INTRODUCTION 
§ Permutation and combination has lately emerged as an important topic for many entrance 

examinations. This is primary because questions from the topic require analytical skill and a 
logical bend of mind. Even students who do not have mathematics as a subject can handle them if 
they have a fairly good understanding of the concepts and their application. Hence anyone who is 
well-versed in different methods of counting and basic calculations will be able to solve these 
problems easily. 

§ IMPORTANT NOTATION 
§ n! (Read as n factorial) 
§ Product of first n positive integers is called n factorial 
§     n! = 1 × 2 × 3 × 4 × 5 ×…n 
§     n! = (n − l)! n ∈ N 
§ In special case 0! = 1 



 
MEANING OF PERMUTATION AND COMBINATION 

Permutation 

The arrangement made by taking some or all elements out of a number of things is called a permutation. 
The number of permutations of n things taking r at a time is denoted by nPr and it is defined as under: 

 Combination 
The group or selection made by taking some or all elements out of a number of things is called a 
combination. 

The number of combinations of n things taking r at a time is denoted by nCr or and it is defined as 
under: 

Here n! = Multiple of n natural number 

Some Important Results of Permutations 

1. nPn − 1 = nPn 
2. nPn = n! 
3. nPr = n (n − 1Pr − 1) 
4. nPr = (n − r + 1) × nPr − 1 
5. nPr = n − 1Pr + r (n − 1Pr − 1) 

Types of Permutations 

Permutations with Repetition 

When you have n things to choose from ... you have n choices each time!  

When choosing r of them, the permutations are: 

n × n × ... (r times) 

(In other words, there are n possibilities for the first choice, AND THEN there are n possibilities for the 
second choice, and so on, multiplying each time.) 

Which is easier to write down using an exponent of r? 

n × n × ... (r times) = nr 

Example: in the lock above, there are 10 numbers to choose from (0,1,..9) and you choose 3 of them: 

10 × 10 × ... (3 times) = 103 = 1,000 permutations 



 
 

 

Permutations without Repetition 

In this case, you have to reduce the number of available choices each time. 

 

For example, what order could 16 pool balls be in? 

After choosing, say, number "14" you can't choose it 
again. 

So, your first choice would have 16 possibilities, and your next choice would then have 15 possibilities, 
then 14, 13, etc. And the total permutations would be: 

16 × 15 × 14 × 13 × ... = 20,922,789,888,000 

But maybe you don't want to choose them all, just 3 of them, so that would be only: 

16 × 15 × 14 = 3,360 

In other words, there are 3,360 different ways that 3 pool balls could be selected out of 16 balls. 

But how do we write that mathematically? Answer: we use the "factorial function" 

The factorial function (symbol :!) just means to multiply a series of descending natural numbers. 
Examples: 

• 4! = 4 × 3 × 2 × 1 = 24 
• 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5,040 
• 1! = 1 

There are also two types of combinations (remember the order does not matter now): 

1. Repetition is Allowed: such as coins in your pocket (5,5,5,10,10) 
2. No Repetition: such as lottery numbers (2,14,15,27,30,33) 

  

1. Combinations with Repetition 

Actually, these are the hardest to explain, so I will come back to this later. 

2. Combinations without Repetition 



 
This is how lotteries work. The numbers are drawn one at a time, and if you have the lucky numbers (no 
matter what order) you win! 

The easiest way to explain it is to: 

• assume that the order does matter (i.e. permutations),  
• then alter it so the order does not matter. 

Going back to our pool ball example, let us say that you just want to know which 3 pool balls were 
chosen, not the order. 

We already know that 3 out of 16 gave us 3,360 permutations. 

But many of those will be the same to us now, because we don't care what order! 

For example, let us say balls 1, 2 and 3 were chosen. These are the possibilities: 

 

 

Order does matter 

 

 

Order doesn't matter 

1 2 3 
1 3 2 
2 1 3 
2 3 1 
3 1 2 
3 2 1 

1 2 3 

So, the permutations will have 6 times as many possibilities. 

In fact there is an easy way to work out how many ways "1 2 3" could be placed in order, and we have 
already talked about it. The answer is: 

3! = 3 × 2 × 1 = 6 

(Another example: 4 things can be placed in 4! = 4 × 3 × 2 × 1 = 24 different ways, try it for yourself!) 

So, all we need to do is adjust our permutations formula to reduce it by how many ways the objects could 
be in order (because we aren't interested in the order any more): 



 

 

That formula is so important it is often just written in big parentheses like this: 

 

where n is the number of things to choose 
from, and you choose r of them 

(No repetition, order doesn't matter) 

It is often called "n choose r" (such as "16 choose 3") 

And is also known as the "Binomial Coefficient" 

Notation 

As well as the "big parentheses", people also use these notations: 

 

Example 

So, our pool ball example (now without order) is: 

16! 
= 

16! 
= 

20,922,789,888,000 
= 560 

   3!(16-3)! 3!×13! 6×6,227,020,800 

Or you could do it this way: 

16×15×14 
= 

3360 
= 560 

  3×2×1 6 

 



 
 

 

It is interesting to also note how this formula is nice and symmetrical: 

 

In other words choosing 3 balls out of 16, or choosing 13 balls out of 16 have the same number of 
combinations. 

16! 
= 

16! 
= 

16! 
= 560 

   3! (16-3)! 13! (16-13)! 3! ×13! 

Pascal's Triangle 

You can also use Pascal's Triangle to find the values. Go down to row "n" (the top row is 0), and then 
along "r" places and the value there is your answer. Here is an extract showing row 16: 

1    14    91    364  ... 
 

1    15    105   455   1365  ... 
 

1    16   120   560   1820  4368  ... 

  

1. Combinations with Repetition 

OK, now we can tackle this one ... 

 

Let us say there are five flavors of ice-cream: banana, chocolate, lemon, strawberry 
and vanilla. You can have three scoops. How many variations will there be? 

Let's use letters for the flavors: {b, c, l, s, v}. Example selections would be  

• {c, c, c} (3 scoops of chocolate) 
• {b, l, v} (one each of banana, lemon and vanilla) 
• {b, v, v} (one of banana, two of vanilla) 



 
(And just to be clear: There are n=5 things to choose from and you choose r=3 of them. 

Order does not matter, and you can repeat!) 

Now, I can't describe directly to you how to calculate this, but I can show you a special technique that 
lets you work it out.  

 

Think about the ice cream being in boxes, you could say "move past the 
first box, then take 3 scoops, then move along 3 more boxes to the end" 
and you will have 3 scoops of chocolate!  

  So, it is like you are ordering a robot to get your ice cream, but it 
doesn't change anything, you still get what you want. 

Now you could write this down as (arrow means move, circle means scoop). 

In fact the three examples above would be written like this: 

{c, c, c} (3 scoops of chocolate): 
 

{b, l, v} (one each of banana, lemon and vanilla): 
 

{b, v, v} (one of banana, two of vanilla): 
 

OK, so instead of worrying about different flavors, we have a simpler problem to solve: "how many 
different ways can you arrange arrows and circles" 

Notice that there are always 3 circles (3 scoops of ice cream) and 4 arrows (you need to move 4 times to 
go from the 1st to 5th container).  

So (being general here) there are r + (n-1) positions, and we want to choose r of them to have circles.  

This is like saying "we have r + (n-1) pool balls and want to choose r of them". In other words it is now 
like the pool balls problem, but with slightly changed numbers. And you would write it like this: 

 

where n is the number of things to choose 
from, and you choose r of them 

(Repetition allowed, order doesn't matter)  



 
Interestingly, we could have looked at the arrows instead of the circles, and we would have then been 
saying "we have r + (n-1) positions and want to choose (n-1) of them to have arrows", and the answer 
would be the same... 

 

 

 

 

So, what about our example, what is the answer? 

(5+3-1)! 
= 

7! 
= 

5040 
= 35 

   3! (5-1)! 3! ×4! 6×24 

Circular Permutation: -  Total number of circular permutation  = n(n - 1)! 
In Conclusion 

Phew, that was a lot to absorb, so maybe you could read it again to be sure! 

But knowing how these formulas work is only half the battle. Figuring out how to interpret a real world 
situation can be quite hard. 

But at least now you know how to calculate all 4 variations of "Order does/does not matter" and "Repeats 
are/are not allowed". 

 

ILLUSTRATIONS 

If nC10 = nC14 then find the value of n 

Solution 

nC10 = nC14 ⇒ n = (10 + 14) = 24    (∵n = p + q) 

If nC3 = 220 then find the value of n. 



 
Solution 

nC3 = 220 
  

 
  

 ∴ n(n − 1)(n − 2) = 1320 ∴ n(n − 1)(n − 2) = 12 × 11 × 10 ∴ n = 12 

If nP5 = 20nP3 then find the value of n. 

Solution 

nP5 = 20nP3 

 ∴(n − 3)! = 20(n − 5)! ∴(n − 3)(n − 4)(n − 5)! = 20(n − 5)! ∴(n − 3)(n − 4)! = 20 ∴ n2 − 7n + 12 = 20 ∴ n2 − 7n − 8 = 0 ∴ (n − 8) (n + 1) = 0 ∴ n = 8 or n = −1 ∉ N ∴ n = 8 

If nCr + nCr + 1, = n + 1Cx then find the value of x. 

Solution 
  

nCr + nCr+1 = n+1Cr+1 (formula)  
  

and nCr + nCr+1 = nCx (given) 
By comparing above two statements we can say that 
x = r + 1 

ANALYTICAL EXERCISES 

1. If then find the value of n. 



 

2. If then find the value of n. 

3. If then find the value of x. 
4. If nP3 = 60 then find the value of n. 

5. If then find the value of r. 
6. Find the value of (n + l)! − n! 

7. If then find the value of n. 

8. If 5Pr = 60 then find r. 
9. If 18C = 18Cr+2 then find r. 
10.Find the value of n-2Cr + 2 n-2Cr-1 + n-2Cr-2. 
11.Find the value of 12C3 + 2 12C4 + 12C5. 
12.Find the value of nCr + nCr-1. 
13.Find the value of n-1Pr + r. n-1Pr-1. 

14.Find the value of  
15.Find the value of 12C4 + 12C3. 
16.If 499C92 + nC91 = 500C92 then find the value of n 

17.If then find the value of n. 
18.If 7Pn + 7Pn-3 = 60 then find the value of n. 

19.If 720 then find the value of n. 
20.If 10Pr = 720 then find the value of r. 
21.A man has 6 friends to invite. In how many ways can he send invitation 

cards to them if he has three servants to carry the cards? 
 

Principle of Mathematical Induction:-  
 

INTRODUCTION 

Consider the set N of natural numbers. N has two characteristic proper ties. 

1. N contains the natural number 1. 
2. N is closed with respect to addition of 1 to each of its numbers.  

Therefore to determine whether a set k consisting of natural numbers is the set of all natural 
numbers, we have to verify the following two conditions on K: 



 
1. Does 1 ∈ K? 
2. For each natural number K ∈ K; is it true that K ∈ K?  

When answer to both the questions is “yes” then K is N. It gives several important principles 
for establishing the truth of certain classes of statements. 

 

HISTORICAL INTRODUCTION 

The discovery of the principle of mathematical induction is generally attributed to the French 
mathematician Blaise Pascal (1623–1662). However, the principal has been used by the Italian 
mathematician Francesco Maurolycus (1445–1575) in his writings. The writings of Bhaska racharya 
(1150 A.D.) also lead us to believe that he knew of this principle. 

The first one to use the term “induction” was the English mathematician John Walls (1616–1703). 
Later on the Swiss mathematician James Bar noul i (1655–1705) used the principle to provide a proof of 
the binomial theorem about which we shall learn later in this book. 

The term mathematical induction in the modern sense was used by English mathematician Augustus 
De” Morgan (1806–1871) in his article “induction” (Mathematics) in Penny Cyclopaedia, London 1938. 
The term gained immediate acceptance by the mathematical community and during the next fifty years or 
so it was universally accepted. 

 

PRINCIPLE OF FINITE INDUCTION (PFI) 

If we denote the given statement or formula by P (n), for all positive integral values of n, then the proof of 
this statement with the help of the principle of mathematical induction consists of three steps. 
Step1: Verify that the result is tr ue for the first available value of n, generally for n 

= 1, i.e. verify that p (1) is true. 
Step2: Assume that the result is tr ue for a positive integral value K of n,. i.e. 

assume that p (k) is true. 
Step3: Now using the result that p (k) is true, prove that the result is also tr ue for 

n = k + 1, i.e. prove that p (k + 1) is also true. 
Having followed the above three steps it can be said that the result is proved with the help of principle 

of mathematical induction. 

Q:- For positive integer value of n, prove that 1 + 3 + 5 + 7 + … (2n − 1) = n2 

Solution 

Here p (n) = 1 + 3 + 5 + 7 + … (2n − 1) = n2 



 
Let us verify the given result for n = 1 
L.H.S. = 1 R.H.S. = (1)2= 1 
  ∴ L.H.S. = R.H.S. 
  
Now we shall assume that the result is true for n = k 
i.e. we shall prove that p (k) is true ∴ p (k)=1 + 3 + 5 + 7 + … (2k − 1) = k2 
Now we shall prove that the result is true for n = k + 1 
i.e. we shall prove that 
1 + 3 + 5 + 7 + … (2k − 1) + (2k + 1) = (k + 1)2 
L.H.S. = 1 + 3 + 5 + 7 + … (2k−1) + (2k + 1) 
           = [1 + 3 + 5 + 7 + … (2k−1)] + (2k + 1) 
           = k2 + 2k + 1 
           = (k + 1) 
Thus it is proved that the result is also true for n = k + 1 i.e. if p (k) is true, p (k + 1) is also true. 
 

 

Sequence and Series 

INTRODUCTION 

Sequence and series is a mathematical concept that draws majorly from the basic number system and the 
simple concepts of arithmetic. This is the reason that makes it an important topic for this exam. On an 
average 2-3 questions have been asked from the topic almost every year. This topic is important for other 
exams also for example, CAT, IIFT, SNAP, XAT, MAT and JMET. The application of logic or some 
very simple concepts of algebraic calculations can be solved simply. 

SEQUENCE AND SERIES 

Let us consider the following progressions: 
1, 3, 5, 7, 9 … 
and 2, 6, 8, 12 … 
It can be observed here that each of these two series shares some or the other common properties. 
If the terms of a sequence are written under same specific conditions then the sequence is called a 

progression. 
With respect to preparation for the BBA, we will confine ourselves only to the following standard 

series of progression: 



 
1. Arithmetic progression 
2. Harmonic progression 
3. Geometric progression 

ARITHMETIC PROGRESSION 

Definition 

If in any progression consecutive difference between any two terms is same, then that progression is said 
to be an arithmetic progression (A.P.), e.g. 

a, a + d, a + 2d, a + 3d… a + (n −1)d i.e. Tn = a + (n − l) d. Tn is the last term. 
Note that d = T2 − T1 = T3 − T2 = T4 − T3 = … 

Sum of an A.P. 

If Sn is the sum of first n terms of the A.P. 
a, a + d, a + 2d … 
i.e. If Sn = a + (a + d) + (a + 2d) + …up to n terms 
then 

  

 

Arithmetic Mean 

If three numbers a, b, c are in A.P. then b is called the arithmetic mean between a and c. 

1. The arithmetic mean between two numbers a and b is . 
2. A1, A2 … An are said to be n arithmetic means between two numbers a and 

b. A, b are in A.P. and if d is the common difference of this A.P, 

GEOMETRIC PROGRESSION 
If in any sequence, consecutive ratio between any two terms is same it is said to be a geometric 
progression (G.P). 
e.g. a, ar2, ar3 … arn-1 ∴ Tn = arn-1 
Where a = first term, r = common ratio & n = number of term. 



 
 
Sum of a G.P 
 
If Sn is the sum of first n terms of G.P. a, ar2, ar3 … arn-1 
i.e Sn = a + ar + ar2 + … + arn-1 
     sn = a( rn - i) /r – 1 where r> 1 
Sn = a( 1 - rn) /1- r where r< 1 
We can take the above Sn formula for finite progression and sn = ar + ar + ar2 + … up to infinity. 
Sn = a/( 1 - r)  where -1< r < 1 
 
Geometric Mean 
 
If three non-zero numbers a, b, c are in G.P. then b is called the geometric mean between a and a 
and b 
  i.e. a / b = b / c 
since , b2 = ac 
 
 

3.  

DO YOU KNOW? 

1. Three non-zero numbers in a, b, c are in G.P. if b2 = ac. 

2. Three non-zero numbers in a, b, c are in G.P. if . 
3. If A, G, H denote respectively the A.M., G.M., H.M. between two distinct 

positive numbers then  

1. A, G, H are in G.P. 
2. A > G > H. 

4. In a G.P. the product of terms equidistant from the beginning and end is 
constant. 

5. A sequence (or a series) is both an A.P. as well as a G.P. if it is a constant 
sequence i.e. if all the terms are equal. 

Important Notes on A.P. and G.P. 

It is convenient to take 

1. Three numbers in A.P. as a − d, a, a + d 



 
2. Four numbers in A.P. as a − 3d, a − d, a + d, a + 3d 
3. Three numbers in G.P. as a / r, a, ar 
4. Five numbers in G.P. as a /r2 , a/ r , a, ar, ar2 

 
UNIT –II 

Linear Algebra 

INTRODUCTION: MATRIX / MATRICES 

 

 

1. A rectangular array of m×n numbers arranged in the form 

     

a a a
a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

L
L

M M
L

















 

 is called an m×n matrix. 

 

e.g. 2 3 4
1 8 5−







 is a 2×3 matrix. 

 

e.g. 
2
7
3−















 is a 3×1 matrix. 

 



 
2. If a matrix has m rows and n columns, it is said to be order m×n. 

 

e.g. 
2 0 3 6
3 4 7 0
1 9 2 5















 is a matrix of order 3×4. 

 

e.g. 
1 0 2
2 1 5
1 3 0

−

−















 is a matrix of order 3. 

 

3. [ ]a a an1 2 L  is called a row matrix or row vector. 

 

4. 

b
b

bn

1

2

M

















 is called a column matrix or column vector. 

 

e.g. 
2
7
3−















 is a column vector of order 3×1. 

e.g. [ ]− − −2 3 4 is a row vector of order 1×3. 

 

5. If all elements are real, the matrix is called a real matrix. 



 

6. 

a a a
a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

L
L

M O M
L

















 is called a square matrix of order n. 

 

 And a a ann11 22, , ,   K  is called the principal diagonal. 

 

e.g. 3 9
0 2−







 is a square matrix of order 2. 

 

7. Notation : [ ] ( )a a Aij m n ij m n× ×
 ,        ,     ,  ...  

 

 

SOME SPECIAL MATRIX. 

 

 

Def If all the elements are zero, the matrix is called a zero matrix or null
 matrix, denoted by Om n× . 

 

e.g. 0 0
0 0







 is a 2×2 zero matrix, and denoted by O2 . 

 



 
Def. Let [ ]A aij n n

=
×

 be a square matrix. 

  (i) If aij = 0  for all i, j, then A is called a zero matrix. 

  (ii) If aij = 0  for all i<j, then A is called a lower triangular matrix. 

  (iii) If aij = 0  for all i>j, then A is called a upper triangular matrix. 

 

  

a
a a

a a an n nn

11

21 22

1 2

0 0 0
0

0

L
M

M
L L

















    

a a a
a

a

n

nn

11 12 1

220
0 0

0 0

L
M
M

M M
L





















 

i.e.  Lower triangular matrix    Upper triangular matrix 

 

e.g. 
1 0 0
2 1 0
1 0 4−















 is a lower triangular matrix. 

 

e.g. 2 3
0 5

−





 is an upper triangular matrix. 

 

Def. Let [ ]A aij n n
=

×
 be a square matrix. If aij = 0  for all i j≠  , then A is called 

a diagonal matrix. 

 



 

e.g. 
1 0 0
0 3 0
0 0 4

−














  is a diagonal matrix. 

 

Def. If A is a diagonal matrix and a a ann11 22 1= = = =L , then A is called an 
identity matrix or a unit matrix, denoted by In . 

 

e.g.  I 2

1 0
0 1= 





 ,  I 3

1 0 0
0 1 0
0 0 1

=














 

 

 ARITHMETRICS OF MATRICES. 

 

Def. Two matrices A and B are equal iff they are of the same order and their 
corresponding elements are equal. 

 

i.e.   [ ] [ ]a b a b i jij m n ij m n ij ij× ×
= ⇔ =        for all , . 

 

e.g.  a
b

c
d

2
4

1
1







= −





 ⇔ = − = = =       a b c d1 1 2 4, , , . 

 

N.B. 2 3
4 0

2 4
3 0







≠ 





  and  
2 1
3 0
1 4

2 3 1
1 0 4−















≠
−





 



 
 

Def. Let [ ]A aij m n
=

×
 and [ ]B bij m n

=
×

.  

  Define A B+  as the matrix [ ]C cij m n
=

×
 of the same order such that 

   c a bij ij ij= +  for all i=1,2,...,m and j=1,2,...,n. 

 

e.g.  2 3 1
1 0 4

2 4 3
2 1 5

−





+ −
−







=  

 

N.B. 1. 
2 1
3 0
1 4

2 3 1
1 0 4−















+
−





  is not defined. 

  2. 2 3
4 0 5





+   is not defined. 

Def. Let [ ]A aij m n
=

×
. Then [ ]− = −

×
A aij m n

 and  A-B=A+(-B) 

 

e.g.1 If A = −






1 2 3
1 0 2  and B = −







2 4 0
3 1 1 . Find -A and A-B. 

 

Properties of Matrix Addition. 

Let A, B, C be matrices of the same order and O be the zero matrix of 
the same order. Then 

   (a) A+B=B+A 



 
   (b) (A+B)+C=A+(B+C) 

   (c) A+(-A)=(-A)+A=O 

   (d) A+O=O+A 

 

Def.  Scalar Multiplication. 

Let [ ]A aij m n
=

×
, k is scalar. Then kA is the matrix [ ]C cij m n

=
×

 

 defined by c kaij ij= ∀ ,     i, j. 

i.e. [ ]kA kaij m n
=

×
 

 

e.g.  If A = −
−







3 2
5 6  ,  

 

  then  -2A=      ; 
3
2

A =  

  

N.B. (1) -A=(-1)A 

  (2) A-B=A+(-1)B 

 

Thm.  Properties of Scalar Multiplication. 

   Let A, B be matrices of the same order and h, k be two scalars.  
    Then (a) k(A+B)=kA+kB 



 
     (b) (k+h)A=kA+hA 

     (c) (hk)A=h(kA)=k(hA) 

Def.  Let [ ]A aij m n
=

×
. The transpose of A, denoted by AT , or ′A  , is   

   defined by  

      A

a a a
a a a

a a a

T

m

m

n n nm n m

=

















×

11 21 1

12 22 2

1 2

L
L

M M
L

 

 

e.g.  A = −
−







3 2
5 6  ,  then A T =  

 

e.g.  A = −
−







3 0 2
4 6 1 ,  then A T =  

 

e.g.  [ ]A = 5 ,  then A T =  

 

N.B. (1) I T =  

  (2)  [ ]A aij m n
=

×
,  then A T =  

 

Properties of Transpose. 

   Let A, B be two m×n matrices and k be a scalar, then  



 
   (a) ( )AT T =  

   (b) ( )A B T+ =  

   (c) ( )kA T =  

 

Def.8.11 A square matrix A is called a symmetric matrix iff A AT = . 

 

   i.e.  A is symmetric matrix 
⇔ = ⇔ = ∀      i, jA A a aT

ij ji  

 

e.g.  
1 3 1
3 3 0
1 0 6

−
−

−















  is a symmetric matrix. 

e.g.  
1 3 1
0 3 0
1 3 6

−
−

−















  is not a symmetric matrix. 

 

Def.8.12 A square matrix A is called a skew-symmetric matrix iff A AT = − . 

 

   i.e. A is skew-symmetric matrix 
⇔ = − ⇔ = − ∀      i, jA A a aT

ij ji  

 

 



 

e.g.2 Prove that A =
−

−
−















0 3 1
3 0 5

1 5 0
 is a skew-symmetric matrix. 

 

e.g.3 Is aii = 0  for all i=1,2,...,n for a skew-symmetric matrix? 

Matrix Multiplication. 

Let [ ]A aik m n
=

×
 and [ ]B bkj n p

=
×

. Then the product AB is defined as the 

m×p matrix [ ]C cij m p
=

×
 where  

    c a b a b a b a bij i j i j in nj ik kj
k

n

= + + + =
=

∑1 1 2 2
1

L . 

i.e.   AB a bik kj
k

n

m p

= 



= ×

∑
1

 

e.g. Let A B=
−















= −





×
×

2 1
3 0
1 4

2 3 1
1 0 4

2 3
3 2

  and    . Find AB and BA. 

 

e.g. Let A B=
−















= 





×
×

2 1
3 0
1 4

1 0
2 1

2 2
3 2

 and   . Find AB. Is BA well defined? 

 

 In general, AB ≠ BA.  

  i.e. matrix multiplication is not commutative. 

 



 
Properties of Matrix Multiplication. 

   (a) (AB)C = A(BC) 

   (b) A(B+C) = AB+AC 

   (c) (A+B)C = AC+BC 

   (d) AO = OA = O 

   (e) IA = AI = A  

   (f) k(AB) = (kA)B = A(kB) 

   (g) ( )AB B AT T T= . 

 

 (1) Since AB ≠ BA ; 

   Hence,  A(B+C) ≠ (B+C)A  and  A(kB) ≠ (kB)A. 

 

  (2) A kA A A kI A kI A2 + = + = +( ) ( ) . 

 

  (3) AB AC O A B C O− = ⇒ − =  ( )  

          /⇒ = − =   or  A O B C O  

e.g. Let A B C= 





= 





= 





1 0
0 0

0 0
0 1

0 0
1 0, ,     

   Then AB AC− = 










− 










1 0
0 0

0 0
0 1

1 0
0 0

0 0
1 0  



 

         = 





− 





0 0
0 0

0 0
0 0 = 





0 0
0 0  

   But  A ≠ O  and  B ≠ C, 

   so  AB AC O A O B C− = /⇒ = =    or  . 

 

Def. Powers of matrices 

  For any square matrix A and any positive integer n, the symbol  

  An  denotes A A A A
n
⋅ ⋅ ⋅ ⋅ ⋅
  factors

1 244 344  . 

 

 (1) ( ) ( )( )A B A B A B+ = + +2  

      = + + +AA AB BA BB  

      = + + +A AB BA B2 2  

  (2) If AB BA= , then ( )A B A AB B+ = + +2 2 22  

e.g.6 Let A = −
−







1 2 3
1 0 2 , B = −







2 4 0
3 1 1 ,C =

−















2 1
1 0
1 1

 and D =














1
2
0

 

  Evaluate the following : 

  (a) ( )A B C+ 2     (b) ( )AC 2    

  (c) ( )B C DT T− 3    (d) ( )− −2 A B DDT T  

e.g. (a) Find a 2x2 matrix A such that 



 

   2 3 1 0
1 1

1
2

1 0
1 1A A− −







= + −












 . 

  (b) Find a 2x2 matrix A = 





2 α
β γ  such that 

   A AT =   and  2 1
3 0

2 1
3 0







= 





A A . 

  (c) If 3 1
1 1

1 0
0

1−










= 








x x

λ
λ , find the values of x  and  λ . 

 

e.g.8 Let A = −





cos sin
sin cos

θ θ
θ θ . Prove by mathematical induction that   

  A n n
n n

n = −





cos sin
sin cos

θ θ
θ θ    for  n = 1,2, .L    

e.g.9 (a) Let A a
b= 





1
0

 where a b R a b, ∈ ≠  and  . 

   Prove that A a a b
a b
b

n
n

n n

n
=

−
−













0

 for all positive integers n. 

  (b) Hence, or otherwise, evaluate 1 2
0 3

95






.  

e.g. (a) Let A =














0 1 0
0 0 1
0 0 0

 and B be a square matrix of order 3. Show that if A  

and B are commutative, then B is a triangular matrix. 

  



 
(b) Let A be a square matrix of order 3. If for any x y z R, , ∈ , there exists 

λ ∈R  such that A
x
y
z

x
y
z















=














λ , show that A is a diagonal matrix. 

(c) If A is a symmetric matrix of order 3 and A is nilpotent of order 2 (i.e. 
OA =2 ), then A=O, where O is the zero matrix of order 3. 

 Properties of power of matrices : 

 

(1) Let A be a square matrix, then ( ) ( )A An T T n= . 

 

(2) If AB BA= ,  then  

 (a) ( )A B A C A B C A B C A B C AB Bn n n n n n n n
n
n n n+ = + + + + + +− − −
−

−
1

1
2

2 2
3

3 3
1

1L  

 (b) ( )AB A Bn n n= . 

 

(3) ( )A I A C A C A C A C A C In n n n n n n n
n
n

n
n+ = + + + + + +− − −

−1
1

2
2

3
3

1L  

 

e.g.11 (a) Let X and Y be two square matrices such that XY = YX. 

   Prove that  (i) ( )X Y X XY Y+ = + +2 2 22  

      (ii) ( )X Y C X Yn
r
n n r r

r

n

+ = −

=
∑

0
  for  n = 3, 4, 

5, ... . 

   (Note: For any square matrix A , define A I0 = .)   

 



 

  (b) By using (a)(ii) and considering 
1 2 4
0 1 3
0 0 1















, or otherwise, find  

    
1 2 4
0 1 3
0 0 1

100














.        

  (4 marks) 

 

  (c) If X and Y are square matrices, 

   (i) prove that ( )X Y X XY Y+ = + +2 2 22  implies XY = YX ; 

   (ii) prove that ( )X Y X X Y XY Y+ = + + +3 3 2 2 33 3  does 
NOT      implies XY = YX . 

    (Hint : Consider a particular X and Y, e.g. X = 





1 0
1 0

, Y b= 





0
0 0

.) 

INVERSE OF A SQUARE MATRIX 

  If a, b, c are real numbers such that ab=c and b is non-zero, then  

   a c
b

cb= = −1  and b−1  is usually called the multiplicative inverse of 

b. 

  (2) If B, C are matrices, then C
B

 is undefined. 

Def. A square matrix A of order n is said to be non-singular or invertible if and 
only if there exists a square matrix B such that AB = BA = I. 

  The matrix B is called the multiplicative inverse of A, denoted by A−1  

 



 
i.e.  IAAAA == −− 11 . 

 

e.g. Let A = 





3 5
1 2

, show that the inverse of A is 2 5
1 3

−
−







. 

i.e.  3 5
1 2

2 5
1 3

1




 = −

−






−

. 

 

e.g.13 Is 2 5
1 3

3 5
1 2

1−
−





 = 





−

? 

Def. If a square matrix A has an inverse, A is said to be non-singular or invertible. 
Otherwise, it is called singular or non-invertible. 

 

e.g.  3 5
1 2







 and 2 5
1 3

−
−







 are both non-singular. 

 

i.e.  A is non-singular iff A−1  exists. 

 The inverse of a non-singular matrix is unique. 

 

 

I I− =1 , so I is always non-singular. 

  (2) OA = O ≠ I , so O is always singular. 

  (3) Since AB = I implies BA = I. 



 
Hence proof of either AB = I or BA = I is enough to assert that B is the 
inverse of A. 

 

e.g.14 Let A = 





2 1
7 4

. 

  (a) Show that I A A O− + =6 2 . 

  (b) Show that A is non-singular and find the inverse of A. 

  (c) Find a matrix X such that AX = −






1 1
1 0

. 

 

Properties of Inverses 

 

Thm. Let A, B be two non-singular matrices of the same order and λ be a scalar. 

  (a) ( )A A− − =1 1 . 

  (b) AT  is a non-singular and ( ) ( )A AT T− −=1 1 . 

  (c) An  is a non-singular and ( ) ( )A An n− −=1 1 . 

  (d) λA is a non-singular and ( )λ
λ

A A− −=1 11 . 

  (e) AB is a non-singular and ( )AB B A− − −=1 1 1  

DETERMINANTS 

 



 
Def. Let [ ]A aij=  be a square matrix of order n. The determinant of A, detA or 

|A| is defined as follows: 

  (a) If n=2, det A a a
a a a a a a= = −11 12

21 22
11 22 12 21  

  (b) If n=3, det A
a a a
a a a
a a a

=
11 12 13

21 22 23

31 32 33

 

    or  det A a a a a a a a a a= + +11 22 33 21 32 13 31 12 23  

       − − −a a a a a a a a a31 22 13 32 23 11 33 21 12  

 

e.g. Evaluate  (a) −1 3
4 1   (b) det

1 2 3
2 1 0
1 2 1

−
− −















 

e.g. If 
3 2
8 1
3 2 0

0
x

x
−

= , find the value(s) of x. 

 det A
a a a
a a a
a a a

=
11 12 13

21 22 23

31 32 33

 

    = − +a a a
a a a a a

a a a a a
a a11

22 23

32 33
12

21 23

31 33
13

21 22

31 32

 

  or  = − + −a a a
a a a a a

a a a a a
a a12

21 23

31 33
22

11 13

31 33
32

11 13

21 23

 

  or  . . . . . . . . .  

 



 

  By using 
+ − +
− + −
+ − +

 

 

e.g. Evaluate  (a) 
3 2 0
0 1 1
0 2 3

−   (b) 
0 2 0
8 2 1
3 2 3

−    

 

 PROPERTIES OF DETERMINANTS 

 

(1) 
a b c
a b c
a b c

a a a
b b b
c c c

1 1 1

2 2 2

3 3 3

1 2 3

1 2 3

1 2 3

=   i.e. det( ) detA AT = . 

 

(2) 
a b c
a b c
a b c

b a c
b a c
b a c

b c a
b c a
b c a

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

= − =  

 
a b c
a b c
a b c

a b c
a b c
a b c

a b c
a b c
a b c

1 1 1

2 2 2

3 3 3

2 2 2

1 1 1

3 3 3

2 2 2

3 3 3

1 1 1

= − =  

 

(3) 
a c
a c
a c

a b c
a b c

1 1

2 2

3 3

1 1 1

2 2 2

0
0
0

0
0 0 0

= =  

 



 

(4) 
a a c
a a c
a a c

a b c
a b c
a b c

1 1 1

2 2 2

3 3 3

1 1 1

1 1 1

3 3 3

0= =  

 

(5) If a
b

a
b

a
b

1

1

2

2

3

3

= = , then 
a b c
a b c
a b c

1 1 1

2 2 2

3 3 3

0=  

 

(6) 
a x b c
a x b c
a x b c

a b c
a b c
a b c

x b c
x b c
x b c

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

+
+
+

= +  

 

(7) 
pa b c
pa b c
pa b c

p
a b c
a b c
a b c

a b c
pa pb pc
a b c

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

= =  

  

 
pa pb pc
pa pb pc
pa pb pc

p
a b c
a b c
a b c

1 1 1

2 2 2

3 3 3

3
1 1 1

2 2 2

3 3 3

=  

 

  
pa pb pc
pa pb pc
pa pb pc

p
a b c
a b c
a b c

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3















=














 

 If the order of A is n, then det( ) det( )λ λA An=  

 



 

(8) 
a b c
a b c
a b c

a b b c
a b b c
a b b c

1 1 1

2 2 2

3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

=
+
+
+

λ
λ
λ

 

 

 
x y z
x y z
x y z

C C C x y z y z
x y z y z
x y z y z

1 1 1

2 2 2

3 3 3

2 3 1
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

α β α β
α β
α β

+ +
==============

+ +
+ +
+ +

 

 

e.g. Evaluate  (a) 
1 2 0
0 4 5
6 7 8

 ,  (b) 
5 3 7
3 7 5
7 2 6

 

 

e.g. Evaluate 
1
1
1

a b c
b c a
c a b

+
+
+

 

e.g. Factorize the determinant  

   
x y x y
y x y x

x y x y

+
+

+
 

 

e.g. Factorize each of the following : 

  (a) 
a b c
a b c

3 3 3

1 1 1
        



 

  (b) 
2 2 2

1 1 1

3 3 3

2 2 2

3 3 3

a b c
a b c

a b c− − −
 

 

Def. Multiplication of Determinants. 

  Let A a a
a a= 11 12

21 22

 , B b b
b b= 11 12

21 22

 

  Then A B a a
a a

b b
b b= 11 12

21 22

11 12

21 22

 

      = + +
+ +

a b a b a b a b
a b a b a b a b

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

 

 

Properties : 

 

(1) det(AB)=(detA)(detB)  i.e. AB A B=  

 

(2) |A|(|B||C|)=(|A||B|)|C|    A(BC)=(AB)C 

 

(3) |A||B|=|B||A|      AB≠BA in general 

 

(4) |A|(|B|+|C|)=|A||B|+|A||C|   A(B+C)=AB+AC 



 

e.g. Prove that 
1 1 1

2 2 2
a b c
a b c

a b b c c a= − − −( )( )( )  

Minors and Cofactors 

 

Def. Let A
a a a
a a a
a a a

=














11 12 13

21 22 23

31 32 33

, then Aij  , the cofactor of aij  , is defined by  

 A a a
a a11

22 23

32 33

=  , A a a
a a12

21 23

31 33

= −  , ... , A a a
a a33

11 12

21 22

= . 

 

Since  
3332

1312
21 

aa
aa

aA −= + a a a
a a22

11 13

31 33

−a a a
a a23

11 12

31 32

 

      232322222121 AaAaAa +−+=  

 

 (a)  a A a A a A A i j
i ji j i j i j1 1 2 2 3 3 0+ + = =

≠



det    if  

         if  
  

  (b)  




≠
=

=++
ji
jiA

AaAaAa jijiji   if         0
  if   det

332211  

 

e.g. a A a A a A A11 11 12 12 13 13+ + = det , a A a A a A11 21 12 22 13 23 0+ + = , etc. 

e.g.23 Let A
a a a
a a a
a a a

=














11 12 13

21 22 23

31 32 33

 and ijc  be the cofactor of aij  , where 1 3≤ ≤i j, . 



 

  (a) Prove that A
c c c
c c c
c c c

A I
11 21 31

12 22 32

13 23 33















= (det )  

  (b) Hence, deduce that 
c c c
c c c
c c c

A
11 21 31

12 22 32

13 23 33

2= (det )  

INVERSE OF SQUARE MATRIX BY DETERMINANTS 

 

Def. The cofactor matrix of A is defined as cofA
A A A
A A A
A A A

=














11 12 13

21 22 23

31 32 33

. 

Def. The adjoint matrix of A is defined as 

    adjA cofA
A A A
A A A
A A A

T= =














( )
11 21 31

12 22 32

13 23 33

. 

e.g. If A a b
c d= 





, find adjA. 

e.g. (a) Let A =
−













1 1 3
1 2 0
1 1 1

, find adjA. 

  (b) Let B = −
−















3 2 1
1 1 1
5 1 1

, find adjB. 

For any square matrix A of order n ,  

   A(adjA) = (adjA)A = (detA) 

 



 
Let A be a square matrix. If detA ≠ 0 , then A is non-singular      

  and  ( )A
A

adjA− =1 1
det

.  

Proof Let the order of A be n , from the above theorem , ( )1
det A

AadjA I=  

e.g. Given that A = −
−















3 2 1
1 1 1
5 1 1

, find A−1 . 

e.g. Suppose that the matrix A a b
c d= 





 is non-singular , find A−1 . 

e.g. Given that A = 





3 5
1 2

,  find A−1 . 

Thm. A square matrix A is non-singular iff detA ≠ 0 . 

e.g. Show that A = 





3 5
1 2

 is non-singular. 

e.g. Let A
x x
x

x
=

+ −
− −

−















1 2 1
1 2 1

5 7
, where x R∈ . 

  (a) Find the value(s) of x such that A is non-singular. 

  (b) If x=3 , find A−1 . 

A is singular (non-invertible) iff A−1  does not exist. 

Thm. A square matrix A is singular iff detA = 0. 

Properties of Inverse matrix. 

 

Let A, B be two non-singular matrices of the same order and λ be a scalar. 



 

(1) ( )λ
λ

A A− −=1 11  

(2) ( )A A− − =1 1  

(3) ( )( )A AT T− −=1 1  

(4) ( )( )A An n− −=1 1   for any positive integer n. 

(5) ( )AB B A− − −=1 1 1  

(6) The inverse of a matrix is unique. 

(7) det( )
det

A
A

− =1 1  

N.B. XY X Y= /⇒ = =0 0 0  or   

(8) If A is non-singular , then AX A AX A= ⇒ = =−0 0 01  

             ⇒ =X 0  

N.B. XY XZ X Y Z= /⇒ = =0  or   

(9) If A is non-singular , then AX AY A AX A AY= ⇒ =− −1 1  

              ⇒ =X Y  

(10)  ( ) ( )( ) ( )A MA A MA A MA A MAn− − − −=1 1 1 1L    = −A M An1  

 

(11)  If M
a

b
c

=














0 0
0 0
0 0

, then M
a

b
c

−

−

−

−
=















1

1

1

1

0 0
0 0
0 0

. 

 



 

(12)  If M
a

b
c

=














0 0
0 0
0 0

, then M
a

b
c

n

n

n

n
=















0 0
0 0
0 0

 where n ≠ 0 . 

e.g.31 Let A =














4 1 0
1 3 1
0 3 1

 , B =
− −

− −















1 3 1
0 13 4
0 33 10

 and M =














1 0 0
0 1 0
0 0 2

. 

  (a) Find A−1  and M 5 . 

  (b) Show that ABA M− =1 . 

  (c) Hence, evaluate B5 . 

e.g. Let A = 





3 8
1 5

 and P = −





2 4
1 1

. 

  (a) Find P AP−1 . 

  (b) Find An , where n is a positive integer 

 e.g. (a) Show that if A is a 3x3 matrix such that A At = − , then detA=0. 

 

  (b) Given that B =
−

−
−















1 2 74
2 1 67
74 67 1

,  

   use (a) , or otherwise , to show det( )I B− = 0 .  

   Hence deduce that det( )I B− =4 0 .   

e.g. (a) If α , β and γ are the roots of x px q3 0+ + = , find a cubic equation 
whose  

roots are α β γ2 2 2 ,     and  . 



 

  (b) Solve the equation 
x

x
x

2 3
2 3
2 3

0=  . 

   Hence, or otherwise, solve the equation    

x x x3 238 361 900 0− + − = .  e.g. Let M be the set of all 2x2 matrices. 

For any A a a
a a M= 



 ∈11 12

21 22

, 

  define tr A a a( ) = +11 22 . 

 

  (a) Show that for any A, B, C ∈ M  and  α, β ∈ R, 

   (i) tr A B tr A tr B( ) ( ) ( )α β α β+ = + , 

   (ii) tr AB tr BA( ) ( )= , 

   (iii) the equality “ tr ABC tr BAC( ) ( )= ” is not necessary true. 

             
   

  (b) Let A ∈ M. 

   (i) Show that A tr A A A I2 − = −( ) (det ) , 

    where I is the 2x2 identity matrix. 

   (ii) If tr A( )2 0=  and tr A( ) = 0 , use (a) and (b)(i) to show that 

    A is singular and A2 0= .       

  (c) Let S, T ∈ M  such that ( ) ( )ST TS S S ST TS− = − . 

   Using (a) and (b) or otherwise, show that  



 
     ( )ST TS− =2 0     

e.g. Eigen value and Eigenvector 

  Let A = −





3 1
2 0

 and let x denote a 2x1 matrix. 

  (a) Find the two real values λ1  and λ 2  of λ  with λ1 > λ 2  

   such that the matrix equation  

   (*)  Ax x= λ   

   has non-zero solutions. 

    

  (b) Let x1  and x2  be non-zero solutions of (*) corresponding to  

   λ1  and λ 2  respectively.  Show that if  

    x x
x1

11

21

= 





  and  x x
x2

12

22

= 





 

   then the matrix X x x
x x= 





11 12

21 22

 is non-singular. 

 

  (c) Using (a) and (b), show that  AX X= 





λ
λ

1

2

0
0

 

   and hence  A X Xn
n

n=






−λ
λ

1

2

10
0

 where n is a positive integer. 

   Evaluate 3 1
2 0

−





n

.        

UNIT-III 



 
Differential Calculus 

 

INTRODUCTION 

Differentiation is one of the most important fundamental operations in calculus. Its theory and 
preliminary idea is basically dependent upon the concept of limit and continuity. Derivative is to express 
the rate of change in any function. Derivative means small change in the dependent variable with respect 
to small change in independent variable. Thus, we can say that derivative is the process of finding the 
derivative of a continuous function. Derivative is a branch of calculus and its fundamentals and their 
applications are widely used in mathematics, statistics, economics and financial mathematics. 
 
 
Properties of Limits (Limit Laws) 

 

Assuming all the limits on the right hand exist: 

 

 1.  The limit of a constant times a function is the constant times the limit of the function. 

       If b is a constant, then ( ) ( ))x(flimb)x(bflim
cxcx →→

= .   

 

 2.  The limit of a sum is the sum of the limits.  *Also works for differences. 

( ) )x(glim)x(flim)x(g)x(flim
cxcxcx →→→

+=+  

( ) )x(glim)x(flim)x(g)x(flim
cxcxcx →→→

−=−  

  

 3.  The limit of a product is the product of the limits. 

( ) ( )( ))(lim)(lim)()(lim xgxfxgxf
cxcxcx →→→

=  

 

4. The limit of a quotient is the quotient of the limits (provided that the limit of the  



 
      denominator is not zero.) 

)x(glim

)x(flim

)x(g
)x(flim

cx

cx

cx
→

→

→
= , provided .)x(glim

cx
0≠

→
 

 

5. The limit of a constant is the constant.   
For any constant k, .kklim

cx
=

→
 

 

6. The limit of x as x approaches c is c. 
.cxlim

cx
=

→
 

 

 Use the Limit Laws and the graphs of f and g in Figure 1 to evaluate the following limits: 

 

a) [ ])x(g)x(flim
x

5
2

+
−→

 

 

 

b) [ ])x(g)x(flim
x 1→

 

 

c) 
)x(g
)x(flim

x 2→
 

 

 

Continuity  

Continuity can fail in the following ways: 



 
• The limit fails to exist.  In some texts, this is called an essential discontinuity.  Any of the 

examples in the section on limits apply here. 

• The limit exists, but the function isn't defined at the point.  
sin xy

x
=  at x = 0 is an example. 

• The limit exists and the function is defined at the point, but the function output is different 

from the limit. The function ( )
sin  for 0

2       for 0

x x
f x x

x

 ≠= 
 =

 is an example. 

 

The latter two cases (where the limit exists as x approaches the point in question) are called 
removable discontinuities. 

 

To understand these last three points we need to start taking a look at the concept of limit more 
precisely.  What does it really mean when we say that a function f  is continuous at x = c if the values of 
f(x) approach f(c) as x approaches c?  What does it mean to approach c?  How close to c does x to get? 

 

The concept of limit is the underpinning of calculus. 

 

The informal definition or notation is Llim
cx

=
→

if the values of f(x) approach L as x approaches c. 

 

We will look for trends in the values of f(x) as x gets closer to c but x ≠ c. 

 

 

Example 1:  







→ θ
θ

θ

sinlim
0

  (Use radians.) 

 

   

 



 
 

 

 

 

 

 

It appears from the graph that as θ  approaches 0 from either side that the value of 
θ

θsin
 

appears to approach __________.  The actual value of 
θ

θsin
 when θ = 0 is __________. 

Therefore the limits exists but the function is not continuous at θ = 0. 

While it appears that θ  approaches 0 from either side that the value of 1
0

=
→ θ

θ
θ

sinlim  we are 

still very vague about what we mean by words like “approach” and “close”. 

 

Isaac Newton (1642-1727) did not have a rigorous concept of limit.  He called them “fluxions” 
and it made sense to him.   It was not until around 1820 French Mathematician Augustin-Louis 
Cauchy (1789 – 1857), some 150 years after Gottfried Leibniz and Isaac Newton developed 
calculus, that the modern idea of limit was invented.  This formal definition of limit led to great 
advances in the development of calculus and eliminated gross mathematical errors even made 
by the best mathematicians in history like Swiss mathematician Leonard Euler. 

 

Here is the formal definition of limit: 

 

We define ( )xflim
cx→

to be the number L (if one exists) such that for every positive number ε

(epsilon) > 0 (as small as we want), there is a positive number δ  (delta) > 0 (sufficiently small) 

such that if δ<− cx  and cx ≠  then ε<− L)x(f  . 

 



 
The following figure will help us with what this definition means: 

 

  

When we say “f(x)” is close to L” we measure closeness by the distance between f(x) and L.    

L)x(f − = Distance between f(x) and L. 

When we say “as close to L as we want,” we use the ε (the Greek letter epsilon) to specify how 
close.  

We write ε<− L)x(f to indicate that we want the distance between f(x) and L to be less than 

ε .   

Similarly, we interpret “x is sufficiently close to c” as specifying a distance between x and c:

 δ<− cx , where δ  (the Greek letter delta) tells us how close x should be to c.   

If L)x(flim
cx

=
→

, then we know that no matter how narrow the horizontal band determined 

by ε , there is always a δ which makes the graph stay within that band for δδ +<<− cxc . 

Basically what we are trying to do is can we guarantee that the inputs (sufficiently close to the 
value we are approaching but not equal to the value) will make the outputs as close to L as we 
want. 

 

We will use a graphic illustration to help make sense of this so let’s go back to 
θ

θsin)x(f = .  



 

How close should θ  be to 0 )?( 0>=δ  in order to make 
θ

θsin
 within 0.01 of 1?  

( )0010 >= .ε  

First, set the y-range to go from y min = 0.99 to y max = 1.01.  (0.99 < y < 1.01) 

 to get ε<− 62x  would require that ε<− 32 x  or 
2

3 ε
<−x . 

 

 Since dcx <−   then
2
εδ = . 

 

One- and Two-Sided Limits 

 

When we write )x(flim
x 2→

 we mean that the number f(x) approaches as x approaches 2 from both sides.  

This is a Two-Sided Limit. 

 

If we want x to approach 2 only through values greater than 2 (like 2.1, 2.01, 2.003), we write )x(flim
x +→2

.  This is called a right-hand limit.  (Similar to the concept of right difference quotient) 

 

If we want x to approach 2 only through values less than 2 (like 1.9, 1.99, 1.994), we write )x(flim
x −→2

.  

This is called a left-hand limit.  (Similar to the concept of left difference quotient) 

 

Right-hand limits and left-hand limits are examples of One-Sided Limits. 

 

If both the left-hand and right-hand limits are equal, then it can be proved that )x(flim
x 2→

 exists. 

 



 
Whenever there is no number L that L)x(flim

cx
=

→
, we say )x(flim

cx→
does not exist. 

*Limits have to be a number and it has to be unique for that function 

Examples of Limits That Do Not Exist 

1) Right – Hand Limit and Left-Hand Limit are different. 
The one-sided limits exist but are different.  At any integer, for example, the greatest integer 
function doesn't have a limit.  Functions with split definitions can fall in this category at the 
point where the split occurs.   

For example, with 







−
−

→ 2
2

2 x
x

lim
x

,  

( ) 2

1 for 1
 for 1

x x
f x

x x
− <

= 
≥

, ( )
1

lim
x

f x
→

 doesn't exist.   

2) The function does not approach any finite number L as cx → . 
      The outputs grow without bound as the inputs approaches the point from either one side  
 or the other, or both.  For example. 

The Derivative  

The concept of Derivative is at the core of Calculus and modern mathematics. The definition of 
the derivative can be approached in two different ways. One is geometrical (as a slope of a 
curve) and the other one is physical (as a rate of change). Historically there was (and maybe still 
is) a fight between mathematicians which of the two illustrates the concept of the derivative best 
and which one is more useful. We will not dwell on this and will introduce both concepts. Our 
emphasis will be on the use of the derivative as a tool.  

The Physical Concept of the Derivative  
This approach was used by Newton in the development of his Classical Mechanics. The main idea is the 
concept of velocity and speed. Indeed, assume you are traveling from point A to point B, what is the 
average velocity during the trip? It is given by  

 

If we now assume that A and B are very close to each other, we get close to what is called the 
instantaneous velocity. Of course, if A and B are close to each other, then the time it takes to travel 
from A to B will also be small. Indeed, assume that at time t=a, we are at A. If the time elapsed to get to 



 

B is , then we will be at B at time . If is the distance from A to B, then the 
average velocity is  

 
 

The instantaneous velocity (at A) will be found when get smaller and smaller. Here we naturally run 
into the concept of limit. Indeed, we have  

 

 

If f(t) describes the position at time t, then . In this case, we have  

 

 

Example. Consider a parabolic motion given by the function f(t) = t2. The instantaneous velocity 
at t=a is given by  

 

Since  

 

 

we conclude that the instantaneous velocity at t=a is 2 a.  

This concept of velocity may be extended to find the rate of change of any variable with respect 
to any other variable. For example, the volume of a gas depends on the temperature of the gas. 
So in this case, the variables are V (for volume) as a function of T (the temperature). In general, 



 
if we have y = f(x), then the average rate of change of y with respect to x from x = a to 

, where , is  

 
 

As before, the instantaneous rate of change of y with respect to x at x = a, is  

 
 

Notation. Now we get to the hardest part. Since we can not keep on writing "Instantaneous 
Velocity" while doing computations, we need to come up with a suitable notation for it. If we 
write dx for small, then we can use the notation  

 
 

This is the notation introduced by Leibniz. (Wilhelm Gottfried Leibniz (1646-1716) and Isaac Newton 
(1642-1727) are considered the inventors of Calculus.)  

The Geometrical Concept of the Derivative  
Consider a function y = f(x) and its graph. Recall that the graph of a function is a set of points (that is 
(x,f(x)) for x's from the domain of the function f). We may draw the graph in a plane with a horizontal 
axis (usually called the x-axis) and a vertical axis (usually called the y-axis).  



 

 

Fix a point on the graph, say (x0, f(x0)). If the graph as a geometric figure is "nice" (i.e. smooth) 
around this point, it is natural to ask whether one can find the equation of the straight line 
"touching" the graph at that point. Such a straight line is called the tangent line at the point in 
question. The concept of tangent may be viewed in a more general framework.  

 



 
(Note that the tangent line may not exist. We will discuss this case later on.) One way to find the 
tangent line is to consider points (x,f(x)) on the graph, where x is very close to x0. Then draw the 
straight-line joining both points (see the picture below):  

 

As you can see, when x get closer and closer to x0, the lines get closer and closer to the tangent 
line. Since all these lines pass through the point (x0,f(x0)), their equations will be determined by 
finding their slope: The slope of the line passing through the points (x0,f(x0)) and (x,f(x)) (where 

) is given by  

 
 

The tangent itself will have a slope m, which is very close to m(x) when x itself is very close to x0. This is 
the concept of limit once again!  

In other words, we have  

 



 
 
 

So the equation of the tangent line is  

 
 

Notation. Writing "m" for the slope of the tangent line does not carry enough information; we 
want to keep track of the function f(x) and the point x0 in our notation. The common notation 
used is  

m = f'(x0).  

 
 

In this case, the equation of the tangent line becomes  

y - f(x0) = f'(x0) (x-x0)  

 
 

where  

 

 
 

One last remark: Sometimes it is more convenient to compute limits when the variable approaches 0. 
One way to do that is to make a translation along the x-axis. Indeed, if we set h=x-x0, we get  

 

 

 

Derivative as a Rate Measure and Measure of slope; 



 
 

Differentiation is a method to compute the rate at which a dependent output y changes with 
respect to the change in the independent input x. This rate of change is called the derivative of y 
with respect to x. In more precise language, the dependence of y upon x means that y is a 
function of x. This functional relationship is often denoted y = f(x), where f denotes the function. 
If x and y are real numbers, and if the graph of y is plotted against x, the derivative measures the 
slope of this graph at each point. 

The simplest case is when y is a linear function of x, meaning that the graph of y divided by x is 
a line. In this case, y = f(x) = m x + b, for real numbers m and b, and the slope m is given by 

 

where the symbol Δ (the uppercase form of the Greek letter Delta) is an abbreviation for "change 
in." This formula is true because 

y + Δy = f(x + Δx) = m (x + Δx) + b = m x + m Δx + b = y + m Δx.  

It follows that Δy = m Δx. 

This gives an exact value for the slope of a line. If the function f is not linear (i.e. its graph is not 
a line), however, then the change in y divided by the change in x varies: differentiation is a 
method to find an exact value for this rate of change at any given value of x. 

Rate of change as a limit value 

 

Figure 1. The tangent line at (x, f(x)) 



 

 

Figure 2. The secant to curve y= f(x) determined by points (x, f(x)) and (x+h, f(x+h)) 

 

Figure 3. The tangent line as limit of secants 

 

Figure 4. Animated illustration: the tangent line (derivative) as the limit of secants 

The idea, illustrated by Figures 1 to 3, is to compute the rate of change as the limit value of the 
ratio of the differences Δy / Δx as Δx becomes infinitely small. 

Notation 



 
Calculus often employs two distinct notations for the same concept, one deriving from Newton 
and the other from Leibniz. In Leibniz's notation, an infinitesimal change in x is denoted by dx, 
and the derivative of y with respect to x is written 

 

suggesting the ratio of two infinitesimal quantities. (The above expression is read as "the 
derivative of y with respect to x", "d y by d x", or "d y over d x". The oral form "d y d x" is often 
used conversationally, although it may lead to confusion.) 

In Lagrange's notation, the instantaneous, limit value of the rate of change of a function f(x) is 
designated f'(x). 

Rigorous definition 

The most common approach to turn this intuitive idea into a precise definition is to define the 
derivative as a limit of difference quotients of real numbers. This is the approach described 
below. 

Let f be a real valued function defined in an open neighborhood of a real number a. In classical 
geometry, the tangent line to the graph of the function f at a was the unique line through the point 
(a, f(a)) that did not meet the graph of f transversally, meaning that the line did not pass straight 
through the graph. The derivative of y with respect to x at a is, geometrically, the slope of the 
tangent line to the graph of f at a. The slope of the tangent line is very close to the slope of the 
line through (a, f(a)) and a nearby point on the graph, for example (a + h, f(a + h)). These lines 
are called secant lines. A value of h close to zero gives a good approximation to the slope of the 
tangent line, and smaller values (in absolute value) of h will, in general, give better 
approximations. The slope m of the secant line is the difference between the y values of these 
points divided by the difference between the x values, that is, 

 

This expression is Newton's difference quotient. The derivative is the value of the difference 
quotient as the secant lines approach the tangent line. Formally, the derivative of the function f at 
a is the limit 

 



 
of the difference quotient as h approaches zero, if this limit exists. If the limit exists, then f is 
differentiable at a. Here f′ (a) is one of several common notations for the derivative (see below). 

Equivalently, the derivative satisfies the property that 

 

which has the intuitive interpretation (see Figure 1) that the tangent line to f at a gives the best 
linear approximation 

 

to f near a (i.e., for small h). This interpretation is the easiest to generalize to other settings 
Substituting 0 for h in the difference quotient causes division by zero, so the slope of the 
tangent line cannot be found directly using this method. Instead, define Q(h) to be the difference 
quotient as a function of h: 

 

Q(h) is the slope of the secant line between (a, f(a)) and (a + h, f(a + h)). If f is a continuous 
function, meaning that its graph is an unbroken curve with no gaps, then Q is a continuous 
function away from h = 0. If the limit exists, meaning that there is a way of 
choosing a value for Q(0) that makes Q a continuous function, then the function f is 
differentiable at a, and its derivative at a equals Q(0). 

In practice, the existence of a continuous extension of the difference quotient Q(h) to h = 0 is 
shown by modifying the numerator to cancel h in the denominator. Such manipulations can make 
the limit value of Q for small h clear even though Q is still not defined at h = 0. This process can 
be long and tedious for complicated functions, and many shortcuts are commonly used to 
simplify the process. 

Example 

The squaring function f(x) = x2 is differentiable at x = 3, and its derivative there is 6. This result 
is established by calculating the limit as h approaches zero of the difference quotient of f(3): 

http://en.wikipedia.org/wiki/Derivative


 
The last expression shows that the difference quotient equals 6 + h when h ≠ 0 and is undefined 
when h = 0, because of the definition of the difference quotient. However, the definition of the 
limit says the difference quotient does not need to be defined when h = 0. The limit is the result 
of letting h go to zero, meaning it is the value that 6 + h tends to as h becomes very small: 

 

Hence the slope of the graph of the squaring function at the point (3, 9) is 6, and so its derivative 
at x = 3 is f′(3) = 6. 

More generally, a similar computation shows that the derivative of the squaring function at x = a 
is f′(a) = 2a. 

The derivative as a function 

Let f be a function that has a derivative at every point a in the domain of f. Because every point a 
has a derivative, there is a function that sends the point a to the derivative of f at a. This function 
is written f′(x) and is called the derivative function or the derivative of f. The derivative of f 
collects all the derivatives of f at all the points in the domain of f. 

Sometimes f has a derivative at most, but not all, points of its domain. The function whose value 
at a equals f′(a) whenever f′(a) is defined and elsewhere is undefined is also called the derivative 
of f. It is still a function, but its domain is strictly smaller than the domain of f. 

Using this idea, differentiation becomes a function of functions: The derivative is an operator 
whose domain is the set of all functions that have derivatives at every point of their domain and 
whose range is a set of functions. If we denote this operator by D, then D(f) is the function f′(x). 
Since D(f) is a function, it can be evaluated at a point a. By the definition of the derivative 
function, D(f)(a) = f′(a). 

For comparison, consider the doubling function f(x) = 2x; f is a real-valued function of a real 
number, meaning that it takes numbers as inputs and has numbers as outputs: 

 

The operator D, however, is not defined on individual numbers. It is only defined on functions: 

http://en.wikipedia.org/wiki/Domain_of_a_function
http://en.wikipedia.org/wiki/Operator_(mathematics)


 

 

Because the output of D is a function, the output of D can be evaluated at a point. For instance, 
when D is applied to the squaring function, 

 

D outputs the doubling function, 

 

which we named f(x). This output function can then be evaluated to get f(1) = 2, f(2) = 4, and so 
on 

 

Functions of more than one variable; Partial Derivatives:-  
 

In mathematics, a partial derivative of a function of several variables is its derivative with 
respect to one of those variables, with the others held constant (as opposed to the total 
derivative, in which all variables are allowed to vary). Partial derivatives are used in vector 
calculus and differential geometry. 

The partial derivative of a function f with respect to the variable x is variously denoted by 

 

The partial-derivative symbol is ∂. One of the first known uses of the symbol in mathematics is 
by Marquis de Condorcet from 1770, who used it for partial differences. The modern partial 
derivative notation is by Adrien-Marie Legendre (1786), though he later abandoned it; Carl 
Gustav Jacob Jacobi re-introduced the symbol  

 

Basic definition 

The function f can be reinterpreted as a family of functions of one variable indexed by the other 
variables: 



 

 

In other words, every value of x defines a function, denoted fx, which is a function of one 
variable That is, 

 

Once a value of x is chosen, say a, then f(x,y) determines a function fa which sends y to a2 + ay + 
y2: 

 

In this expression, a is a constant, not a variable, so fa is a function of only one real variable, that 
being y. Consequently, the definition of the derivative for a function of one variable applies: 

 

The above procedure can be performed for any choice of a. Assembling the derivatives together 
into a function gives a function which describes the variation of f in the y direction: 

 

This is the partial derivative of f with respect to y. Here ∂ is a rounded d called the partial 
derivative symbol. To distinguish it from the letter d, ∂ is sometimes pronounced "del" or 
"partial" instead of "dee". 

In general, the partial derivative of a function f(x1,...,xn) in the direction xi at the point (a1,...,an) 
is defined to be: 

 

In the above difference quotient, all the variables except xi are held fixed. That choice of fixed 
values determines a function of one variable 

, and by definition, 

 



 
In other words, the different choices of a index a family of one-variable functions just as in the 
example above. This expression also shows that the computation of partial derivatives reduces to 
the computation of one-variable derivatives. 

An important example of a function of several variables is the case of a scalar-valued function 
f(x1,...xn) on a domain in Euclidean space Rn (e.g., on R2 or R3). In this case f has a partial 
derivative ∂f/∂xj with respect to each variable xj. At the point a, these partial derivatives define 
the vector 

 

This vector is called the gradient of f at a. If f is differentiable at every point in some domain, 
then the gradient is a vector-valued function ∇f which takes the point a to the vector ∇f(a). 
Consequently, the gradient produces a vector field. 

A common abuse of notation is to define the del operator (∇) as follows in three-dimensional 

Euclidean space R3 with unit vectors : 

 

Or, more generally, for n-dimensional Euclidean space Rn with coordinates (x1, x2, x3,...,xn) and 
unit vectors ( ): 

 

Homogenous Functions and Euler’s Theorem 

Definition 

Multivariate functions that are "homogeneous" of some degree are often used in economic theory. A 
function is homogeneous of degree k if, when each of its arguments is multiplied by any number t > 0, 
the value of the function is multiplied by tk. For example, a function is homogeneous of degree 1 if, when 
all its arguments are multiplied by any number t > 0, the value of the function is multiplied by the same 
number t.  

Here is a precise definition. Because the definition involves the relation between the value of the 
function at (x1, ..., xn) and it value at points of the form (tx1, ..., txn) where t is any positive number, 



 
it is restricted to functions for which (tx1, ..., txn) is in the domain whenever t > 0 and (x1, ..., xn) is 
in the domain. (Some domains that have this property are: the set of all real numbers, the set of 
nonnegative real numbers, the set of positive real numbers, the set of all n-tuples (x1, ..., xn) of 
real numbers, the set of n-tuples of nonnegative real numbers, and the set of n-tuples of positive 
real numbers.)  

Definition  
A function  f  of n variables for which (tx1, ..., txn) is in the domain whenever t > 0 and (x1, ..., xn) is 
in the domain is homogeneous of degree k if  
 f (tx1, ..., txn) = tk f (x1, ..., xn) for all (x1, ..., xn) in the domain of  f  and all t > 0. 

Example  
For the function  f (x1, x2) = Ax1

ax2
b with domain {(x1, x2): x1 ≥ 0 and x2 ≥ 0} we have  

 f (tx1, tx2) = A(tx1)a(tx2)b = Ata+bx1
ax2

b = ta+b f (x1, x2), 
so that  f  is homogeneous of degree a + b.  

Example  
Let  f (x1, x2) = x1 + x2

2, with domain {(x1, x2): x1 ≥ 0 and x2 ≥ 0}. Then  
 f (tx1, tx2) = tx1 + t2x2

2. 
It doesn't seem to be possible to write this expression in the form tk(x1 + x2

2) for any value of k. 
But how do we prove that there is no such value of k? Suppose that there were such a value. 
That is, suppose that for some k we have  
tx1 + t2x2

2 = tk(x1 + x2
2) for all (x1, x2) ≥ (0, 0) and all t > 0. 

Then in particular, taking t = 2, we have  
2x1 + 4x2 = 2k(x1 + x2

2) for all (x1, x2). 
Taking (x1, x2) = (1, 0) and (x1, x2) = (0, 1) we thus have  
2 = 2k and 4 = 2k, 
which is not possible. Thus  f  is not homogeneous of any degree.  

In economic theory we often assume that a firm's production function is homogeneous of degree 
1 (if all inputs are multiplied by t then output is multiplied by t). A production function with this 
property is said to have "constant returns to scale".  

Suppose that a consumer's demand for goods, as a function of prices and her income, arises from 
her choosing, among all the bundles she can afford, the one that is best according to her 
preferences. Then we can show that this demand function is homogeneous of degree zero: if all 
prices and the consumer's income are multiplied by any number t > 0 then her demands for goods 
stay the same.  

Partial derivatives of homogeneous functions 

The following result is sometimes useful.  



 
Proposition  

Let  f  be a differentiable function of n variables that is homogeneous of degree k. Then each of 
its partial derivatives  f 'i (for i = 1, ..., n) is homogeneous of degree k − 1.  

Proof  
The homogeneity of  f  means that  
 f (tx1, ..., txn) = tk f (x1, ..., xn) for all (x1, ..., xn) and all t > 0. 
Now differentiate both sides of this equation with respect to xi, to get  
t f 'i(tx1, ..., txn) = tk f 'i(x1, ..., xn), 
and then divide both sides by t to get  
 f 'i(tx1, ..., txn) = tk−1 f 'i(x1, ..., xn), 
so that  f 'i is homogeneous of degree k − 1.  

Application: level curves of homogeneous functions 

This result can be used to demonstrate a nice result about the slopes of the level curves of a 
homogeneous function. As we have seen, the slope of the level curve of the function F  through the 
point (x0, y0) at this point is  

− 
F 1'(x0, y0) 

F 2'(x0, y0) 
 

. 

Now suppose that F  is homogeneous of degree k, and consider the level curve through (cx0, cy0) for 
some number c > 0. At (cx0, cy0), the slope of this curve is  

− 
F 1'(cx0, cy0) 

F 2'(cx0, cy0) 
 

. 

By the previous result, F '1 and F '2 are homogeneous of degree k−1, so this slope is equal to  

− 
ck−1F 1'(x0, y0) 

ck−1F 2'(x0, y0) 
 

= − 
F 1'(x0, y0) 

F 2'(x0, y0) 
 

. 

That is, the slope of the level curve through (cx0, cy0) at the point (cx0, cy0) is exactly the same as the 
slope of the level curve through (x0, y0) at the point (x0, y0), as illustrated in the following figure.  



 

 

In this figure, the red lines are two level curves, and the two green lines, the tangents to the 
curves at (x0, y0) and at (cx0, xy0), are parallel.  

We may summarize this result as follows.  

Let F  be a differentiable function of two variables that is homogeneous of some degree. Then along any 
given ray from the origin, the slopes of the level curves of F  are the same.  

Euler's theorem 

A function homogeneous of some degree has a property sometimes used in economic theory that was 
first discovered by Leonhard Euler (1707-1783).  

Proposition (Euler's theorem)  
The differentiable function  f  of n variables is homogeneous of degree k if and only if  
∑i=1

nxi f i'(x1, ..., xn) = k f (x1, ..., xn) for all (x1, ..., xn). (*) 

Condition (*) may be written more compactly, using the notation ∇ f  for the gradient vector of 
 f  and letting x = (x1, ..., xn), as  

x·∇ f (x) = k f (x) for all x. 

Proof  
I first show that if  f  is homogeneous of degree k then (*) holds. If  f  is homogeneous of degree 
k then  
 f (tx1, ..., txn) = tk f (x1, ..., xn) for all (x1, ..., xn) and all t > 0. 
Differentiate each side of this equation with respect to t, to give  
x1 f '1(tx1, ..., txn) + x2 f '2(tx1, ..., txn) + ... + xn f 'n(tx1, ..., txn) = ktk−1 f (x1, ..., xn). 
Now set t = 1, to obtain (*).  

I now show that if (*) holds then  f  is homogeneous of degree k. Suppose that (*) holds. 

http://www.economics.utoronto.ca/osborne/MathTutorialSF/DFI.HTM


 
Fix (x1, ..., xn) and define the function g of a single variable by  

g(t) = t−k f (tx1, ..., txn) −  f (x1, ..., xn). 
We have  
g'(t) = −kt−k−1 f (tx1, ..., txn) + t−k∑i=1

n xi f 'i(tx1, ..., txn). 
By (*), we have  
∑i=1

ntxi f i'(tx1, ..., txn) = k f (tx1, ..., txn), 
so that g'(t) = 0 for all t. Thus g(t) is a constant. But g(1) = 0, so g(t) = 0 for all t, and hence  f (tx1, 
..., txn) = tk f (x1, ..., xn) for all t > 0, so that  f  is homogeneous of degree k.  

Example  
Let  f (x1, ..., xn) be a firm's production function; suppose it is homogeneous of degree 1 (i.e. has 
"constant returns to scale"). Euler's theorem shows that if the price (in terms of units of output) 
of each input i is its "marginal product"  f 'i(x1, ..., xn), then the total cost, namely  
∑i=1

nxi f i'(x1, ..., xn) 
is equal to the total output, namely  f (x1, ..., xn).  

 

Differentiation of Implicit functions:-  

Inverse functions 

A common type of implicit function is an inverse function. If f is a function, then the inverse 
function of f, called f−1, is the function giving a solution of the equation 

x = f(y)  

for y in terms of x. This solution is 

 

 

Intuitively, an inverse function is obtained from f by interchanging the roles of the dependent and 
independent variables. Stated another way, the inverse function gives the solution for y of the 
equation 

 

Examples. 



 
1. The natural logarithm ln(x) gives the solution y = ln(x) of the equation x − ey = 0 or equivalently 

of x = ey. Here f(y) = ey and f−1(x) = ln(x).  
2. The product log is an implicit function giving the solution for y of the equation x − y ey = 0.  

Algebraic functions 

An algebraic function is a function that satisfies a polynomial equation whose coefficients are 
themselves polynomials. For example, an algebraic function in one variable x gives a solution for 
y of an equation 

 

where the coefficients ai(x) are polynomial functions of x. Algebraic functions play an important 
role in mathematical analysis and algebraic geometry. A simple example of an algebraic 
function is given by the unit circle equation: 

 

Solving for y gives an explicit solution: 

 

But even without specifying this explicit solution, it is possible to refer to the implicit solution of 
the unit circle equation. 

While explicit solutions can be found for equations that are quadratic, cubic, and quartic in y, the 
same is not in general true for quintic and higher degree equations, such as 

 

Nevertheless, one can still refer to the implicit solution y = g(x) involving the multi-valued 
implicit function g. 

Implicit differentiation 

In calculus, a method called implicit differentiation makes use of the chain rule to differentiate 
implicitly defined functions. 

As explained in the introduction, y can be given as a function of x implicitly rather than 
explicitly. When we have an equation R(x, y) = 0, we may be able to solve it for y and then 
differentiate. However, sometimes it is simpler to differentiate R(x, y) with respect to x and y and 
then solve for dy/dx. 

http://en.wikipedia.org/wiki/Cubic_equation
http://en.wikipedia.org/wiki/Quartic_equation
http://en.wikipedia.org/wiki/Quintic_equation


 
Examples 

1. Consider for example 

 

This function normally can be manipulated by using algebra to change this equation to one 
expressing y in terms of an explicit function: 

 

where the right side is the explicit function whose output value is y. Differentiation then gives 
dy/dx = −1. Alternatively, one can totally differentiate the original equation: 

 

 

Solving for dy/dx gives: 

 

the same answer as obtained previously. 

2. An example of an implicit function, for which implicit differentiation might be easier than 
attempting to use explicit differentiation, is 

 

In order to differentiate this explicitly with respect to x, one would have to obtain (via algebra) 

 

and then differentiate this function. This creates two derivatives: one for y > 0 and another for y 
< 0. 

One might find it substantially easier to implicitly differentiate the original function: 



 

 

giving, 

 

3. Sometimes standard explicit differentiation cannot be used and, in order to obtain the 
derivative, implicit differentiation must be employed. An example of such a case is the equation 
y5 − y = x. It is impossible to express y explicitly as a function of x and therefore dy/dx cannot be 
found by explicit differentiation. Using the implicit method, dy/dx can be expressed: 

 

where dx/dx = 1. Factoring out dy/dx shows that 

 

which yields the final answer 

 

which is defined for  

Formula for two variables 

"The Implicit Function Theorem states that if F is defined on an open disk containing (a, b), 
where F(a, b) = 0, Fy(a, b) ≠ 0, and Fx and Fy are continuous on the disk, then the equation F(x, 
y) = 0 defines y as a function of x near the point (a, b) and the derivative of this function is given 
by" 

 

where Fx and Fy indicate the derivatives of F with respect to x and y. 



 
The above formula comes from using the generalized chain rule to obtain the total 
derivative—with respect to x—of both sides of F(x, y) = 0: 

 

and hence 

 

Implicit function theorem 

It can be shown that if R(x, y) is given by a smooth sub manifold M in R2, and (a, b) is a point of 
this submanifold such that the tangent space there is not vertical 

(that is, ), then M in some small enough neighbourhood of (a, b) is given by a 
parametrization (x, f(x)) where f is a smooth function. In less technical language, implicit 
functions exist and can be differentiated, unless the tangent to the supposed graph would be 
vertical. In the standard case where we are given an equation 

 

the condition on R can be checked by means of partial derivatives. 

marginal rate of substitution of the two goods: how much more of y one must receive in order 
to be indifferent to a loss of 1 unit of x. 

 

A real-valued function f defined on a domain X has a global (or absolute) maximum point at x∗ 
if f(x∗) ≥ f(x) for all x in X. Similarly, the function has a global (or absolute) minimum point at 
x∗ if f(x∗) ≤ f(x) for all x in X. The value of the function at a maximum point is called the 
maximum value of the function and the value of the function at a minimum point is called the 
minimum value of the function. 

If the domain X is a metric space then f is said to have a local (or relative) maximum point at 
the point x∗ if there exists some ε > 0 such that f(x∗) ≥ f(x) for all x in X within distance ε of x∗. 
Similarly, the function has a local minimum point at x∗ if f(x∗) ≤ f(x) for all x in X within 
distance ε of x∗. A similar definition can be used when X is a topological space, since the 

http://en.wikipedia.org/wiki/Submanifold
http://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
http://en.wikipedia.org/wiki/Parametrization


 
definition just given can be rephrased in terms of neighbourhoods. Note that a global maximum 
point is always a local maximum point, and similarly for minimum points. 

In both the global and local cases, the concept of a strict extremum can be defined. For example, 
x∗ is a strict global maximum point if, for all x in X with x ≠ x∗, we have f(x∗) > f(x), and x∗ is a 
strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε 
of x∗ with x ≠ x∗, we have f(x∗) > f(x). Note that a point is a strict global maximum point if and 
only if it is the unique global maximum point, and similarly for minimum points. 

A continuous real-valued function with a compact domain always has a maximum point and a 
minimum point. An important example is a function whose domain is a closed (and bounded) 
interval of real numbers (see the graph above). 

Finding functional maxima and minima 

Finding global maxima and minima is the goal of mathematical optimization. If a function is 
continuous on a closed interval, then by the extreme value theorem global maxima and minima 
exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or 
minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method 
of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the 
interior, and also look at the maxima (or minima) of the points on the boundary; and take the 
biggest (or smallest) one. 

Local extrema can be found by Fermat's theorem, which states that they must occur at critical 
points. One can distinguish whether a critical point is a local maximum or local minimum by 
using the first derivative test, second derivative test, or higher-order derivative test, given 
sufficient differentiability. 

For any function that is defined piecewise, one finds a maximum (or minimum) by finding the 
maximum (or minimum) of each piece separately; and then seeing which one is biggest (or 
smallest). 

Applications  

Marginal rate of substitution 

, when the level set R(x, y) = 0 is an indifference curve for the quantities x and y consumed of two 
goods, the absolute value of the implicit derivative is interpreted as the 



 
UNIT-IV 

Integration 

What is integration? 
The dictionary definition of integration is combining parts so that they work together or form a whole.  
Mathematically, integration stands for finding the area under a curve from one point to another. It is 
represented by 

 ∫
b

a

dxxf )(   

where the symbol ∫ is an integral sign, and a  and b  are the lower and upper limits of integration, 

respectively, the function f  is the integrand of the integral, and x  is the variable of integration.  Figure 

1 represents a graphical demonstration of the concept. 

Riemann Sum 

 Let f  be defined on the closed interval ],[ ba , and let ∆  be an arbitrary partition of ],[ ba  such 

as: bxxxxxa nn =<<<<<= −1210 ..... , where ix∆  is the length of the thi  subinterval (Figure 2). 

 If ic  is any point in the thi  subinterval, then the sum 

 

∑
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− ≤≤∆
n

i
iiiii xcxxcf

1
1,)(

 

 

is called a Riemann sum of the function f  for the partition ∆  on the interval ],[ ba .  For a given 

partition ∆ , the length of the longest subinterval is called the norm of the partition. It is denoted by ∆  

(the norm of ∆ ). The following limit is used to define the definite integral. 

 



 

 

Figure   The definite integral as the area of a region under the curve, ∫=
b

a

dxxfArea )( . 

If ic  is any point in the thi  subinterval, then the sum 

 iiii

n

i
i xcxxcf ≤≤∆ −

=
∑ 1

1
,)(  

 

Figure    Division of interval into n  segments. 

 

is called a Riemann sum of the function f  for the partition ∆  on the interval ],[ ba .  For a given 

partition ∆ , the length of the longest subinterval is called the norm of the partition. It is denoted by ∆  

(the norm of ∆ ). The following limit is used to define the definite integral. 

   x0         x1      ...                       xi-1                 xi          …                         xn-1        xn 

 

∆xi 

x 

y 

y = f(x) 
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This limit exists if and only if for any positive number ε , there exists a positive number δ  such that for 

every partition ∆  of ],[ ba  with δ<∆ , it follows that 

ε<∆− ∑
=

n

i
ii xcfI

1
)(

 

for any choice of ic in the thi subinterval of ∆ . 

 If the limit of a Riemann sum of f  exists, then the function f  is said to be integrable over 

],[ ba  and the Riemann sum of f  on ],[ ba  approaches the number I . 

∑
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where 

 
∫=
b

a

dxxfI )(
 

Example  
Find the area of the region between the parabola 2xy =  and the x -axis on the interval ]5.4,0[ . Use 
Riemann’s sum with four partitions.  

Solution 

We evaluate the integral for the area as a limit of Riemann sums.  We sketch the region (Figure 3), and 
partition ]5.4,0[  into four subintervals of length 

 125.1
4

05.4
=

−
=∆x . 

 



 

 

Figure   Graph of the function 2xy = . 

 

The points of partition are 

5.4,375.3,25.2,125.1,0 43210 ===== xxxxx  

Let’s choose ic ’s to be right hand endpoint of its subinterval. Thus,   

5.4,375.3,25.2,125.1 44332211 ======== xcxcxcxc  

The rectangles defined by these choices have the following areas: 

4238.1)125.1()125.1()125.1()125.1()( 2
1 ==×=∆ fxcf  

6953.5)125.1()25.2()125.1()25.2()( 2
2 ==×=∆ fxcf  

814.12)125.1()375.3()125.1()375.3()( 2
3 ==×=∆ fxcf   

781.22)125.1()5.4()125.1()5.4()( 2
4 ==×=∆ fxcf  

 The sum of the areas then is 
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           22.78112.8145.69531.4238 +++=  

             = 42.715 

How does this compare with the exact value of the integral dxx∫
5.4

0

2 ? 

Example  
Find the exact area of the region between the parabola 2xy =  and the axis−x  on the interval ],0[ b .  
Use Riemann’s sum.  

Solution 
Note that in Example 1 for 2xy =  that  

 ( ) ( )32 xixcf i ∆=∆  

Thus, the sum of these areas, if the interval is divided into n equal segments is 
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The definition of a definite integral can now be used 
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To find the area under the parabola from 0=x  to bx = , we have 
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For the value of 5.4=b  as given in Example 1,  

3
5.4 35.4

0

2 =∫ dxx  

 = 30.375 



 
The Mean Value Theorem for Integrals 
The area of a region under a curve is usually greater than the area of an inscribed rectangle and less 
than the area of a circumscribed rectangle. The mean value theorem for integrals states that 
somewhere between these two rectangles, there exists a rectangle whose area is exactly equal to the 
area of the region under the curve, as shown in Figure 4.  Another variation states that if a function f  is 

continuous between a  and b , then there is at least one point in ],[ ba  where the function equals the 
average value of the function f over ],[ ba . 

Theorem: If the function f  is continuous on the closed interval ],[ ba , then there exists a number c  

in ],[ ba  such that: 

∫−
=

b

a

dxxf
ab

cf )(1)(  

Example  
Graph the function 2)1()( −= xxf , and find its average value over the interval ]3,0[ . At what point in 

the given interval does the function assume its average value? 

 

      Figure    Mean value rectangle. 

Solution 
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The average value of the function f  over the interval ]3,0[  is 1. Thus, the function assumes its average 

value at 

1)( =cf  

1)1( 2 =−c  

2,0=c  

The connection between integrals and area can be exploited in two ways.  When a formula for the area 
of the region between the x -axis and the graph of a continuous function is known, it can be used to 
evaluate the integral of the function.  However, if the area of region is not known, the integral of the 
function can be used to define and calculate the area. Table 1 lists a number of standard indefinite 
integral forms. 

 



 

 

Figure The function 2)1()( −= xxf . 

 

Example 4 
Find the area of the region between the circle 122 =+ yx  and the x -axis on the interval ]1,0[  (the 

shaded region) in two different ways. 
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Solution 

 

Figure    Graph of the function 122 =+ yx . 

 

The first and easy way to solve this problem is by recognizing that it is a quarter circle.  Hence the area 
of the shaded area is 

2

4
1 rA π=  

    2)1(
4
1 π=  

    
4
π=  

The second way is to use the integrals and the trigonometric functions. First, let’s simplify the function 

122 =+ yx .  
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The area of the shaded region is the equal to 

dxxA ∫ −=
1
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We set θsin=x , θθ ddx cos=  
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By using the following formula  

 
2

2cos1cos2 θθ +
= ,  

we have 

∫
+

=
2

0 2
2cos1π

θθ dA  

        ∫ 





 +=

2

0 2
2cos

2
1π

θθ d  

                
2

04
2sin

2
1 πθθ 



 +=  

                ( )000
4

+−





 +=

π
 



 

                
4
π=  

 

The following are some more examples of exact integration.  You can use the brief table of integrals 
given in Table 1. 

Table   A brief table of integrals 



 
 

Cxdx +=∫  

 

 

Cxdxx +−=∫ cossin  

 

Cdxxfadxxfa += ∫∫ )()(  

 

 

Cxdxx +=∫ sincos  
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Example 5 
Evaluate the following integral  

dxxe x∫ −
1

0

2

2  

Solution 
Let  xdxduxu 2,2 −=−=  

At  0)0(,0 2 =−== ux  

At 1)1(,1 2 −=−== ux  
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Example 6 
Evaluate 

dx
x
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Example 7 
Evaluate ∫ dxxx 2sec  

Solution 
We use the formula  

 ∫ ∫−= vduuvudv  

Let dxduxu == , , and xvdxxdv tan,sec2 ==  

So the new integral is 



 

∫∫ −= xdxxxxdxx tantansec2  

                   Cxxx ++= coslntan  

Example 8 
Evaluate 

∫
2

1

ln xdxx  

Solution 

Let dx
x

duxu 1,ln == and 
2

,
2xvxdxdv ==  

Using the formula ∫ ∫−= vduuvudv , the new integral is 
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Example 9 
Evaluate 

∫ +
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Solution 

We use the formula ∫ ∫=′
b

a
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duufdxxgxgf
)(
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)()())(( , by substituting )(xgu = , dxxgdu )(′=  then 

integrating from )(ag  to )(bg . 
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Example 10 
Evaluate 

∫ −
4
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12 dxx  

Solution 
First, let’s analyze the expression 12 −x . 
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Example 11 
Evaluate  

∫
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Example 12 

Graph the function 2/32 )2(
3
1

+= xy , and find the length of the curve from 0=x  to 3=x .  

Solution 

We use the equation  
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 Figure 7   Graph of the function 2/32 )2(
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Example 13 

Find the area of the shaded region given in Figure 8. 

 

Figure 8   Graph of the function x2cos . 

Solution 
For the sketch given,  

0

0.2 

0.4 

0.6 

0.8 

1

0
2
π  π

x 

y 

xxg 2cos)( =  

1)( =xf  



 

 ππ
== ba ,

2
, and  

 xxxgxf 22 sincos1)()( =−=−  

 

( )∫=
π

π 2

2sin dxxA  

    ∫
−

=
π

π 2 2
2cos1 dxx

 

    ∫ 



 −=

π

π 2 2
2cos

2
1 dxx

 

    
π

π 24
2sin

2 



 −=

xx
 

    
( )












































−−





 −=

4
2

2sin

44
2sin

2

π
πππ

 

    













 −−






 −= 0

4
0

2
ππ

 

     

    
4
π=  

Example 14 
Find the volume of the solid generated by revolving the shaded region in Figure 9 about the y-axis. 



 

 

   Figure 9   Volume generated by revolving shaded region. 

 

Solution 

We use the formula dyradiusV
b

a
∫= 2)(π  

Let 

 dyduyu
4

,
4

ππ == .  

Therefore, at 0,0 == uy  

     
4

,1 π== uy  

( )[ ]∫=
1

0

2 dyyRV π  

   ∫ 













=

1

0

2

4
tan dyyππ  

yx )4/tan(π=

y = 1 

x 

y
  



 

   ∫ 













×=

1

0

2

44
tan4 dyy ππ

π
π  

   ( )∫=
4

0

2tan4
π

duu   (Choosing yu
4
π

= ) 

   ( )∫ +−=
4

0

2sec14
π

duu  

   [ ] 4
0tan4 πuu +−=  

   ( )







+−






 +−= 0tan0

4
tan

4
4 ππ

 

   ( )







+−






 +−= 001

4
4 π

 

   8584.0=  

 

Partial Fractions:-  

 

Partial Fractions provides a way to integrate all rational functions. 

 

Rational functions= 
( )
( )

P x
Q x

 when P and Q are polynomials 

 

This is the technique to find 
( )
( )

P x dx
Q x∫  

 

Rule 1: The degree of the numerator must be less than the degree of the denominator. If this is not the 
case we first must divide the numerator into the denominator. 



 
 

Step 1:  If Q has a quadratic factor ax2 + bx + c which corresponds to a complex root of order k, then the 

partial fraction expansion of  
P
Q

 contains a term of the form 

1 1 2 2
2 2 2 2...

( ) ( ) ( )
k k

k

B CB x C B x C
ax bx c ax bx c ax bx c

++ +
+ + +

+ + + + + +
  

 

Where B1, B2, … Bk and C1 , C2 , …,Ck  are unknown constants. 

 

Step 2: Set the sum of the terms of equal to the partial fraction expansion 

 

Example: 
1

( 2)( 5) 2 5
A B

x x x x
= +

− − − −
 

 

Step 3: When then multiply both sides by Q to get some expression that is equal to P 

 

Example:  1= A(x-5) + B(x-2) 

      1= (A+B)x-5A-2B  

Step 4: Use the theory that 2 polynomials are equal if and only if the corresponding coefficients are 
equal 

 

Example: 5A-2B=1 and A+B=0 

 

Step 5: Solve for A, B, and C 

 

Example: A= -1/3 B= 1/3 



 

Step 6: Express integral of 
P
Q

 as the sum of the integrals of the terms of partial fraction expansion. 

 

Example:

1 1
1 3 3

( 2)( 5) ( 2) ( 5)
dx dx dx

x x x x

−

= +
− − − −∫ ∫ ∫  

=  
1 1ln 2 ln 5

3 3
x x C−

− + − +  

 

Example 2: 

 

Find 
4 2

3 2

2 4 1
1

x x x dx
x x x
− + +

− − +∫  

 

4 2

3 2 3 2

2 4 1 41
1 1

x x x xx
x x x x x x
− + +

= + +
− − + − − +

  Note: long division 

 

2

4
( 1) ( 1)

x
x x− +

 Note: Factor Q(x)= x3 – x2 – x +1  

 

2( 1) ( 1) 1
A B C

x x x
+ +

− − +
   Note: Partial fraction decomposition since (x-1)2’s factor is linear. There is a 

constant on top for the and power and first power 

 

4x= A(x-1)(x+1) + B(x+1) + C(x-1) 2     

Note: multiply by Least common denominator  

 (x-1) 2  (x+1) 



 
= (A+C)x 2  +(B-2C)x+(-A+B+C)   

 

A+C = 0 

B-2C= 4 

-A+B+C= 0    Note: Equate equations 

 

A=1 B=2 C=-1    Note: Solve for coefficients 

 

2

1 2 1( 1)
1 ( 1) 1

x dx dx dx dx
x x x

+ + + −
− − +∫ ∫ ∫ ∫  

=
2 2ln 1 ln 1

2 1
x x x x C

x
+ + − − − + +

−
 

=
2 2 1ln

2 1 1
x xx C

x x
−

+ − + +
− +

 

 

Example 3: 

 

Find 
2

3

2 4
4

x x dx
x x

− +
+∫  

2

3 2

2 4
4 4

x x A Bx C
x x x x

− + +
= +

+ +
                      Note: x2+4 is quadratic 

 

2x2-x + 4 = A(x2+4)+ (Bx+C)x   Note: multiplying x(x2+4) 

= (A+B) x2+Cx+4A 

 



 
A+B=2 C=-1 4A=4  Note: Equating coefficients 

 

A=1  B=1   C=-1 

 

2

3

2 4
4

x x dx
x x

− +
+∫ = 2 2 2

1 1 1 1
4 4 4

x xdx dx dx dx dx
x x x x x

−
+ = + −

+ + +∫ ∫ ∫ ∫ ∫  

= 2 11 1ln ln 4 tan
2 2 2

xx x C−  + + − + 
 

 

 

INTEGRATION BY PART 

 

This is a method to evaluate integrals that cannot be evaluated by eye or by u-substitution. It is 
usually applied to expressions with varied functions within each other, or multiplied by each other. A 
good rule is: if the expression has a chain of functions (f(g(x)) or if the expression has a product of 
functions x(f(x)), integration by parts will be necessary. Here are some examples of problems that would 
be solved with integration by parts: 

  

( )2secx x⋅    ( )3 lnx x    
2 sinθ θ  

 

Let’s start with: 

( )3 lnx x  

 

In integration by parts, you separate the expression into two parts: u, and ( )v∂ . 

The u should be easy to differentiate, and the ( )d v  should be easy to integrate. 



 
Once you have chosen a u and a ( )d v , set up a chart like this: 

 

u = ln(x)  ( )d v  = 
4 4ln( )

4 16
x x x⋅

−  

( )d u  = 1x−    v  = 
4

4
x

 

 

Now, the formula to solve this is: 

( )( )uv d u v− ∫  

so here, the equation to solve is: 

( )
4 4

1ln( )
4 4

x x xx d x− ⋅
− ⋅ 

 
∫  

which simplifies to: 

( )
4 3ln( )

4 4
x x x d x

 ⋅
−  

 
∫  

and solve the integral to get: 

4 4ln( )
4 16

x x x⋅
−  

 

 

Unfortunately, it is not always so simple. Sometimes, you must use u-substitution, or even integration 
by parts again within the solution. Take, for example: 

 

2 sinθ θ  



 
To solve this, you would set up a chart again. 

2 sinθ θ  

u = 2θ     ( )d v  = sinθ  

( )d u  = 2θ    v  = cosθ−  

 

With this chart, you can set up the solution using the ( )( )uv d u v− ∫  formula: 

( ) ( )2 cos 2 cos d θθ θ θ θ= − + ∫  

But the second part of this, ( ) ( )2 cos d θθ θ∫  cannot be solved by eye. You must set up a second chart: 

( ) ( )2 cos d θθ θ∫  

u = 2θ     ( )d v  = cosθ  

( )d u  = 2   v  = sinθ  

This gives us: 

( ) ( )2 sin 2sin d θθ θ θ= + ∫  

Which can be simplified to: 

2 sin 2 cosθ θ θ= +  

Now, you can substitute it into the original solution, in the place of ( ) ( )2 cos d θθ θ∫ , giving you: 
2 cos 2 sin 2cosθ θ θ θ θ= − + +  

 

 

Trigonometric Integrals(REDUCTION FORMULA) 



 
 

 I.   Integrating Powers of the Sine and Cosine Functions 

 

 

  A.  Useful trigonometric identities 

 

   1.  1cossin 22 =+ xx  

 

   2.  xxx cossin22sin =  

 

   3.  xxxxx 2222 sin211cos2sincos2cos −=−=−=  

 

   4.  
2

2cos1sin 2 xx −
=  

   5.  
2

2cos1cos2 xx +
=  

   6.  )]sin()[sin(
2
1cossin yxyxyx ++−=  

   7.  )]cos()[cos(
2
1sinsin yxyxyx +−−=  

   8.  )]cos()[cos(
2
1coscos yxyxyx ++−=  

 

  B.  Reduction formulas 

 



 

   1.  dxx
n

nxx
n

dxx nnn ∫∫ −− −
+−= 21 sin1cossin1sin  

 

   2.  dxx
n

nxx
n

dxx nnn ∫∫ −− −
+= 21 cos1sincos1cos  

 

  C.  Examples 

 

   1.  Find ∫ dxx2sin . 

    

   Method 1(Integration by parts):  ∫∫ = )(sinsinsin 2 dxxxdxx .  Let  

         xu sin=  and dxxdudxxdv cossin =⇒=  and ∫ == dxxv sin  

 

1 

    xcos− .  Thus, ∫∫ +−=+−= xxdxxxxdxx cossincos)cos)((sinsin 22   

    −+−=−+−=−∫ ∫ ∫ xxxdxxdxxxdxx cossinsin1cossin)sin1( 22  

    ⇒∫ dxx2sin ⇒+−=∫ xxxdxx cossinsin2 2  =∫ dxx2sin  

    Cxxx ++−
2
1cossin

2
1

. 

 



 

   Method 2(Trig identity): Cxxdxxdxx +−=−= ∫∫ 2sin
4
1

2
1)2cos1(

2
1sin 2 . 

 

   Method 3(Reduction formula):  ∫∫ =+−= dxxxdxx 1
2
1cossin

2
1sin 2  

    Cxxx ++−
2
1cossin

2
1

. 

 

  2.  Find dxx∫ 3cos . 

 

   Use the reduction formula:  ∫∫ =+= dxxxxdxx cos
3
2sincos

3
1cos 23  

    

   =++−=++ CxxxCxxx sin
3
2)sin1(sin

3
1sin

3
2sincos

3
1 22  

   Cxx +− 3sin
3
1sin . 

    

  3.   Find dxxx 23 cossin∫ . 

    

   ∫ ∫∫ =−== xdxxxdxxxxdxxx sincos)cos1(cossinsincossin 222223  

   ))(sincos(cos 42 dxxxx∫ − .  Let dxxduxu sincos −=⇒= .  Thus,  

1 



 

   =++−=−−=− ∫∫ Cuuduuudxxxx 534242

5
1

3
1)())(sincos(cos  

   Cxx ++− 53 cos
5
1cos

3
1

.   

 

2 

  4.   Find dxxx 22 cossin∫ . 

 

   =−=





 +







 −

= ∫∫∫ dxxdxxxdxxx )2cos1(
4
1

2
2cos1

2
2cos1cossin 222  

   ∫∫∫∫ =−=





 −

= dxxdxdxxdxx 4cos
8
11

8
1

2
4cos1

4
12sin

4
1 2  

   Cxx +− 4sin
32
1

8
1

. 

 

  5.  Find ∫ dxxx 3cos4sin . 

 

       Method 1(Integration by parts):  Let xu 4sin=  and ⇒= dxxdv 3cos   du = 

    dxx4cos4  and xv 3sin
3
1

= .  Thus, =∫ dxxx 3cos4sin  

    −=−





 ∫ xxdxxxxx 3sin4sin

3
13sin4cos

3
43sin

3
1)4(sin  

    ∫ dxxx 3sin4cos
3
4

.  Find ∫ dxxx 3sin4cos .  Let xu 4cos=  and dv = 



 

    dxxdudxx 4sin43sin −=⇒  and xv 3cos
3
1

−= . Thus,  

   ∫∫ −−= dxxxxxdxxx 3cos4sin
3
43cos4cos

3
13sin4cos .  Returning to  

   the original integral, ∫ dxxx 3cos4sin  = −xx 3sin4sin
3
1

 

   +=






 −− ∫ xxdxxxxx 3sin4sin

3
13cos4sin

3
43cos4cos

3
1

3
4

 

   ∫∫ =−⇒+ dxxxdxxxxx 3cos4sin
9
73cos4sin

9
163cos4cos

9
4

 

   ⇒+ xxxx 3cos4cos
9
43sin4sin

3
1 ∫ dxxx 3cos4sin  =  

   Cxxxx +−− 3cos4cos
7
43sin4sin

7
3

. 

 

   Method 2(Trig identity):  ( ) =+= ∫∫ dxxxdxxx 7sinsin
2
13cos4sin  

    Cxx +−− 7cos
14
1cos

2
1

. 
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II.  Integrating Powers of the Tangent and Secant Functions 

 

 A.  Useful trigonometric identity:  xx 22 sec1tan =+  

 

 B.  Useful integrals 

 



 

  1.  ∫ += Cxdxxx sectansec  

 

  2.  Cxdxx +=∫ tansec2  

 

  3.  CxCxdxx +−=+=∫ coslnseclntan  

 

  4.  Cxxdxx ++=∫ tanseclnsec  

 

 C.  Reduction formulas 

 

  1.  dxx
n
n

n
xxdxx n

n
n ∫∫ −

−

−
−

+
−

= 2
2

sec
1
2

1
tansecsec  

 

  2.  dxx
n

xdxx n
n

n ∫∫ −
−

−
−

= 2
1

tan
1

tantan  

 

 D.  Examples 

 

  1.  Find ∫ dxx2tan . 

 



 

   ∫ ∫ ∫∫ +−=−=−= Cxxdxdxxdxxdxx tan1sec)1(sectan 222 . 

 

  2.  Find xdx∫ 3tan . 

 

   Cxxdxxxxdx +−=−= ∫∫ seclntan
2
1tan

2
tantan 2

2
3 . 

 

 

4 

 

  3.  Find xdx∫ 3sec . 

 

   Cxxxxdxxxxdxx +++=+= ∫∫ tansecln
2
1tansec

2
1sec

2
1

2
tansecsec3 . 

 

  4.  Find dxxx∫ 2sectan . 

 

   Let ⇒=⇒= xdxduxu 2sectan =+== ∫∫ Cuududxxx 22

2
1sectan  

   Cx +2tan
2
1

. 

 



 

  5.  Find dxxx∫ 4sectan . 

 

   ∫∫∫ =+== dxxxxdxxxxdxxx 22224 sec)tan1(tansecsectansectan  

   dxxdxxx ∫∫ + 232 sectansectan .  Let dxxduxu 2sectan =⇒= .  Thus, 

   CxxCuuduuududxxx ++=++=+= ∫ ∫∫ 424234 tan
4
1tan

2
1

4
1

2
1sectan . 

 

  6.  Find dxxx∫ 3sectan . 

 

   ∫∫ = )tan(secsecsectan 23 dxxxxdxxx .  Let xdxxduxu tansecsec =⇒= . 

   Thus, CxCuduudxxx +=+== ∫∫ 3323 sec
3
1

3
1sectan . 

 

  7.  Find dxxx 32 sectan∫ . 

 

   ∫ ∫∫∫ −=−= dxxdxxdxxxdxxx 353232 secsecsec)1(secsectan .  Using  

   the reduction formula, dxxxdxx ∫∫ += 335 sec
4
3tansec

4
1sec .  Thus, 

 

 



 
5 

   ∫∫ ∫∫ −+=−= xdxxxdxxdxxdxxx 333532 sec
4
3tansec

4
1secsecsectan  

   −−=−= ∫∫ xxxxdxxxxdxx tansec
8
1tansec

4
1sec

4
1tansec

4
1sec 3333  

   Cxx ++ tansecln
8
1

. 

 

  8.  Find dxxx 4sectan∫ . 

 

   xdxxxdxxxxdxxx 22224 sec)tan1(tansecsectansectan +== ∫∫∫ . 

   Let ⇒=⇒= dxxduxu 2sectan += ∫∫ dxxxdxxx 24 sectansectan  

   =++=+= ∫∫∫ Cuuduuduudxxxx 2
7

2
3

2
5

2
122

7
2

3
2sectantan  

   Cxx ++ 2
7

2
3

)(tan
7
2)(tan

3
2

. 

 

  9.  Find dxxx tansec∫ . 

 

   Let ⇒==⇒=⇒= xdxuxdxxuduxuxu tantansec2secsec 22  

   du
uu

ududxx 22tan 2 == .  Thus, ∫∫∫ ==





= dudu

u
udxxx 122tansec  

   CxCu +=+ sec22 . 



 
Practice Sheet forTrigonometric Integrals 

 
 

 (1)  Prove the reduction formula:  ∫∫ −− −
+−= dxx

n
nxx

n
dxx nnn 21 sin1cossin1sin  

 

 (2)  Prove the reduction formula:  ∫∫ −− −
+= dxx

n
nxx

n
dxx nnn 21 cos1sincos1cos  

 

 (3)  Prove the reduction formula:  ∫∫ −
−

−
−

+
−

= dxx
n
n

n
xxdxx n

n
n 2

2

sec
1
2

1
tansecsec  

 

 (4)  Prove the reduction formula:  ∫∫ −
−

−
−

= dxx
n

xdxx n
n

n 2
1

tan
1

tantan  

 

 (5)  ∫
4

0

3 )3(tan

π

x  dx = 

 

 (6)  ∫
4

0

2 )2(cos

π

x  dx = 

 

 (7)  ∫
8

0

)3cos()5sin(

π

xx  dx = 

 

 (8)  ∫ xx 33 sectan  dx = 

 



 
  

 (9)  xx 3cossin∫  dx = 

 

 

 

7 

(10)  xx∫ 23 sincos  dx = 

 

(11)  ∫
2

0

3

cos
sin

π

x
x

 dx = 

 

(12)  ∫ =xdxx 22 cossin  

 

(13)  ∫ =xdxxsectan5  

 

 

Solution Key for Trigonometric Integrals 

 

 



 

 (1)  dxxxdxx nn sinsinsin 1∫∫ −= .  Use integration by parts with xu n 1sin −=  and  

 

         dxxxndudxxdv n cossin)1(sin 2−−=⇒=  and ∫ ⇒−== xdxxv cossin  

 

 dxxxdxx nn sinsinsin 1∫∫ −=  = =−+− ∫ −− dxxxnxx nn 221 cossin)1(cossin  

 

 ( ) +−=−−+− −−− ∫ xxdxxxnxx nnn cossinsin1sin)1(cossin 1221  

 

 +−=⇒−−− ∫∫∫ −− xxdxxndxxndxxn nnnn cossinsinsin)1(sin)1( 12  

 

 dxx
n

nxx
n

dxxdxxn nnnn ∫∫ ∫ −−− −
+−=⇒− 212 sin1cossin1sinsin)1( . 

 

 (2)  dxxxdxx nn coscoscos 1∫∫ −= .  Use integration by parts with xu n 1cos −=  and  

 

 

8 

         dxxxndudxxdv n )sin(cos)1(cos 2 −−=⇒= −  and ∫ ⇒== xdxxv sincos  

 



 

 dxxxdxx nn coscoscos 1∫∫ −=  = =−+ ∫ −− dxxxnxx nn 221 sincos)1(sincos  

 

 ( ) +=−−+ −−− ∫ xxdxxxnxx nnn sincoscos1cos)1(sincos 1221  

 

 +=⇒−−− ∫∫∫ −− xxdxxndxxndxxn nnnn sincoscoscos)1(cos)1( 12  

 

 dxx
n

nxx
n

dxxdxxn nnnn ∫∫ ∫ −−− −
+=⇒− 212 cos1sincos1coscos)1( . 

 

 (3)  dxxxdxx nn ∫∫ −= 22 secsecsec .  Use integration by parts with xu n 2sec −=  and 

 

         )tan(secsec)2(sec 32 dxxxxndudxxdv n−−=⇒=  and ⇒== ∫ xdxxv tansec2  

 

 dxxxdxx nn ∫∫ −= 22 secsecsec  = =−− ∫ −− dxxxnxx nn 222 tansec)2(tansec  

 

  

 ( ) +−−=−−− ∫∫ −−− xdxnxxdxxxnxx nnnn sec)2(tansec1secsec)2(tansec 2222  

 

 ∫∫∫ ⇒−+=−⇒− −−− dxxnxxdxxndxxn nnnn 222 sec)2(tansecsec)1(sec)2(  



 
  

         ∫∫ −
−

−
−

+
−

= dxx
n
n

n
xxdxx n

n
n 2

2

sec
1
2

1
tansecsec . 

 

 (4)  ( ) −=−== ∫∫∫∫ −−− xdxxdxxxdxxxdxx nnnn 222222 sectan1sectantantantan  

 

 dxx
n

xdxx n
n

n ∫∫ −
−

− −
−

= 2
1

2 tan
1

tantan . 

 

 

 

9 

 

(5)   Let ∫∫∫ ==⇒=⇒= duudxxdxxdxduxu 333 tan
3
13)3(tan

3
1)3(tan33 .  Use  

 

 reduction formula #4 above to get ∫∫ =−







= duuuduu tan

3
1

2
tan

3
1tan

3
1 2

3  

⇒− uu secln
3
1tan

6
1 2  ∫

4

0

3 )3(tan

π

x  dx = =






 −

4

0

2 )3sec(ln
3
1)3(tan

6
1

π

xx  

−














−








4
3secln

3
1

4
3tan

6
1 2 ππ ( ) ( ) −−−−=







 − 2ln

3
1)1(

6
10secln

3
10tan

6
1 22  

 



 

( )2ln
3
1

6
11ln

3
1)0(

6
1 2 −=+ . 

 

(6)  Use the trigonometric identity 
2

2cos1cos2 ∆+
=∆  to get =∫ dxx)2(cos2  

 ( ) ⇒+=+=
+ ∫∫∫ xxdxxdxdxx 4sin

8
1

2
1)4cos(

2
11

2
1

2
)4cos(1

 ∫
4

0

2 )2(cos

π

x  dx = 

 

 






 =+−









+







8
)0sin(

8
1)0(

2
1sin

8
1

42
1 πππ

. 

 

 (7)  Use the trigonometric identity )]sin()[sin(
2
1cossin yxyxyx ++−=  to get  

 

        ⇒−−=+= ∫∫ ∫ )8cos(
16
1)2cos(

4
1)8sin(

2
1)2sin(

2
1)3cos()5sin( xxdxxdxxdxxx  

 

 ( ) =






 −−−









−





−=∫ 0cos

16
10cos

4
1cos

16
1

4
cos

4
1)3cos()5sin(

8

0

ππ
π

dxxx  

 

 
8

23
16
1

4
1

16
1

2
2

4
1 −

=+++







−  

 

10 



 

 (8)  ∫ xx 33 sectan  dx = =∫ )tan(secsectan 22 dxxxxx  

 

 ∫∫ −=− )tan(secsec)tan(secsec)1(sec 422 dxxxxdxxxxx  

 

 Cxxdxxxx +−=∫ 352 sec
3
1sec

5
1)tan(secsec . 

 

 (9)  xx 3cossin∫  dx = ( ) ( ) =−= ∫∫ xdxxxdxxxx cossin1)(sin)cos(cossin 22
12  

 

 Cxxdxxxdxxx +−=− ∫∫ 2
7

2
3

2
5

2
1

)(sin
7
2)(sin

3
2cos)(sincos)(sin . 

 

(10)  xx∫ 23 sincos  dx = ( ) ( )( ) =−= ∫∫ dxxxxdxxxx cossinsin1cossincos 2222  

 

 Cxxdxxxdxxx +−=− ∫∫ 5342 sin
5
1sin

3
1)(cossin)(cossin . 

 

(11)  ( ) =−== ∫∫∫ −− dxxxxdxxxxdx
x
x sincos1)(cos(sinsin)(cos

cos
sin 22

122
13

 

 

 ⇒+−=− ∫∫ − 2
5

2
1

2
3

2
1

)(cos
5
2)(cos2)(sin)(cos)(sin)(cos xxdxxxdxxx  



 
 

 ∫
2

0

3

cos
sin

π

x
x

 dx = ( ) =






 +−−



























+






− 2

52
5

0cos
5
20cos2

2
cos

5
2

2
cos2 ππ

5
8

. 

 

 

(12)  Use the trigonometric identities 
2

2cos1cos2 ∆+
=∆  and 
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2cos1sin 2 ∆−
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Consumer Surplus, Producer Surplus  

Consumer Surplus is defined as the difference between the price a customer willing to pay for a product 

and the price that he actually ends up paying. When a consumer gets to purchase a good at a lower price 
than the price he is willing to pay, he gets more benefits creating a consumer surplus. As an example, for 

a necessity like food consumer would be willing to pay a higher price as it is a necessity. But at normal 
market conditions consumer can obtain food at a relatively lower price than what he is willing to pay and it 

creates a consumer surplus. When the utility (satisfaction) of a good falls the consumer surplus reduces 
as the consumer will not be willing to pay higher price. The consumer surplus can be 

visually represented as follows: 
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Imagine rummaging through a rack of clothes at TJ Maxx. You come across a shirt, and 

immediately a price pops into your head. You think to yourself, I would be willing to pay $25 for 

this shirt.  That means, $25 is your marginal benefit (or demand – the willingness to pay).  Then 

you look at the price and see a tag of $16. You are happy!! You have a consumer surplus of $9. 

 

At the other end of the transaction, TJ Maxx corporate office bought the shirt you are looking at 

on closeout. They estimate that it costs them $8 to put that shirt on the rack. When you buy the 

shirt for $16 they are happy too. They have a producer surplus of $8. 

 

In this example, the two economic agents (the store and the customer) should make an 

exchange.  

 

Consumer surplus will exist as long as the marginal benefit to the consumer is greater than or 

equal to the price the consumer must pay.  It is the area between D and P 

 

Produce surplus will exist as long as the price is greater than or equal to the marginal cost of 

producing the good or service.  It is the area between P and MC 
 



 

 
 
In the perfectly competitive model, exchanges will be made all the way over to the interception 

of demand and supply (equilibrium). After that point, for example in the graph above, when the 

quantity is 700 the marginal benefit (the amount someone is willing to pay) is about $3 and the 

marginal cost of producing the good is about $7. In this case, it does not make sense for the two 

economic agents to make an exchange. To the 700th customer the marginal benefit of the good 

is only $3. The company’s cost to get the good to the 700th customer is $7. Therefore, it is 

inefficient to make an exchange. This is true at any quantity above 500 in the picture above.   

 
Imperfect Competition Product Market 
 
   
 MC 
Price 
 
             1    2 
     P* 
 
    3    4     5 



 
            
 
 
 
 
   
 MR   
 D 
 
 
      Q*  
  
 Quantity 
 

In an imperfect product market the price and quantity are determined from the intersection of 

MR and MC.  (Go down to find Q* and up to the demand curve to find P*). The profit maximizing 

price is denoted by P* and the profit maximizing quantity is denoted by Q*. Exchanges are 

made up to the quantity Q*.  The area of consumer surplus is the space between the demand 

curve (also known as the marginal benefit line) and the price. Therefore, the areas of consumer 

surplus are labeled 1 and 2. The area of producer surplus is the space between price and 

marginal cost (areas 3 and 4).   

There is no surplus after Q* because there are no exchanges made even though the demand 

(marginal benefit) is greater than the marginal cost.  In the area where D > MC there should be 

an exchange made but there is not (this is shown as area 5 above).  This phenomena when D is 

greater MC but there is no exchange made is known as a dead weight loss. Dead weight losses 

occur in imperfect competition, or when there are taxes, or when there are price ceilings or 

floors. 

 This provides a bit more information on the topic. 



 

 

Dead weight loss occurs when people who would have more marginal benefit than marginal 

cost are not buying the product. The company does not want to lower their price to all of their 

customers because they would lose profits.   

Taking advantage of the dead weight loss.  

Recently, we have seen a lot of companies recognize the dead weight loss as a potential area 

of additional profit.  From the company’ perspective, these are customers who would buy the 

product if the price was a little lower. They are on the margin.  The company wants these people 

to be customers but they know they can’t lower their price. So what they do is lower their price 

for new customers only. Have you ever seen a company do that? Now you know why.  When 

incentives are offered to new customers only, the dead weight loss gets smaller and surpluses 

increase. 
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